韦伯揭示了早期宇宙中紧凑星系的物理特性

韦伯揭示了早期宇宙中紧凑星系的物理特性最早的星系发出的光逐渐使星系间介质中的大部分气体电离,改变了宇宙,使其变得透明。然而,再电离的精确时间表和宇宙最早的星系对这一过程的相对贡献仍然不确定。艺术家对詹姆斯-韦伯太空望远镜的构想。资料来源:NASAGSFC/CIL/AdrianaManriqueGutierrezHayleyWilliams及其同事报告了JWST对一个被引力透镜放大的遥远星系的近红外成像和光谱学观测。观察到的星系位于红移9.5,相当于大爆炸后约5.1亿年,再电离完成之前。引力透镜提供的高放大率使作者能够探测到这个本质上微弱的星系,并获得具有强烈星云发射线的光谱信息,从而揭示了该星系的一些物理特性。根据Williams等人的说法,研究结果显示,该星系的半径为16.2帕斯卡,比其他具有同等光度的星系要紧凑得多,这表明有高密度的恒星形成。更重要的是,光谱分析显示,该星系有丰富的氧气和氢气。...PC版:https://www.cnbeta.com.tw/articles/soft/1354665.htm手机版:https://m.cnbeta.com.tw/view/1354665.htm

相关推荐

封面图片

韦伯望远镜揭示了低质量星系在早期宇宙再电离过程中的关键作用

韦伯望远镜揭示了低质量星系在早期宇宙再电离过程中的关键作用包括两位宾夕法尼亚州立大学天体物理学家在内的国际研究小组最近在《自然》杂志上发表了他们的研究成果。这些光谱揭示了宇宙中被称为再电离时期的一些最初的可见光,该时期的动力来自最早的恒星和星系的到来。美国国家航空航天局詹姆斯-韦伯太空望远镜(NASA'sJamesWebbSpaceTelescope)拍摄的深场图像首次提供了超微弱星系的一瞥,研究人员将这些星系确定为引发宇宙再电离的天体的有力候选者。图片来源:HakimAtek/索邦大学/JWST原始宇宙从黑暗到光明的过渡论文作者、宾夕法尼亚州立大学天文学和天体物理学助理教授乔尔-莱亚解释说,宇宙中的正常物质最初是一团炙热的浓雾,几乎完全由氢原子核和氦原子核组成。随着它的膨胀和冷却,孤质子和电子开始结合,第一次形成了中性氢。然后,在宇宙大爆炸发生后大约5亿至9亿年,在早期宇宙中占主导地位的中性氢开始再次分离成电离气体,从而促进了恒星和星系的诞生,并拨开了原始迷雾,使光线第一次可以畅通无阻地穿过宇宙。莱亚说:"有一些东西开始向星际虚空泵送高能光子。这些光源就像宇宙灯塔,烧掉了中性氢的雾气。不管是什么,它的能量如此之大,如此持久,以至于整个宇宙都重新电离了。"通过分析年轻的低质量星系的光谱,科学家们证明,小型星系是引发宇宙再电离的"东西"的有力候选者,它们加热了周围致密的原始气体,并电离了曾经中性的氢。"如果宇宙中的其他低质量星系也像这些星系一样常见和充满能量,那么我们认为我们终于了解了照亮宇宙迷雾的灯塔,"莱亚说。"它们是许许多多微小星系中能量惊人的恒星"。早期宇宙中的大多数星系预计都相对较小,因此研究它们的频率和特性极其困难。由于JWST的灵敏度与Abell2744星团的引力透镜效应(附近的星系就像宇宙放大镜,会扭曲空间并放大背景星系的光线)的独特结合,现在有可能确定宇宙最初十亿年期间小型星系的丰度及其电离特性。索邦大学天体物理学家、巴黎天体物理研究所研究员、论文第一作者哈基姆-阿泰克(HakimAtek)在一份新闻稿中说:"我们发现,在宇宙再电离的这一时期,小星系的数量比大质量星系多出约一百比一。这些新的观测结果还显示,这些小星系产生了大量的电离光子,比通常假设的遥远星系的标准值高出四倍。这意味着,这些星系发出的电离光子总通量远远超过了再电离所需的阈值"。绘制宇宙演化图:未来方向宾夕法尼亚州立大学的研究小组领导了UNCOVER勘测的建模工作,该勘测以大型前景星系团为目标,这些星系团对更微小、更遥远的星系产生了透镜效应。宾夕法尼亚州立大学的研究人员分析了巡天中的所有小光点,以了解天体的特性以及它们可能的质量和距离。Leja解释说,这一分析随后被用来指导后来JWST更详细的观测,从而推动了这一发现。在这些发现之前,有一些假说指出了宇宙再电离的其他来源,如超大质量黑洞、质量超过10亿太阳质量的大星系和质量小于10亿太阳质量的小星系。研究人员说,由于低质量星系的光度较低,证实与低质量星系有关的假说尤其困难,但新发现提供了迄今为止最明确的证据,证明低质量星系在宇宙再电离过程中发挥了核心作用。研究人员现在希望将这项研究扩展到更大的范围,以确认他们分析的特定位置能够代表宇宙中星系的平均分布情况。除了再电离过程之外,他们的观测还提供了对早期恒星形成过程、星系如何从原始气体中产生--以及它们如何演变成我们今天所知的宇宙的深入了解。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1425740.htm手机版:https://m.cnbeta.com.tw/view/1425740.htm

封面图片

天体物理学家发现了宇宙的耳语 早期宇宙中最微弱的JD1星系

天体物理学家发现了宇宙的耳语早期宇宙中最微弱的JD1星系JD1星系的投影图(插图),它位于一个名为Abell2744的明亮星系团后面。GuidoRoberts-Borsani/UCLA);原始图像:NASA,ESA,CSA,SwinburneUniversityofTechnology,UniversityofPittsburgh,STScI在大爆炸之后,宇宙膨胀并冷却到足以让氢原子形成。由于没有来自第一批恒星和星系的光,宇宙进入了一个被称为宇宙黑暗时代的时期。第一批恒星和星系在几亿年后出现,并开始燃烧掉大爆炸留下的氢雾,使宇宙变得透明,就像今天这样。由加州大学洛杉矶分校的天体物理学家领导的研究人员证实了一个遥远的、微弱的星系的存在,该星系是那些光线烧穿氢原子的典型星系;这一发现应该有助于他们理解宇宙黑暗时代是如何结束的。由加利福尼亚大学洛杉矶分校(UCLA)天体物理学家领导的一个国际研究小组已经证实了早期宇宙中所见到的最微弱的星系的存在。这个被称为JD1的星系是迄今为止被确认的最遥远的星系之一,它是典型的那种烧穿大爆炸留下的氢原子雾的星系,让光线照亮宇宙并将其塑造为今天的样子。这一发现是利用美国宇航局的詹姆斯-韦伯太空望远镜进行的,其结果发表在《自然》杂志上。宇宙生命的头十亿年是其演变的关键时期。在大爆炸之后,大约138亿年前,宇宙膨胀并冷却到足以让氢原子形成。氢原子吸收来自年轻恒星的紫外线光子;然而,在第一批恒星和星系诞生之前,宇宙变得黑暗,进入了一个被称为宇宙黑暗时代的时期。几亿年后,第一批恒星和星系的出现使宇宙沐浴在充满活力的紫外线中,开始燃烧,或电离氢雾。这反过来又使光子能够穿越空间,使宇宙变得透明。确定在那个时代占主导地位的星系类型--被称为"离子化时代"--是今天天文学的一个主要目标,但是在韦伯望远镜开发之前,科学家们缺乏研究第一代星系所需的敏感的红外仪器。加州大学洛杉矶分校博士后研究员、该研究的第一作者GuidoRoberts-Borsani说:"迄今为止,用JWST发现的大多数星系都是明亮的星系,这些星系很罕见,而且不被认为特别能代表填充早期宇宙的年轻星系。因此,虽然很重要,但它们不被认为是烧掉所有氢雾的主要媒介。""另一方面,像JD1这样的超暗星系要多得多,这就是为什么我们相信它们更能代表进行再电离过程的星系,使紫外线在空间和时间中不受阻碍地传播。"JD1是如此的昏暗和遥远,以至于如果没有强大的望远镜--以及来自大自然的帮助,研究它是具有挑战性的。JD1位于附近一个名为Abell2744的大型星系团后面,这些星系团的综合引力弯曲并放大了来自JD1的光线,使得它看起来更大,比原来的亮度高13倍。这种效应被称为引力透镜,类似于放大镜如何扭曲和放大其视野内的光线;如果没有引力透镜,JD1可能会被错过。研究人员利用韦伯望远镜的近红外光谱仪NIRSpec获得了该星系的红外光谱,使他们能够确定它的精确年龄和与地球的距离,以及它在相对较短的寿命内形成的恒星数量和灰尘及重元素数量。该星系的引力放大和韦伯望远镜的另一个近红外仪器NIRCam的新图像相结合,也使研究小组有可能以前所未有的细节和分辨率研究该星系的结构,揭示了正在形成恒星的三个主要拉长的灰尘和气体团块。研究小组利用新的数据将JD1的光线追溯到它的原始来源和形状,揭示了一个紧凑的星系,其大小只是像银河系这样的老星系的一小部分,而银河系的年龄为136亿年。由于光线到达地球需要时间,所以JD1被看作是大约133亿年前的样子,当时宇宙的年龄只有现在的大约4%。"在韦伯望远镜开启之前,就在一年前,我们甚至无法梦想确认这样一个微弱的星系,"加州大学洛杉矶分校物理学和天文学教授、该研究的第二作者TommasoTreu说。"JWST和引力透镜的放大能力的结合是一场革命。我们正在改写关于星系如何在大爆炸后立即形成和演化的书"。...PC版:https://www.cnbeta.com.tw/articles/soft/1364163.htm手机版:https://m.cnbeta.com.tw/view/1364163.htm

封面图片

科学家从早期宇宙中追寻神秘的“隐形星系”

科学家从早期宇宙中追寻神秘的“隐形星系”这个"看不见的星系"是通过ALMA望远镜观测发现的在周二的一份声明中,Sissa将其描述为一个"神秘和非常遥远的天体,耐人寻味,如此黑暗,甚至对高度复杂的仪器来说,它几乎是看不见的。"。这个星系可以追溯到大爆炸后仅20亿年,科学家估计大爆炸发生在138亿年前。为了更好地了解这个星系,研究小组采用了一种被称为引力透镜的技术,该技术利用某些巨大的天体,如星系团,像巨大的透镜一样,帮助放大它们背后的东西,智利的阿塔卡马大型毫米/亚毫米阵列(ALMA)望远镜提供了观测。"ALMA让天文学家了解到这个难以研究的星系以前未知的特征,它富含气体和灰尘。"Giuletti说:"我们的分析表明,这个天体非常紧凑,可能很年轻,并以极高的速度形成恒星。""由于一系列的原因,这个星系一直令人难以置信地难以捉摸。首先它是非常遥远的,同时也很紧凑,有大量的星际尘埃遮蔽了我们对它的观察,这就是詹姆斯-韦伯太空望远镜如此重要的原因之一。它的红外线眼睛能够穿透厚厚的尘埃面纱,窥视我们宇宙中极其遥远的区域。韦伯还没有研究过这个看不见的星系,尽管"在未来,詹姆斯-韦伯太空望远镜将揭示关于这个星系的更多信息,这是目前只有它能做到的,"Giuletti说。在2019年,ALMA提供了另一个遥远的隐形星系的细节-它被证明是一个"巨大的怪物"。照亮像这样棘手的天体有助于科学家更好地了解星系的形成和演变。天文学家们正在打开这些进入早期宇宙的窗口,而且随着韦伯开始工作,更多的星际尘埃将被人类突破。...PC版:https://www.cnbeta.com.tw/articles/soft/1343171.htm手机版:https://m.cnbeta.com.tw/view/1343171.htm

封面图片

拜登揭示詹姆斯·韦伯太空望远镜首张星系团全彩照

拜登揭示詹姆斯·韦伯太空望远镜首张星系团全彩照(早报讯)美国总统拜登星期一(7月11日)暂时放下“压力山大”的政治事务,发布了美国国家航空航天局(NASA)的詹姆斯·韦伯太空望远镜传回的首张全彩色照片。路透社报道,詹姆斯·韦伯太空望远镜拍摄的第一张全彩色照片是一张星系团图像,让我们得以窥见有史以来最清晰的早期宇宙。由拜登和美国宇航局局长纳尔逊联合揭示的这张照片显示了一个拥有46亿年历史、名为SMACS0723的星系团。它的组合质量就像一个“引力透镜”,扭曲了空间,从而极大地放大了来自其背后更遥远星系的光。美国副总统哈里斯也出席此次活动。星系团(Galaxyclusters)是由星系组成的自引力束缚体系,通常尺度在数百万秒差距或数百万光年,包含了数百到数千个星系。NASA还计划于星期二在马里兰州戈达德太空飞行中心发布詹姆斯·韦伯太空望远镜拍摄的大量照片和光谱数据。詹姆斯·韦伯太空望远镜(JamesWebbSpaceTelescope)被认为是哈勃太空望远镜的继任者,它将成为迄今为止被送入轨道的最强大、最复杂的太空望远镜。它能利用红外线,让人们比以往任何时候都更深入地探索宇宙,不仅解开太阳系中的谜团,还能看向其他恒星周围的遥远世界,揭示最古老、最遥远星系的秘密,探索宇宙中的神秘结构和起源。詹姆斯·韦伯太空望远镜长13.2米,宽4.2米,大小与一辆大型牵引拖车差不多,“体重”6.5吨,耗资90亿美元(约126亿新元)。发布:2022年7月12日8:36AM

封面图片

詹姆斯·韦伯太空望远镜揭示了宇宙中最古老的星团

詹姆斯·韦伯太空望远镜揭示了宇宙中最古老的星团这项工作是由一个加拿大天文学家团队进行的,包括来自多伦多大学文理学院邓拉普天文学和天体物理学研究所的专家。邓拉普天文学与天体物理学研究所的博士后研究员LamiyaMowla说:"JWST是为了寻找第一批恒星和第一批星系而建造的,并帮助我们了解宇宙中复杂性的起源,如化学元素和生命的构件,"他是这项研究的共同主要作者,这项研究是由加拿大NIRISS无偏群调查(CANUCS)小组进行的。"韦伯第一深场的这一发现已经提供了对恒星形成最早阶段的详细观察,证实了JWST令人难以置信的力量。"研究人员研究了位于韦伯第一深场的闪亮星系,并利用JWST确定它周围的五个闪亮物体是球状星团。图片来源:加拿大航天局,图片来自NASA、ESA、CSA、STScI;Mowla、Iyer等人,2022年在精细的韦伯第一深场图像中,天文学家们很快就锁定了他们称之为"火花星系"的的天体。这个星系位于90亿光年之外,它的名字来自于它周围出现的黄红色小点的紧凑物体,研究人员称之为"火花"。研究小组确定,这些火花可能是正在形成恒星的年轻星团--诞生于大爆炸后30亿年的恒星形成高峰期,也可能是古老的球状星团。球状星团是一个星系萌芽时期的古老恒星集合体,包含了关于其最早形成和成长阶段的线索。通过对其中12个紧凑物体的初步分析,研究小组确定其中5个不仅是球状星团,而且是已知的最古老的星团之一。"来自JWST的第一批图像发现遥远星系周围的古老球状星团是一个令人难以置信的时刻--这是以前的哈勃太空望远镜成像所无法做到的,"邓拉普天文学与天体物理学研究所的博士后研究员、该研究的共同主要作者KartheikG.Iyer说。"由于我们可以在一系列的波长范围内观察到这些'火花',我们可以对它们进行建模,并更好地了解它们的物理特性--比如它们的年龄有多大以及它们包含多少颗恒星。我们希望用JWST从如此遥远的距离观察球状星团的知识将刺激进一步的科学和搜索类似的物体。天文学家利用引力透镜来研究非常遥远和非常微弱的星系。资料来源:美国国家航空航天局,欧空局和L.Calçada银河系已知有大约150个球状星团,但是这些密集的星团究竟是如何形成的,以及何时形成的,人们并不十分清楚。天文学家们知道,球状星团的年龄可能非常大,但要测量它们的年龄却具有难以置信的挑战性。利用非常遥远的球状星团来确定遥远星系中第一批恒星的年龄,这在以前是没有的,只有在JWST上才有可能做到。直到现在,天文学家还不能用哈勃太空望远镜看到火花星系的周边紧凑物体。这种情况随着JWST分辨率和灵敏度的提高而改变,在韦伯的第一张深场图像中首次揭示了该星系周围的小点,它被放大了100倍,这是由于一种叫做引力透镜的效应--前景中的SMACS0723星系团扭曲了它背后的东西,很像一个巨大的放大镜。引力透镜产生了三个独立的"火花"图像,使天文学家能够更详细地研究这个星系。研究人员将JWST的近红外相机(NIRCam)的新数据与哈勃景象望远镜的档案数据相结合。NIRCam使用较长和较红的波长探测微弱的物体,以观察超过人眼甚至哈勃太空望远镜可见的东西。由于星系团的透镜作用,以及JWST的高分辨率,这两方面的放大作用使得观察紧凑物体成为可能。JWST上加拿大制造的近红外成像仪和无缝隙光谱仪(NIRISS)提供了独立的验证,即这些天体是古老的球状星团,因为研究人员没有观察到氧射线--这是正在积极形成恒星的年轻星团所发出的具有可测量光谱的发射物。NIRISS还帮助解开了"闪耀者"的三层光束图像的几何结构。JWST的加拿大制造的NIRISS仪器在帮助我们理解"闪耀者"及其球状星团的三个图像是如何连接的方面至关重要,"圣玛丽大学的教授MarcinSawicki说。他是加拿大天文学研究主席,也是这项研究的共同作者。 "看到对火花星系的几个球状星团进行了三次成像,使我们清楚地看到,它们是围绕着火花星系运行的,而不是简单地在它的前面偶然出现。"JWST将从2022年10月开始观测CANUCS场,利用其数据来检查五个大规模的星系团,研究人员期望在其周围发现更多这样的系统。未来的研究还将对星系团进行建模,以了解透镜效应,并执行更有力的分析来解释恒星形成的历史。...PC版:https://www.cnbeta.com.tw/articles/soft/1333883.htm手机版:https://m.cnbeta.com.tw/view/1333883.htm

封面图片

美研究证实一暗淡星系是宇宙早期典型星系

美研究证实一暗淡星系是宇宙早期典型星系美国一项新研究证实,一个异常暗淡的遥远星系是宇宙中第一批星系的典型代表,正是这类星系的光芒“撕裂”氢原子的迷雾,结束了宇宙幼年的“黑暗时代”。新发现有助于深入理解对宇宙演化至关重要的再电离(Reionization)过程。新华社星期五(6月2日)报道,美国加利福尼亚大学洛杉矶分校日前发声明称,该校研究员与国际同行合作,利用詹姆斯·韦布空间望远镜详细研究了这个编号为“JD1”星系的光谱,并推算了它的准确年龄、结构特征和重元素丰度等。JD1于2012年首次被发现,位于一个巨大星系团后方,星系团的引力透镜作用将其亮度放大了13倍,使人们得以发现它。这篇发表在英国《自然》杂志的新研究显示,JD1星系的形态复杂,体积和质量都比银河系小得多,其光芒呈现的是宇宙年龄仅4.8亿年时的情景。从实际亮度来看,它正是结束宇宙幼年“黑暗时代”的典型星系。研究员指出,受限于观测技术,此前人们发现的最遥远星系大多比较明亮,且数量稀少,在早期星系中不具备代表性。理论认为,对宇宙再电离作出主要贡献的应该是众多低亮度星系,但它们被中性氢原子包裹,难以观测。宇宙大爆炸之后,随着宇宙膨胀、冷却,质子与电子结合成中性氢,此时第一批恒星和星系尚未诞生,宇宙进入没有光芒的“黑暗时代”。几亿年后,第一批恒星和星系发出的高能紫外线使氢原子发生电离,开启“再电离时代”,宇宙变得越来越透明。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人