在极端环境下生存:科学家发现水下火山烟尘中的生命

在极端环境下生存:科学家发现水下火山烟尘中的生命热液羽流从海底升起数百米,并分散到离其源头数千公里的地方,热液羽流可能看起来是不适宜的环境。然而,最近发表在《自然-微生物学》上的一项研究显示,特定的细菌能够在这些看似不稳定的地方茁壮成长。科研船Polarstern在格陵兰岛冰面上进行考察PS86,距离Gakkel海脊的西部火山区约4000米。资料来源:阿尔弗雷德-魏格纳研究所/StefanieArndt第一作者、德国不来梅马克斯-普朗克海洋微生物研究所的MassimilianoMolari说:"我们详细研究了Sulfurimonas属的细菌。到目前为止,这些细菌只知道在低氧环境中生长,但基因序列偶尔也在热液羽流中被检测到。正如它们的名字所表明的,它们已知使用来自硫化物的能量。"人们认为它们是从海底通风口相关的环境中被冲到那里的。但是我们想知道,这些烟羽是否真的可能是一个适合Sulfurimonas组的一些成员的环境"。由AntjeBoetius教授博士领导的Polarstern团队。后排,从左起。GunterWegener,MassimilianoMolari,MirjaMeiners,RafaelStiens,AntjeBoetius,FabianSchramm,NorbertRieper。前排。AndreasTürke,YannMarcon.资料来源:阿尔弗雷德-魏格纳研究所/StefanieArndt艰难的采样条件因此,Molari与来自阿尔弗雷德-魏格纳研究所、不来梅港亥姆霍兹极地和海洋研究中心(AWI)以及不来梅大学MARUM海洋环境科学中心的同事一起,对北极中部和南大西洋的热液羽流进行了一次具有挑战性的采样之旅。"我们在以前从未研究过的超低速扩张脊的极偏远地区对羽流进行采样。收集热液羽流样品是非常复杂的,因为它们不容易被找到。"马克斯-普朗克海洋微生物研究所的组长兼AWI主任AntjeBoetius解释说,他是北极任务的首席科学家,当羽流位于2500米以上的深度和北极海冰之下,或者位于南大洋的风暴区内时,取样就变得更加困难。极光公司在加克尔海脊(北极中部)的热液喷口。水下摄像系统OFOS拍摄的热液喷口(左上角,由红色箭头表示)和烟囱(右边的黄橙色结构)的快照,这使得在考察PS86期间确定热液喷口领域的位置成为可能。资料来源:巡航报告在研究船Polarstern上,科学家们设法收集样本,并在这些水中研究细菌的组成和代谢。装备精良,分布广泛莫拉里和他的同事发现了一个新的Sulfurimonas物种,叫做USulfurimonaspluma(上标"U"代表未培养的),栖息在寒冷、氧气饱和的热液羽流中。令人惊讶的是,这种微生物使用烟羽中的氢气作为能量来源,而不是硫化物。科学家们还调查了这种微生物的基因组,发现其基因组被强烈削弱,缺少其亲属的典型基因,但却很好地配备了其他基因,使其能够在这种动态环境中生长。"我们认为,热液羽流不仅分散了热液喷口的微生物,而且还可能在生态上将开阔的海洋与海底栖息地连接起来。我们的系统发育分析表明,USulfurimonaspluma可能来自一个与热液喷口相关的祖先,它获得了更高的耐氧性,然后扩散到整个大洋。然而,这还有待进一步调查",Molari说。对其他羽流的基因组数据的研究表明,USulfurimonaspluma在世界各地的这些环境中生长。Molari说:"显然,它们在寒冷、氧气饱和和富含氢气的热液羽流中找到了一个生态位,这意味着我们必须重新思考我们对深海中硫磺类动物的生态作用的想法--它们可能比我们以前认为的要重要得多"。...PC版:https://www.cnbeta.com.tw/articles/soft/1350395.htm手机版:https://m.cnbeta.com.tw/view/1350395.htm

相关推荐

封面图片

在极端环境中生存 探索125°环境中的生命存在

在极端环境中生存探索125°环境中的生命存在奥利维里奥和拉帕波特夏天在加利福尼亚州的拉森火山国家公园进行了实地研究,那里有许多热液地貌。资料来源:锡拉丘兹大学真核生物多样性的很大一部分是由被称为原生生物的单细胞微生物组成的。通过对这些生物的研究,科学家们可以探索真核生物丰富多样性和复杂性的进化路径。通过这些研究,我们可以了解地球上动物生命得以存在的发展过程,例如多细胞性的出现。在研究人员致力于更好地了解地球物种进化背后的机制时,关于微生物真核生物如何适应地球极端环境的问题依然存在。为了进一步深入研究这个问题,文理学院(A&S)生物系的科学家们目前正在研究栖息在地球上一些最恶劣环境中的原生生物:极热和极酸的地热湖泊。A&S生物学家AngelaOliverio(左)和HannahRappaport在加利福尼亚州拉森火山国家公园美国最大的地热湖。图片来源:锡拉丘兹大学生物学助理教授安吉拉-奥利维里奥(AngelaOliverio)领导的一个团队最近从加利福尼亚州的拉森火山国家公园(LassenVolcanicNationalPark)返回,那里有美国最大的地热湖。"这个湖是一个酸性硫酸盐蒸汽加热地热特征,这意味着它既相当热(约52°C/124°F)又呈酸性(pH约2),"2022年开始在锡拉丘兹大学工作的奥利维里奥说。"这使它成为研究多极端嗜酸性生物的一个非常独特的环境,多极端嗜酸性生物是指适应两种或两种以上极端条件的生物--在这种情况下,就是高温和低pH值。"那么,他们怎么会知道到加利福尼亚的一个热湖去寻找微生物真核生命呢?最近,奥利维里奥和奥利维里奥实验室的研究员汉娜-拉帕波特(HannahRappaport)在《自然-通讯》(NatureCommunications)上共同发表了一篇研究论文,在这篇论文中,研究小组建立了一个数据库,收录了之前在极端环境中寻找微生物真核生命的研究。具体来说,他们分析了在相似的环境条件下,哪些真核生物系在不同的研究中被多次检测到。汉娜-拉帕波特(HannahRappaport)使用光学显微镜拍摄的变形虫(背景中的圆形灰色斑点)和红藻(前景中的四个白色椭圆形)图片。这些样本取自拉森火山国家公园的一个地热湖。图片来源:锡拉丘兹大学奥利维里奥说:"我们发现,有几个变形虫品系往往是从极高温环境中发现的。这表明,研究这些品系可能会对真核细胞如何适应极高温环境下的生活产生重大启示。"据奥利维里奥介绍,加州州立大学奇科分校戈登-沃尔夫实验室进行的一项特殊研究显示,拉森国家公园的地热湖中有一种名为嗜热变形虫的变形虫,数量相当丰富。但是,目前还没有关于这种生物的基因组数据。确定这种生物是如何适应这种极端环境的,可以拓展人们对宇宙中哪些类型的环境适合生命存在的认识。去年夏天,奥利维里奥和拉帕波特来到拉森国家公园,进一步了解这种特殊的原生生物,并寻找其他新型嗜极真核生物。在湖边,研究小组用一根长长的油漆工用的竹竿,在上面插上一个1升的瓶子来采集样本--考虑到湖水的温度远远超过华氏100度,这可不是一件容易的事。之后,瓶子被运回奥利维里奥在锡拉丘兹大学的实验室,研究小组目前正在分离单细胞进行基因组测序,并用显微镜观察变形虫的特征。锡拉丘兹大学研究人员汉娜-拉帕波特(HannahRappaport)将瓶子浸入热湖中采集样本。由于水温较高且地面不稳定,研究人员在采集样本时必须保持安全距离。图片来源:锡拉丘兹大学虽然真核生物如何适应极端环境仍有许多未知数,但奥利维里奥希望这项研究将有助于填补目前的一些知识空白。汉娜-拉帕波特(HannahRappaport)使用光学显微镜拍摄的变形虫(背景中的圆形灰色斑点)和红藻(前景中的四个白色椭圆形)图片。这些样本取自拉森火山国家公园的一个地热湖。她说:"我们怀疑这种变形虫形态有其特殊之处,能够在这些真核生物系中持续存在,但其机制仍然未知。根据我们的研究,我们假设,来自细菌的水平基因转移(生物体之间遗传信息的移动)和基因组削减(当基因组删除它不需要的基因时),以及特别有用的基因家族的扩展,可能是原生生物获得在极端环境中生存的工具包的几种方式。"研究小组的基因组尺度发现将为生命树的重建提供重要的缺失数据。"这将进一步加深我们对地球上生命分布和进化的理解"。...PC版:https://www.cnbeta.com.tw/articles/soft/1387531.htm手机版:https://m.cnbeta.com.tw/view/1387531.htm

封面图片

科学家发现生产纤维素的细菌可以在类似火星的环境中生存

科学家发现生产纤维素的细菌可以在类似火星的环境中生存包括哥廷根大学科学家在内的一个国际研究小组研究了在类似火星的环境中红茶菌培养物生存的可能性。红茶菌是一种流行的饮料,它是通过使用红茶菌培养物(一种细菌和酵母的共生培养物)发酵糖化茶而制成。令人惊讶的是,尽管模拟的火星大气破坏了红茶菌培养物的微生物生态,但一种产生纤维素的细菌物种仍然存在。该研究结果发表在《微生物学前沿》(FrontiersinMicrobiology)杂志上。2014年,在欧空局的帮助下,从事"生物和火星实验"(BIOMEX)项目的研究人员将红茶菌培养物发射到国际空间站(ISS)。该项目目的是为了更好地了解纤维素作为生物标志物的弹性,红茶菌的基因组结构,以及它的地外生存行为。这些样品在地球上被重新激活,并在国际空间站外的模拟火星条件下培养了一年半之后,又进行了两年半的培养。哥廷根大学兽医研究所所长BertramBrenig教授与来自巴西米纳斯吉拉斯州立大学的研究人员一起工作,负责对重新激活的培养物和单个红茶菌培养物的元基因组进行测序和生物信息分析。“根据我们的元基因组分析,我们发现模拟的火星环境极大地破坏了红茶菌培养物的微生物生态。然而,我们惊讶地发现,Komagataeibacter属的纤维素生产细菌幸存下来。”这些结果表明,细菌产生的纤维素可能是它们在地外条件下生存的原因。这也提供了第一个证据,表明细菌纤维素可能是地外生命的生物标记,而纤维素基的膜或薄膜可能是保护生命和在地外定居点生产消费品的良好生物材料。这些实验的另一个有趣的方面可能是开发新的药物输送系统,例如,开发适合在太空使用的药物。另一个重点是调查抗生素抗性的变化:研究小组能够表明,抗生素和金属抗性基因的总数--意味着尽管环境中存在抗生素或金属,这些微生物仍可能存活--在暴露的培养物中得到了丰富。科学家们说:“这一结果表明,未来应特别关注太空医学中与抗生素抗性有关的困难。”...PC版:https://www.cnbeta.com/articles/soft/1302647.htm手机版:https://m.cnbeta.com/view/1302647.htm

封面图片

科学家发现 CRISPR-Cas 系统的潜在新功能

科学家发现CRISPR-Cas系统的潜在新功能研究小组最近在《自然-微生物学》(NatureMicrobiology)杂志上发表了他们的研究成果。亚历山大-普罗斯特博士图片来源:UDE/BettinaEngel-Albustin2020年,生物化学家埃马纽埃尔-夏彭蒂耶(EmmanuelleCharpentier)和詹妮弗-杜德娜(JenniferDoudna)因将CRISPR-Cas系统(或称"基因剪刀")应用于基因工程的生物技术而获得诺贝尔奖。然而,这种基因工具的许多功能至今仍未被探索。例如,微生物能否利用它们来对抗寄生在它们身上的其他微生物?带着这个研究问题,亚历山大-普罗普斯特分析了地壳深处微生物的遗传物质。地球上70%以上的微生物都生活在深层生物圈中。如果我们想了解地球上的多样性,就值得深入研究,他解释道。这位微生物学家和他的团队一起分析了美国一个间歇泉从深海吐到地面的水,以及日本堀之部地下实验室的样本。研究小组重点研究了古细菌,它们作为宿主和寄生虫生活在生态系统中。这种微小的微生物在细胞大小上与细菌极为相似,但生理特性却大相径庭。他们的基因组分析结果提供了新的见解:宿主附近的寄生虫明显很少,而且宿主对寄生虫表现出遗传抗性。研究人员从微生物基因组中的基因剪刀中发现了其中的原因。"在进化过程中,古细菌吸收了寄生虫的DNA。如果带有相同DNA的寄生虫现在攻击生物体,外来遗传物质可能会被CRISPR系统识别并分解,"普罗普斯特解释道。这位微生物学家是分析环境样本中遗传物质的专家,他的实验室采用了最新的方法,如牛津纳米孔技术,该技术可以对遗传物质进行快速、全面的测序。为了排除他们只是遇到个别情况的可能性,研究人员将分析范围扩大到7000多个基因组,并观察到这种现象非常频繁。在未来的研究中,这一发现还将有助于区分有益的共生体和有害的寄生虫。如果存在CRISPR识别,那么该微生物就很有可能是寄生虫。这或许还将有助于今后更好地理解重要的新陈代谢过程,如生态系统中的碳流。...PC版:https://www.cnbeta.com.tw/articles/soft/1374597.htm手机版:https://m.cnbeta.com.tw/view/1374597.htm

封面图片

科学家在地球最深的海沟发现新病毒

科学家在地球最深的海沟发现新病毒"马里亚纳海沟是地球上最深的地方,在太平洋海底的最低点下降了近11000米(36000英尺)。即使在这个深不见底、寒气逼人的深渊中,生命依然存在。"青岛中国海洋大学的海洋病毒学家王敏博士说:"只要有生命的地方,就一定有调节器在工作。"在这里指的就是病毒。在最近发表于《微生物学频谱》(MicrobiologySpectrum)杂志上的一项研究中,王敏和一组国际研究人员报告说,他们从8900米(29200英尺)深的沉积物中分离出了一种新病毒。这种病毒是一种噬菌体,即在细菌体内感染和复制的病毒,而噬菌体被认为是地球上最丰富的生命形式。"据我们所知,这是全球海洋中已知分离最深的噬菌体,"王说。新发现的噬菌体能感染嗜盐单胞菌门中的细菌,这些细菌通常出现在深海沉积物和热液喷口中,热液喷口是海底喷泉状开口,释放出加热的水流。王说,研究小组对病毒遗传物质的分析表明,深海中存在一个以前未知的病毒家族,并对深海噬菌体的多样性、进化和基因组特征以及噬菌体-宿主相互作用有了新的认识。在之前的工作中,研究人员利用元基因组分析研究了感染海洋螺旋纲(Oceanospirallales)细菌的病毒,其中包括嗜盐单胞菌。在这项新研究中,王的研究小组从青岛中国海洋大学海洋病毒学家张玉忠博士领导的研究小组收集和分离的细菌菌株中寻找病毒。张的研究探索极端环境中的微生物生命,包括极地和马里亚纳海沟。这种新病毒被鉴定为vB_HmeY_H4907,对它的基因组分析表明,这种病毒广泛分布于海洋中,其结构与其宿主相似。这项研究指出了新的问题和研究领域,重点是病毒在恶劣、隐蔽环境中的生存策略--以及它们如何与宿主共同进化。新病毒具有溶解性,这意味着它能侵入宿主体内并进行复制,但通常不会杀死细菌细胞。随着细胞的分裂,病毒的遗传物质也被复制和传递。王说,在今后的研究中,研究小组计划调查驱动深海病毒与其宿主之间相互作用的分子机制。他们还在极端环境中寻找其他新病毒,"这将有助于拓宽我们对病毒球的理解,"王说。"极端环境为发现新型病毒提供了最佳前景"。...PC版:https://www.cnbeta.com.tw/articles/soft/1385919.htm手机版:https://m.cnbeta.com.tw/view/1385919.htm

封面图片

科学家发现复杂生命起源的新线索:我们都是阿斯加德人

科学家发现复杂生命起源的新线索:我们都是阿斯加德人用生物进化论者的话来说,这意味着真核生物是阿斯加德古菌中的一个"嵌套良好的支系",就像鸟类是恐龙这个更大群体中的几个族群之一,有着共同的祖先一样。研究小组发现,在阿斯加德古菌中,所有真核生物都有一个共同的祖先。根据这项最新研究,所有复杂生命形式(又称真核生物)的根源都可以追溯到一群名为阿斯加德古菌的微生物的共同祖先。资料来源:德克萨斯大学奥斯汀分校在距今约20亿年之前,还没有发现真核生物的化石,这表明在此之前,只有各种类型的微生物存在。UT奥斯汀分校综合生物学和海洋科学副教授布雷特-贝克(BrettBaker)说:"那么,是什么事件导致微生物进化成真核生物呢?这是一个大问题。拥有这个共同的祖先是理解这个问题的一大步。"在荷兰瓦赫宁根大学ThijsEttema的领导下,研究小组确定了生命树上与所有复杂生命形式最亲近的微生物,即新描述的Hodarchaeales(简称Hods)。Hods发现于海洋沉积物中,是更大的阿斯加德古菌群中的几个亚群之一。阿斯加德古菌进化于20多亿年前,它们的后代现在仍然活着。其中一些已在世界各地的深海沉积物和温泉中被发现,但迄今为止,只有两个菌株能在实验室中成功培育。为了识别它们,科学家从环境中收集它们的遗传物质,然后拼凑它们的基因组。根据与其他可在实验室培育和研究的生物的基因相似性,科学家们可以推断出阿斯加德人的新陈代谢和其他特征。贝克实验室的研究员瓦莱丽-德-安达(ValerieDeAnda)说:"想象一下一台时光机,不是去探索恐龙或古代文明的领域,而是深入到可能引发复杂生命曙光的潜在代谢反应中去。我们研究的不是化石或古代文物,而是现代微生物的基因蓝图,以重建它们的过去。"这项研究分析的部分微生物是利用阿尔文号深海潜水器采集的,图为2018年11月在瓜伊马斯盆地的采集之旅。图片来源:BrettBaker研究人员扩大了已知的阿斯加德基因组多样性,增加了50多个未被描述的阿斯加德基因组作为建模输入。他们的分析表明,所有现代阿斯加德人的祖先似乎都生活在炎热的环境中,以消耗二氧化碳和化学物质为生。与此同时,与真核生物亲缘关系更近的霍奇菌在新陈代谢方面与我们更相似,它们吃碳并生活在更凉爽的环境中。德安达说:"这真是令人兴奋,因为我们第一次看到了产生第一批真核细胞的祖先的分子蓝图。"在北欧神话中,霍德(Hod,也可拼写为Höd、Höðr或Hoder)是一个神,是奥丁(Odin)和弗里格(Frigg)的盲儿子,他被骗杀死了自己的亲兄弟鲍德尔(Baldr)。贝克说:"我在演讲中一直开玩笑说'我们都是阿斯加德人'。现在这句话很可能会出现在我的墓碑上。""对我来说,最令人兴奋的事情是,我们开始看到从生物学家认为的古细菌向更像真核生物的Hodarchaeales过渡。另一种说法是,这些Hods是我们在古生物世界中的姊妹群。"贝克说,在所有古细菌中,阿斯加德人是产生真核生物的,这是有道理的。与真核生物一样,阿斯加德古菌成员的基因组中也有许多具有多个拷贝的基因。在真核生物中,当基因发生复制时,新的拷贝往往具有新的功能,赋予生物新的能力。这是进化的主要驱动力之一。"我们不知道这些阿斯加德人的基因复制具体导致了什么。但我们知道,在真核生物中,基因复制导致了新的功能和细胞复杂性的增加。因此,我们认为这也是阿斯加德导致真核生物创新的方式之一。"研究古菌的科学家发现了许多曾被认为是真核生物独有的蛋白质。这就提出了一个问题:这些真核蛋白质在古细菌中发挥着什么功能?贝克说:"我认为,研究这些更简单的生命形式和它们的真核特征,会让我们对自己有很多了解。"...PC版:https://www.cnbeta.com.tw/articles/soft/1373755.htm手机版:https://m.cnbeta.com.tw/view/1373755.htm

封面图片

中国科学家发现让茶叶口感更佳的秘密

中国科学家发现让茶叶口感更佳的秘密研究表明,茶叶的品质不仅取决于茶树的品种,还取决于茶树根部的微生物,改变这些微生物群落可以提高氨基酸含量,从而显著改善茶叶品质。"通过微生物组学研究,我们在不同品质的茶树根部发现了微生物群落的显著差异,尤其是与氮代谢相关的微生物,"中国福建农林大学的许通达说。"最关键的是,通过从优质茶树根系中分离和组装合成微生物群落,我们成功地显著提高了不同茶树品种的氨基酸含量,从而改善了茶叶品质"。这张照片显示的是中国福建武夷山的茶山茶叶栽培的挑战和微生物解决方案中国拥有丰富的茶树遗传资源。但是,研究人员解释说,通过分子遗传育种方法提高茶叶品质具有挑战性。人们有兴趣寻找其他方法来改造和提高茶叶品质,或许包括使用微生物制剂。早先的研究表明,生活在植物根部的土壤微生物会影响植物吸收和利用养分的方式。在新的研究中,研究人员希望进一步了解根部微生物对茶叶品质的具体影响。他们发现,茶叶根部的微生物会影响其对氨的吸收,进而影响茶氨酸的产生,而茶氨酸是决定茶叶口感的关键。他们还发现,不同茶叶中定植的微生物存在差异。通过比较茶氨酸含量不同的茶叶品种,他们确定了一组微生物,这些微生物有望改变氮代谢,提高茶氨酸的含量。接下来,他们构建了一个被称为"SynCom"的合成微生物群落,该群落与一种名为"Rougui"的高丙氨酸茶叶品种的微生物群落非常相似。当他们将SynCom应用于茶叶根部时,发现它提高了茶氨酸的水平。这种微生物还能让拟南芥这种常用于基础生物学研究的植物更好地耐受低氮条件。对农业的广泛影响该研究的合著者唐文新说:"人们最初对从优质茶树根部提取的合成微生物群落的期望是提高劣质茶树的品质。然而,我们惊讶地发现,合成微生物群落不仅能提高低品质茶树的品质,还能对某些高品质茶叶品种产生显著的促进作用。而且,这种效果在低氮土壤条件下尤为明显"。这张照片显示的是中国福建武夷山的茶山研究结果表明,合成微生物群落可以改善茶叶的品质,尤其是在缺氮的土壤条件下生长的茶叶。由于茶树需要大量的氮,这一发现有助于减少化肥的使用,同时提高茶树的品质。这些发现可能会对更广泛的农作物产生重要影响。"根据我们目前的实验结果,加入SynCom21微生物群落不仅改善了不同茶叶品种对铵态氮的吸收,还增强了拟南芥对铵态氮的吸收,"许说。"这表明,SynCom21的铵态氮吸收促进功能可能适用于各种植物,包括其他作物。"例如,它可以培育出品质更好的水稻,包括蛋白质含量更高的水稻。他们现在计划进一步优化SynCom,并评估其在田间试验中的应用。他们还希望进一步了解根部微生物如何影响茶树的其他次生代谢物。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419165.htm手机版:https://m.cnbeta.com.tw/view/1419165.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人