康奈尔大学研究人员揭开了抗衰老的体重管理的秘密

康奈尔大学研究人员揭开了抗衰老的体重管理的秘密随着人们年龄的增长,刺激米色脂肪产生的对低温的反应会减弱。该研究发现了一个特定的信号通路,抑制了老年小鼠的米色脂肪形成。通过抑制这一途径,科学家们能够促使老年动物产生米色脂肪,否则它们不会产生这种脂肪。新的研究提出了一种抵御与年龄有关的体重增加的策略,这可以防止肥胖和相关的健康疾病,如2型糖尿病、心脏病和慢性炎症。根据康奈尔大学营养科学部的研究人员的一项新研究,通过刺激某种类型的脂肪细胞的生产,可以扭转新陈代谢减缓的影响,该部门位于人类生态学院和农业与生命科学学院。包括人类在内的哺乳动物有两种主要的脂肪类型:白色脂肪组织(WAT)和棕色脂肪组织(BAT),前者从多余的卡路里摄入中储存能量,后者燃烧卡路里产生热量以维持体温。3月31日发表在《自然通讯》杂志上的这项研究显示,第三种类型的脂肪,即WAT的一个亚型:米色脂肪具有治疗前景。米色脂肪具有与白色脂肪相同的细胞前体和与棕色脂肪相同的生热特性,这意味着它有助于降低血糖和导致动脉硬化和心脏病的脂肪酸。当一个人经历持续暴露在低温下时,被称为脂肪祖细胞的干细胞在白色脂肪内形成致热的米色脂肪细胞。随着人们年龄的增长,对这种刺激的反应减弱,使平衡向白色脂肪的生产倾斜。营养科学部助理教授丹-贝里说:"年轻人类的米色脂肪有季节性变化,但老年人必须穿着内衣站在外面的雪地上才能获得同样的效果。"在早期的工作中,Berry观察到衰老过程会损害米色脂肪细胞在低温下的形成。他说,找出减速背后的生物化学,同样的过程可以被逆转以达到治疗效果。"这是最终的目标,"这项新研究的主要作者、贝瑞实验室的博士生研究员阿比盖尔-本维说。"不用让人们长时间暴露在寒冷中,是否有我们可以刺激的代谢途径可以产生同样的效果?"在这篇论文中,他们揭示了一种特定信号通路的作用,这种通路通过拮抗免疫系统来抑制老年小鼠的米色脂肪形成。通过抑制老年小鼠的这一途径,科学家们能够促使老年动物产生米色脂肪,否则就不会产生。...PC版:https://www.cnbeta.com.tw/articles/soft/1354085.htm手机版:https://m.cnbeta.com.tw/view/1354085.htm

相关推荐

封面图片

研究人员翻开了肝癌的剧本 隐藏的"英雄"被发现

研究人员翻开了肝癌的剧本隐藏的"英雄"被发现这些压力因素通过导致肝细胞(肝脏的主要细胞类型)的死亡对肝脏产生有害影响。这种细胞死亡然后激发了炎症反应,提示肝脏再生肝细胞。然而,这种对细胞增殖的突然驱动也使肿瘤生长的几率上升。在一项新的研究中,加州大学圣地亚哥分校医学院的科学家们调查了激活转录因子4(ATF4)的作用,它是肝脏压力反应的一个关键媒介。尽管以前与晚期肝癌有关,但研究人员发现,ATF4实际上保护肝脏免受肝细胞死亡和随后的肿瘤形成。这一出乎意料的结果现在可以启发预防肝病和癌症的新临床策略。这项研究最近发表在《肝脏病学杂志》上,由资深作者、加州大学圣地亚哥分校医学院药理学和病理学特聘教授MichaelKarin博士和礼来公司糖尿病新疗法和外部创新部副总裁BenjaminC.Yaden博士领导。ATF4在健康细胞中的水平通常较低,但当细胞经历压力时就会升高。为了研究它在肝癌进展中的作用,研究人员开发了一个ATF4缺陷的肝细胞的小鼠模型。然后将这些小鼠暴露在各种压力下,以促进肝脏损伤和肿瘤的形成。研究人员惊讶地发现,ATF4缺陷的小鼠表现出更多的肝细胞死亡、炎症、补偿性细胞增殖和加速肝癌发展。这表明,ATF4以某种方式保护了肝癌。由博士后何锋领导的进一步实验证实,ATF4促进了SLC7A11的表达,一种有助于维持肝细胞平衡的蛋白质。然后,SLC7A11帮助抑制一种特定类型的细胞死亡,称为铁中毒。通过减少铁中毒的数量,ATF4-SLC7A11轴保护了肝细胞,并减缓了从肝损伤到肝癌的进展。Karin说:"我们的研究表明,铁质化可能是导致肝脏炎症、代偿性增殖和癌症的最相关的肝细胞死亡形式。研究人员认为铁蛋白酶抑制剂或ATF4激活剂在临床上可能对预防脂肪性肝炎及其发展为癌症有帮助。"该研究由超级基金基础研究项目、美国国立卫生研究院、C3PedaltheCause拨款、中国国家自然科学基金和礼来LIFA项目资助。本研究的共同作者包括:加州大学圣地亚哥分校的张鹏和刘俊来,上海中医药大学的王若雷,以及桑福德-伯纳姆-普雷比斯医学发现研究所的RandalJ.Kaufman。B.C.Y.是美国礼来公司的全职雇员。F.H.得到了礼来公司LIFA项目的部分支持。...PC版:https://www.cnbeta.com.tw/articles/soft/1363401.htm手机版:https://m.cnbeta.com.tw/view/1363401.htm

封面图片

神经酰胺的抗衰老秘密:科学家发现减缓肌肉衰退的潜在关键

神经酰胺的抗衰老秘密:科学家发现减缓肌肉衰退的潜在关键随着年龄的增长,小鼠和人类都倾向于变得不那么活跃,失去肌肉质量和力量。由EPFL的JohanAuwerx领导的科学家最近发现,衰老的小鼠的肌肉中积累了神经酰胺。神经酰胺通常用于护肤品,是一种鞘磷脂,一类脂肪分子,执行各种细胞功能,而不是用于能量生产。研究人员发现,在衰老过程中,蛋白质SPT和其他蛋白质的含量过高,所有这些都需要将脂肪酸和氨基酸转化为神经酰胺。医学博士、该研究的主要作者Pirkka-PekkaLaurila博士说:"鞘脂和神经酰胺是复杂但非常有趣的脂肪类,进一步研究它们在衰老中的作用有很大的潜力,因为它们有许多不同的功能。"接下来,科学家希望观察减少神经酰胺的过载是否能防止与年龄相关的肌肉功能衰退。他们用神经酰胺阻断剂(如myriocin和合成阻断剂Takeda-2)治疗老年小鼠,并使用腺相关病毒专门阻断肌肉中的神经酰胺合成。神经酰胺阻断剂防止了衰老过程中的肌肉质量损失,使小鼠更加强壮,并使它们能够跑更远的距离,同时改善它们的协调性。为了更深入地研究这一效果,科学家们使用一种叫做RNA测序的技术测量了肌肉中每一个已知的基因产物。该研究的主要合作者MartinWohlwend博士解释说:"事实证明,阻断神经酰胺的产生会激活肌肉干细胞,使肌肉积累更多的蛋白质,并将纤维类型转向快速抽动的糖酵解,从而在老年小鼠中产生更大和更强的肌肉。"最后,科学家们研究了减少肌肉中的神经酰胺是否也会对人类有益。他们检查了来自赫尔辛基的数千名70-80岁的男性和女性,发现其中25%的人有一种特殊形式的基因,这种基因会减少肌肉中鞘脂类生产途径的基因产物。拥有这种降低神经酰胺的基因形式的人能够走得更久,更强壮,并且能够更好地从椅子上站起来,表明他们的衰老更健康,这与用神经酰胺阻断剂治疗的小鼠相似。JohanAuwerx说:"这些发现非常重要,因为它们为我们提供了开发抑制剂的强大动力,这些抑制剂可以在人类身上进行测试。科学家们现在正着手与制药业进行合作。"...PC版:https://www.cnbeta.com.tw/articles/soft/1343809.htm手机版:https://m.cnbeta.com.tw/view/1343809.htm

封面图片

研究人员发现了会加速衰老的“僵尸细胞”

研究人员发现了会加速衰老的“僵尸细胞”衰老细胞或已经失去分裂能力的细胞随着年龄的增长而增加,而这是导致癌症、痴呆症和心血管疾病等与年龄有关的疾病的主要因素。在一项新研究中,由匹兹堡大学和UPMC希尔曼癌症中心研究人员领导的团队发现了一种方法,通过这种方法,衰老或“僵尸”细胞得以发展。该研究最近发表在《NatureStructural&MolecularBiology》上,其首次证明了端粒的氧化损伤--染色体的保护端,其行为就像鞋带末端的塑料帽--会诱发细胞的衰老。这些发现最终可能会产生促进健康衰老或对抗癌症的新疗法。研究论文第一作者、皮特大学环境和职业健康以及药理学和化学生物学教授PatriciaOpresko博士说道:“僵尸细胞仍活着,但它们不能分裂,所以它们不能帮助补充组织。虽然僵尸细胞不能正常运作,但它们并不是沙发土豆--它们积极地分泌化学物质,进而促进炎症和损害邻近的细胞。我们的研究有助于回答两个大问题。衰老细胞是如何随着年龄的增长而积累的及端粒是如何对此作出贡献的。”当一个健康的人体细胞分裂产生两个相同的细胞时,每条染色体的顶端会被削去一点DNA,进而导致端粒随着每次分裂而变短。然而目前还不知道一个细胞是否会在人的一生中频繁分裂,以至于其端粒完全退化,从而导致僵尸般的状况。几十年来,科学家们已经知道端粒缩短会导致实验室生长的细胞出现衰老,但他们只能假设端粒的DNA损伤会使细胞变成僵尸。这一假设以前无法进行测试,因为用于损伤DNA的技术是非特异性的,另外在整个染色体上会产生病变。“我们的新工具就像一个分子狙击手,”论文的第一作者RyanBarnes博士说道,“它专门在端粒上产生氧化损伤。”他是Opresko实验室的一名博士后研究员。为了开发这种神枪手般的精确性,该团队使用了一种专门跟端粒结合的特殊蛋白质。这种蛋白质的作用就像捕手的手套,抓住研究人员扔进细胞的光敏染料“垒球”。当被光激活时,该染料产生破坏DNA的活性氧分子。由于这种捕捉染料的蛋白质只与端粒结合,该工具专门在染色体顶端产生DNA损伤。通过使用生长在盘子里的人类细胞,研究人员发现,端粒的损伤仅在四天后就使细胞进入僵尸状态--比在实验室里通过端粒缩短来诱导衰老所需的数周或数月的反复细胞分裂要快得多。“我们发现了一种诱导衰老细胞的新机制,它完全依赖于端粒,”Opresko解释道,“这些发现也解决了为什么功能失调的端粒并不总是比功能性端粒短的难题。”他也是UPMCHillman基因组稳定项目的共同负责人。阳光、酒精、吸烟、不良饮食和其他因素会产生损害DNA的活性氧分子。细胞有修复途径来修补DNA病变,但根据Opresko的说法,端粒对氧化损伤非常敏感。研究人员发现,端粒的损伤破坏了DNA的复制并诱发了导致衰老的压力信号通路。Barnes说道:“现在我们了解了这一机制,我们可以开始测试干预措施以防止衰老。例如也许有办法将抗氧化剂瞄准端粒来保护它们免受氧化损伤。”这些发现还可以为开发新的药物提...PC版:https://www.cnbeta.com/articles/soft/1304443.htm手机版:https://m.cnbeta.com/view/1304443.htm

封面图片

研究人员发现一种可以燃烧身体脂肪的分子

研究人员发现一种可以燃烧身体脂肪的分子通常情况下,脂肪细胞储存能量。然而能量在棕色脂肪细胞中会以热量的形式流失,并使得棕色脂肪成为生物加热器。因此,这种机制存在于大多数哺乳动物中。在人类中,棕色脂肪使婴儿保持温暖,而在成年人中,棕色脂肪的激活跟心肺代谢健康有利地相关。波恩大学药理学和毒理学研究所的AlexanderPfeifer教授表示,“然而,如今我们即使在冬天也很暖和。因此,我们身体本身的炉子几乎不再需要了。”我们的运动量也比我们的前辈少得多,同时消费的饮食越来越多,能量越来越高。棕色脂肪细胞被这三个因素所毒害。它们逐渐完全停止运作并消亡。另一方面,全球极度超重的人继续增加。Pfeifer说道:“因此,世界各地的研究小组正在寻找能够刺激棕色脂肪,从而增加脂肪燃烧的物质。”垂死的脂肪细胞促进其邻居的能量燃烧来自波恩大学的团队现在已经确定了一种能够燃烧脂肪的关键分子--名为肌苷。Pfeifer研究小组的BirteNiemann博士解说道:“众所周知,濒临死亡的细胞会释放混合的信使分子,从而影响其邻居的功能。我们想知道这种机制是否也存在于棕色脂肪中。”据悉,Niemann和她的同事SaskiaHaufs-Brusberg博士一起计划并进行了该研究的核心实验。因此,研究人员对遭受严重压力的棕色脂肪细胞进行了研究进而使这些细胞几乎处于死亡状态。“我们发现它们大量分泌嘌呤肌苷,”Niemann说道。然而更耐人寻味的是完整的棕色脂肪细胞对分子呼救的反应方式:它们被肌苷激活(或者仅仅是被其附近的死亡细胞激活)。肌苷因此扇动了它们体内的火炉。白色脂肪细胞也转化为它们的棕色兄弟姐妹。与此同时,被给予了高能量饮食和肌苷治疗的小鼠比对照组动物更瘦,另外还得到了免受糖尿病侵害的保护。在这种情况下,肌苷转运体似乎发挥了重要作用:细胞膜上的这种蛋白质将肌苷转移到细胞内,降低了细胞外水平。因此,肌苷失去了其促进燃烧的能力。该药物抑制了肌苷转运体Pfeifer表示:“一种药物实际上是为凝血障碍而开发的,但也能抑制肌苷转运体。我们给小鼠服用这种药物,结果,它们燃烧了更多的能量。”人类也有一个肌苷转运器。在百分之二到四的人中,由于基因变异,它的活性较低。“我们在莱比锡大学的同事已经对900人进行了基因分析,那些具有较不活跃的转运体的受试者平均来说明显更瘦,”Pfeifer指出。这些结果表明,肌苷也能调节人类棕色脂肪细胞的产热。因此,干扰该转运体活性的物质有可能适用于治疗肥胖症。已经被批准用于凝血功能障碍的药物可以作为一个起点。Pfeifer说道:“然而,需要在人体中进一步研究,以澄清这一机制的药理潜力。”另外,他也不认为仅靠药片就能解决世界上猖獗的肥胖症大流行问题。他强调道:“但目前现有的治疗方法还不够有效。因此,我们迫切需要药物来使肥胖患者的能量平衡正常化。”...PC版:https://www.cnbeta.com/articles/soft/1308995.htm手机版:https://m.cnbeta.com/view/1308995.htm

封面图片

研究:高脂肪饮食会加速肿瘤生长

研究:高脂肪饮食会加速肿瘤生长近日发表在美国《国家科学院学报》周刊的一项研究发现,高脂肪饮食会增加小鼠肠道中一种细菌的数量,并抑制它们的免疫系统,加速肿瘤生长。新华社报道,此前,科研人员已知肥胖和某些癌症之间存在关联。来自中国中山大学孙逸仙纪念医院的一个研究团队以乳腺癌患者的肠道细菌为研究对象,从医院61名患者身上提取了组织和粪便样本。结果发现,身体质量指数(BMI)超过24的女性体内的脱硫弧菌水平高于BMI低于24的女性。随后,研究人员在小鼠实验中发现,摄入高脂肪食物的小鼠体内有更多的脱硫弧菌,并且髓源性抑制细胞的水平升高,这类细胞能够抑制免疫细胞应答。研究人员还发现,高脂肪饮食的小鼠血液中的亮氨酸水平也高于正常饮食的小鼠。当研究人员用能杀死脱硫弧菌的抗生素治疗小鼠后,小鼠体内的髓源性抑制细胞和亮氨酸水平恢复了正常。这一发现表明,高水平的脱硫弧菌和免疫系统被抑制是相关的。为了进一步验证小鼠实验中的发现,研究人员又从乳腺癌患者身上采集了血液样本。结果显示,那些BMI超过24的患者体内的亮氨酸水平更高,髓源性抑制细胞更多。研究人员表示,这一发现可能为乳腺癌的治疗提供新思路。高脂肪饮食是指饮食中包括高脂肪食物的一种饮食方式,比如植物中的核桃、芝麻、花生,油炸食品、肥肉、动物内脏、奶油制品等都属于高脂肪食物。2024年5月18日3:08PM

封面图片

生长的悖论:研究人员发现癌症的致命弱点

生长的悖论:研究人员发现癌症的致命弱点如果细胞培养物中的细胞在分裂抑制剂的作用下生长,它们就会过度生长,并永久失去分裂能力。但是,如果细胞同时接受分裂抑制剂和生长抑制剂的治疗,那么在停止使用这些物质后,它们仍然能够分裂。这些发现可以用于某些癌症疗法,但首先需要进行临床试验和确认。生长是一个基本的生物过程,也是生物体发育和繁殖的先决条件。细胞生长过程(即产生新的生物量)和细胞分裂过程必须相互协调。在人类等多细胞生物体中,细胞的生长还必须与环境相协调,以便细胞以适当的数量和大小存在,形成功能性组织或器官。因此,细胞生长受到严格调控,只有在出现特定生长信号时才会生长。但癌细胞不同。它们不受控制地生长,反复分裂,而且不会对来自环境的停止信号做出反应。仅分裂受到抑制的细胞(左)会继续生长并失去分裂能力,而生长和分裂都受到抑制的细胞则不会。图片来源:SandhyaManohar/ETHZürich癌细胞的双重性质现在,发表在《分子细胞》(MolecularCell)杂志上的几项研究表明,不受控制的生长不仅是癌细胞的优势,也是其弱点。其中一项研究由苏黎世联邦理工学院生物化学研究所的加布里埃尔-诺伊罗尔(GabrielNeurohr)教授领导。几年来,他和他的研究小组一直在研究细胞生长如何影响细胞功能。他们还在研究当细胞超过其正常大小并进入一种研究人员称之为衰老的状态时会发生什么。在这种状态下,细胞会变得异常巨大,并失去分裂能力。不过,它们仍然活跃,并能影响周围环境,例如释放信使物质。衰老细胞存在于正常组织中,在衰老过程中扮演着重要角色。不过,衰老也可以用化学物质诱导,由于衰老会导致细胞失去分裂能力,因此衰老也是某些癌症治疗的目标。DNA修复能力下降Neurohr的同事桑迪亚-马诺哈尔(SandhyaManohar)现在研究了细胞体积过大是否会影响衰老细胞的功能。在研究中,她用抑制生长和分裂的物质处理了一个非癌细胞系和一个乳腺癌细胞系。当她在细胞培养物中只使用抑制分裂的物质时,细胞确实不再能够分裂,但它们继续生长并进入衰老期。结果,它们永久性地失去了分裂能力。甚至在马诺哈尔停止使用分裂抑制剂后,这种效果依然存在。丧失分裂能力的一个重要原因是,增大的细胞无法再修复其遗传物质的损伤,如双链DNA断裂。这种断裂总是在细胞分裂前复制其遗传物质时自发发生。此外,这些细胞无法正确激活一个关键的信号通路(p53-p21),而该信号通路对于协调应对DNA断裂至关重要。因此,损伤修复的效率不够高。这对增大的细胞意味着,在分裂过程中会积累大量无法修复的DNA断裂,以至于无法再进行分裂。质疑癌症治疗中的联合疗法然而,当研究人员用抑制分裂和抑制生长的物质同时治疗细胞时,在停止使用这两种物质后,细胞又能正常分裂和繁殖。Neurohr说:"在癌症治疗中,这正是你所不希望看到的。生长和分裂抑制剂已被用于癌症治疗。根据我们在细胞培养中的观察,我们预计同时使用分裂抑制剂和生长抑制剂治疗肿瘤时,复发率会增加。更合理的做法是先使用分裂抑制剂,然后再使用进一步破坏细胞DNA并使其完全无法分裂的药物。"进一步研究和临床意义到目前为止,联邦理工学院的研究人员只在细胞培养物上测试了他们的新发现。由于细胞的生长和分裂都与细胞环境密切相关,研究小组无法将这些结果直接应用于临床。因此,首先需要对器官组织或组织样本进行试验,以更好地测试潜在的治疗方法。此外,有关分裂抑制剂和其他药物的各种组合的临床研究也在进行之中。Neurohr领导的ETH研究人员提出的想法得到了其他三个国际研究小组研究的支持,这些研究也发表在同一期的《分子细胞》杂志上。这些研究表明,生长亢进的癌细胞对分裂抑制剂的治疗非常敏感。由于这些物质已被用于治疗某些类型的乳腺癌,因此新发现可能会对癌症治疗产生长期影响。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404201.htm手机版:https://m.cnbeta.com.tw/view/1404201.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人