科学家发现 CRISPR-Cas 系统的潜在新功能

科学家发现CRISPR-Cas系统的潜在新功能研究小组最近在《自然-微生物学》(NatureMicrobiology)杂志上发表了他们的研究成果。亚历山大-普罗斯特博士图片来源:UDE/BettinaEngel-Albustin2020年,生物化学家埃马纽埃尔-夏彭蒂耶(EmmanuelleCharpentier)和詹妮弗-杜德娜(JenniferDoudna)因将CRISPR-Cas系统(或称"基因剪刀")应用于基因工程的生物技术而获得诺贝尔奖。然而,这种基因工具的许多功能至今仍未被探索。例如,微生物能否利用它们来对抗寄生在它们身上的其他微生物?带着这个研究问题,亚历山大-普罗普斯特分析了地壳深处微生物的遗传物质。地球上70%以上的微生物都生活在深层生物圈中。如果我们想了解地球上的多样性,就值得深入研究,他解释道。这位微生物学家和他的团队一起分析了美国一个间歇泉从深海吐到地面的水,以及日本堀之部地下实验室的样本。研究小组重点研究了古细菌,它们作为宿主和寄生虫生活在生态系统中。这种微小的微生物在细胞大小上与细菌极为相似,但生理特性却大相径庭。他们的基因组分析结果提供了新的见解:宿主附近的寄生虫明显很少,而且宿主对寄生虫表现出遗传抗性。研究人员从微生物基因组中的基因剪刀中发现了其中的原因。"在进化过程中,古细菌吸收了寄生虫的DNA。如果带有相同DNA的寄生虫现在攻击生物体,外来遗传物质可能会被CRISPR系统识别并分解,"普罗普斯特解释道。这位微生物学家是分析环境样本中遗传物质的专家,他的实验室采用了最新的方法,如牛津纳米孔技术,该技术可以对遗传物质进行快速、全面的测序。为了排除他们只是遇到个别情况的可能性,研究人员将分析范围扩大到7000多个基因组,并观察到这种现象非常频繁。在未来的研究中,这一发现还将有助于区分有益的共生体和有害的寄生虫。如果存在CRISPR识别,那么该微生物就很有可能是寄生虫。这或许还将有助于今后更好地理解重要的新陈代谢过程,如生态系统中的碳流。...PC版:https://www.cnbeta.com.tw/articles/soft/1374597.htm手机版:https://m.cnbeta.com.tw/view/1374597.htm

相关推荐

封面图片

科学家设计CRISPR噬菌体 - 可对细菌实施基因编辑的特殊病毒

科学家设计CRISPR噬菌体-可对细菌实施基因编辑的特殊病毒在自然界中,CRISPR最初是由细菌作为一种防御机制来对付捕食它们的病毒,但在新的研究中,研究人员扭转了局面。他们设计了猎杀细菌的病毒,基础来自于广为人知的噬菌体,特别设计的噬菌体可以针对某些菌株,向它们注入CRISPRDNA,对它们的基因组进行特定编辑。在实验室测试中,这些噬菌体--被命名为T7和lambda--负责向大肠杆菌传递基因,使细菌发出荧光,并改变它们对一种抗生素的抗性。果然,这些变化在细菌身上被看到了,表明它正在发挥作用。在下一个测试中,该团队使用λ噬菌体来运输所谓的胞嘧啶碱基编辑器。这种工具并不切断目标的DNA,而是改变序列中的一个字母,使特定的基因失去活性,使之成为一种更温和的细菌。该研究的主要作者MatthewNethery说:"我们在这里使用碱基编辑器作为大肠杆菌中基因的一种可编程的开关。使用这样的系统,我们可以对基因组进行高度精确的单字母改变,而不会出现通常与CRISPR-Cas瞄准有关的双链DNA断裂。"最后的测试被设计为模拟一个更自然的环境,使用一个人造的生态系统(EcoFAB)。这涉及到在一个罐子里装上由沙子和石英组成的合成土壤、一些液体和三种不同类型的细菌,包括大肠杆菌。其目的是测试噬菌体在一个更真实的环境中追捕其目标的能力如何,以及它们是否能从其他物种中分离出大肠杆菌。当λ被引入EcoFAB时,它在编辑大肠杆菌方面取得了相当大的成功,研究小组报告说整个细菌群体的效率高达28%。研究人员说,随着进一步的工作,这种技术最终可以在土壤细菌的大规模基因编辑中找到用途,甚至可能在肠道微生物组中找到。该研究的通讯作者RodolpheBarrangou说:"我们认为这是一种帮助微生物组的机制。我们可以对一个特定的细菌进行改变,而微生物组的其他部分仍然不受影响。这是一个可以在任何复杂的微生物群落中采用的概念证明,这可以转化为更好的植物健康和更好的胃肠道健康--对食品和健康具有重要意义的环境。"这项研究发表在《美国科学院院刊》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1332127.htm手机版:https://m.cnbeta.com.tw/view/1332127.htm

封面图片

科学家发现数千种可能优于CRISPR的Fanzor DNA切割工具

科学家发现数千种可能优于CRISPR的FanzorDNA切割工具在变形虫等复杂细胞中利用可编程DNA切割器可能改变医学领域的游戏规则为什么说这是一件大事呢?Fanzors--研究人员现在已经在从真菌到软体动物的各种物种中发现了它--源自真核生物。而Cas9则存在于更简单的原核细胞中。因此,虽然细菌等更简单的细胞在进化树上与人类相距甚远,但CRISPR--成簇的有规则间隔短回文重复序列--在"纠正"遗传疾病和开发诊断系统方面却发挥了巨大作用,被认为是现代医学最伟大的发现之一。以类似的方式利用Fanzors有可能产生更大的影响,原因很简单,因为这些基因剪刀更符合我们的细胞构成。麦戈文研究员乔纳森-古腾伯格说:"长期以来,人们一直在原核系统中寻找有趣的工具,我认为这已经取得了令人难以置信的成果。真核系统确实是一个全新的工作场所"。CRISPR是一种众所周知的细菌防御机制,用于抵御外来元素,帮助保存生物体的遗传密码。Fanzors很可能是通过病毒传播或共生细菌,特别是细菌酶TnpBs在真核细胞中进化而来,由于其有用性而被保守下来。由于真核细胞结构的复杂性,这种酶进化出了独特的特征,例如能够进入细胞核获取DNA。正因为如此,与TnpB相比,Fanzors的DNA切割靶点似乎更加精确。因此,未来的基因疗法大有可为。麦戈文研究员奥马尔-阿布达耶赫(OmarAbudayyeh)说:"RNA引导的生物学可以让你制造出真正易于使用的可编程工具。因此,我们能找到的东西越多越好。"将整个真核生物界开放给这些类型的RNA引导系统将给我们带来很多工作机会。"这项研究发表在《科学进展》(ScienceAdvances)上。...PC版:https://www.cnbeta.com.tw/articles/soft/1390239.htm手机版:https://m.cnbeta.com.tw/view/1390239.htm

封面图片

科学家发现现有疟疾诊断过程存在"令人担忧"的缺陷

科学家发现现有疟疾诊断过程存在"令人担忧"的缺陷这项研究最近发表在《寄生虫学趋势》(TrendsinParasitology)杂志上。研究人员创建了一个感染动态数学模型,以确定以往计算机模型中的血液采样偏差和错误推断导致了大量的高估。论文通讯作者、农业与生命科学学院生态学与进化生物学助理教授梅根-格雷斯查尔(MeganGreischar)说:"无法准确测量这些比率令人担忧。"弗吉尼亚理工大学数学副教授LaurenChilds是该论文的共同作者,他介绍说:"我们曾经有一个非常简单的模型来推断乘法率,但这个模型行不通,所以现在我们知道我们需要更强大的模型。她说,这项研究解释了精确测量繁殖率的问题是如何产生的。"一些候选疟疾疫苗是在寄生虫在血液中复制的生命周期阶段发挥作用的,因此了解寄生虫的繁殖率是评估疫苗疗效的关键。受感染的蚊子通过血餐将疟原虫传给人类宿主。寄生虫首先在肝细胞中繁殖,然后进入红细胞。在那里,寄生虫在红细胞内同步复制,并迸发到血液中,杀死红细胞。然后,子寄生虫继续下一个循环,侵入新的红细胞。这种循环大约每48小时重复一次。在测量繁殖率时,临床医生会从受感染的病人身上采集血液样本,并计算观察到的寄生虫数量。时间选择很重要,因为从红细胞中迸发出来的幼小寄生虫处于生命周期的早期,很容易被发现。但随着年龄的增长,在生命周期的后期,寄生虫会变得粘稠,附着在血管壁上,无法循环。由于这种循环会不断重复,采样的时间就决定了血液中能观察到的数量是多是少。在可观察到寄生虫数量较少的周期后期采集样本,与在幼寄生虫数量较多的周期早期采集样本相比,取样偏差会增加。以前用于估算寄生虫繁殖率的模型试图通过推断寄生虫群生命周期后期可能存在的寄生虫数量来纠正这种取样偏差,因为这时无法直接观察到寄生虫。这项研究表明,这些方法不足以确定寄生虫的实际繁殖速度。之前发表的研究测量了一种人类疟原虫(恶性疟原虫)在人工培养的一个48小时复制周期内产生的最大后代数量。格雷斯查尔说:"它们最多只能繁殖32倍,这已经相当大了,这意味着单个寄生虫最多能产生32个子代寄生虫,中位数约为15到18个。"利用数学模型,结合疟疾感染者的现代和历史数据,研究人员能够确定,以前的寄生虫数量模型所做的推断导致寄生虫繁殖率比可能的繁殖率高出几个数量级。"我们看到了千倍的增长,"格雷斯查尔说。"这意味着寄生虫从一个红细胞中反复制造出超过1000个寄生虫,这不符合我们对这些寄生虫生物学的理解。"现在,Greischar和Childs已经发现了问题所在,接下来的工作可能包括开发推断寄生虫种群隐藏部分的技术,以便准确计算它们的繁殖率。...PC版:https://www.cnbeta.com.tw/articles/soft/1378079.htm手机版:https://m.cnbeta.com.tw/view/1378079.htm

封面图片

中国科学家发现让茶叶口感更佳的秘密

中国科学家发现让茶叶口感更佳的秘密研究表明,茶叶的品质不仅取决于茶树的品种,还取决于茶树根部的微生物,改变这些微生物群落可以提高氨基酸含量,从而显著改善茶叶品质。"通过微生物组学研究,我们在不同品质的茶树根部发现了微生物群落的显著差异,尤其是与氮代谢相关的微生物,"中国福建农林大学的许通达说。"最关键的是,通过从优质茶树根系中分离和组装合成微生物群落,我们成功地显著提高了不同茶树品种的氨基酸含量,从而改善了茶叶品质"。这张照片显示的是中国福建武夷山的茶山茶叶栽培的挑战和微生物解决方案中国拥有丰富的茶树遗传资源。但是,研究人员解释说,通过分子遗传育种方法提高茶叶品质具有挑战性。人们有兴趣寻找其他方法来改造和提高茶叶品质,或许包括使用微生物制剂。早先的研究表明,生活在植物根部的土壤微生物会影响植物吸收和利用养分的方式。在新的研究中,研究人员希望进一步了解根部微生物对茶叶品质的具体影响。他们发现,茶叶根部的微生物会影响其对氨的吸收,进而影响茶氨酸的产生,而茶氨酸是决定茶叶口感的关键。他们还发现,不同茶叶中定植的微生物存在差异。通过比较茶氨酸含量不同的茶叶品种,他们确定了一组微生物,这些微生物有望改变氮代谢,提高茶氨酸的含量。接下来,他们构建了一个被称为"SynCom"的合成微生物群落,该群落与一种名为"Rougui"的高丙氨酸茶叶品种的微生物群落非常相似。当他们将SynCom应用于茶叶根部时,发现它提高了茶氨酸的水平。这种微生物还能让拟南芥这种常用于基础生物学研究的植物更好地耐受低氮条件。对农业的广泛影响该研究的合著者唐文新说:"人们最初对从优质茶树根部提取的合成微生物群落的期望是提高劣质茶树的品质。然而,我们惊讶地发现,合成微生物群落不仅能提高低品质茶树的品质,还能对某些高品质茶叶品种产生显著的促进作用。而且,这种效果在低氮土壤条件下尤为明显"。这张照片显示的是中国福建武夷山的茶山研究结果表明,合成微生物群落可以改善茶叶的品质,尤其是在缺氮的土壤条件下生长的茶叶。由于茶树需要大量的氮,这一发现有助于减少化肥的使用,同时提高茶树的品质。这些发现可能会对更广泛的农作物产生重要影响。"根据我们目前的实验结果,加入SynCom21微生物群落不仅改善了不同茶叶品种对铵态氮的吸收,还增强了拟南芥对铵态氮的吸收,"许说。"这表明,SynCom21的铵态氮吸收促进功能可能适用于各种植物,包括其他作物。"例如,它可以培育出品质更好的水稻,包括蛋白质含量更高的水稻。他们现在计划进一步优化SynCom,并评估其在田间试验中的应用。他们还希望进一步了解根部微生物如何影响茶树的其他次生代谢物。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419165.htm手机版:https://m.cnbeta.com.tw/view/1419165.htm

封面图片

将细胞变成 "僵尸":科学家发现了弓形虫感染30%人类的秘密

将细胞变成"僵尸":科学家发现了弓形虫感染30%人类的秘密为了对抗感染,免疫细胞在体内的各种作用受到了非常严格的监管。弓形虫如何感染如此多的人和动物物种并迅速传播,长期以来一直是科学家的一个谜。斯德哥尔摩大学Wenner-Gren研究所分子生物科学系的研究员ArnetenHoeve说:"我们现在发现了一种蛋白质,寄生虫用它来重新编程免疫系统。"根据该研究,寄生虫将蛋白质注入免疫细胞的细胞核,改变细胞的身份。免疫细胞被寄生虫欺骗,认为它们是一种不同的细胞。这改变了免疫细胞的基因表达和行为。弓形虫导致本不应该在体内移动的受感染细胞迅速移动,使寄生虫传播到不同的器官。被弓形虫寄生虫感染的多个免疫细胞(红色)。细胞的表面被染成绿色,细胞核为蓝色。资料来源:AntonioBarragan弓形虫被描述为将免疫细胞转化为特洛伊木马或游荡的"僵尸",传播寄生虫。最近发表的研究为这一现象提供了一个分子解释,并证明了该寄生虫在传播过程中的针对性比以前认为的要强很多。"令人惊讶的是,寄生虫以如此巧妙的方式成功地劫持了免疫细胞的身份。我们相信,这些发现可以解释为什么弓形虫在感染人类和动物时在体内的传播如此高效,"领导这项研究的安东尼奥-巴拉甘教授说,这项研究是与法国和美国的研究人员合作进行的。有关寄生虫弓形虫和弓形虫病的信息弓形虫病可能是全球人类中最常见的寄生虫感染。弓形虫也感染许多动物物种(人畜共患病),包括我们的宠物。世界卫生组织估计,世界上至少有30%的人类是这种寄生虫的携带者。研究表明,15-20%的瑞典人口携带这种寄生虫(绝大多数人都不知道)。其他几个欧洲国家的发病率更高。猫科动物(不仅仅是家猫),在弓形虫的生命周期中有一个特殊的位置:只有在它们的肠道中才会发生有性繁殖。在其他宿主中,例如人类、狗或鸟类,繁殖是通过寄生虫的分裂进行的。弓形虫通过食物和与猫的接触传播。在自然界中,寄生虫优先从啮齿动物传播到猫,再传播到啮齿动物,如此循环。寄生虫在啮齿动物的大脑中"沉睡",当猫吃了老鼠后,它们在猫的肠道中繁殖并通过粪便排出。寄生虫最终出现在植被中,当啮齿动物吃了植被就会被感染。人类通过食用肉类或通过接触猫,特别是猫的粪便而被感染。这种寄生虫会导致弓形虫病。当一个人第一次被感染时,会出现类似流感的轻微症状,可能类似感冒或流感。在第一次感染阶段之后,寄生虫在大脑中过渡到"睡眠"阶段,并开始慢性无声感染,可能持续几十年或终身。慢性感染通常不会引起健康人的症状。然而,弓形虫可以在免疫系统较弱的人(HIV、器官移植受体、化疗后)中引起威胁生命的脑部感染(脑炎),并在怀孕期间对胎儿造成危险。眼睛感染可能发生在其他健康人身上。...PC版:https://www.cnbeta.com.tw/articles/soft/1335405.htm手机版:https://m.cnbeta.com.tw/view/1335405.htm

封面图片

科学家利用CRISPR改变甘蔗叶片角度 使其变成超级作物

科学家利用CRISPR改变甘蔗叶片角度使其变成超级作物甘蔗是全球生物质产量最高的作物,占全球糖产量的80%和生物燃料产量的40%。其巨大的体积和对水和光的最佳利用,使其成为生产创新型可再生生物产品和生物燃料的理想来源。然而,甘蔗作为Saccharumofficinarum和Saccharumspontaneum的杂交种,其基因组是所有作物中最复杂的。这种复杂性意味着通过传统育种方法改良甘蔗具有挑战性。正因为如此,研究人员转而使用基因编辑工具,如CRISPR/Cas9系统,来精确地针对甘蔗基因组进行改良。埃莉诺-布兰特(EleanorBrant)收集叶片样本,用于基因编辑甘蔗的分子分析。图片来源:CharlesKeato佛罗里达大学先进生物能源和生物产品创新中心(CABBI)的一个研究小组在《植物生物技术期刊》上发表的新论文中,利用这种遗传复杂性的优势,使用CRISPR/Cas9系统对甘蔗的叶片角度进行了微调。这些基因调整使甘蔗能够捕捉到更多的阳光,从而增加了生物质的产量。这项工作支持能源部资助的CABBI生物能源研究中心的"植物即工厂"方法及其原料生产研究的主要目标--直接在甘蔗等植物的茎中合成生物燃料、生物产品和高价值分子。甘蔗基因组的复杂性部分归因于其高度冗余性:它的每个基因都有多个拷贝。因此,甘蔗植株表现出的表型通常取决于某个基因多个拷贝的累积表达。CRISPR/Cas9系统非常适合完成这项任务,因为它可以一次性编辑一个基因的几个或多个拷贝。BaskaranKannan在田间评估基因编辑甘蔗。图片来源:UzairKhan这项研究的重点是LIGULELESS1(即LG1),该基因在决定甘蔗叶片角度方面发挥着重要作用。叶片角度反过来又决定了植物能捕获多少光,而这对生物量的生产至关重要。由于甘蔗的高度冗余基因组包含40个LG1基因拷贝,研究人员能够通过编辑不同数量的LG1基因拷贝对叶片角度进行微调,从而根据编辑LG1基因拷贝的数量产生略微不同的叶片角度。"在一些经过LG1编辑的甘蔗中,我们只是突变了几个拷贝,"研究小组负责人、佛罗里达大学农学教授FredyAltpeter说。"通过这样做,我们能够调整叶片结构,直到找到能提高生物量产量的最佳角度"。实地试验结果及对未来的影响当研究人员在田间试验中种植甘蔗时,他们发现直立的叶片表型可以让更多的光线穿透冠层,从而提高了生物量产量。其中一个甘蔗品系的LG1拷贝数约为12%,叶片倾斜角度减少了56%,干生物量产量却增加了18%。通过优化甘蔗以捕捉更多光照,这些基因编辑可以提高生物量产量,而无需在田间添加更多肥料。除此之外,加深对复杂遗传学和基因组编辑的理解,有助于研究人员改进作物改良方法。Altpeter说:"这是第一篇描述CRISPR编辑甘蔗田间试验的同行评审出版物。这项工作也为编辑多倍体作物基因组提供了独特的机会,研究人员可以对特定性状进行微调。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1435739.htm手机版:https://m.cnbeta.com.tw/view/1435739.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人