美研究证实一暗淡星系是宇宙早期典型星系

美研究证实一暗淡星系是宇宙早期典型星系美国一项新研究证实,一个异常暗淡的遥远星系是宇宙中第一批星系的典型代表,正是这类星系的光芒“撕裂”氢原子的迷雾,结束了宇宙幼年的“黑暗时代”。新发现有助于深入理解对宇宙演化至关重要的再电离(Reionization)过程。新华社星期五(6月2日)报道,美国加利福尼亚大学洛杉矶分校日前发声明称,该校研究员与国际同行合作,利用詹姆斯·韦布空间望远镜详细研究了这个编号为“JD1”星系的光谱,并推算了它的准确年龄、结构特征和重元素丰度等。JD1于2012年首次被发现,位于一个巨大星系团后方,星系团的引力透镜作用将其亮度放大了13倍,使人们得以发现它。这篇发表在英国《自然》杂志的新研究显示,JD1星系的形态复杂,体积和质量都比银河系小得多,其光芒呈现的是宇宙年龄仅4.8亿年时的情景。从实际亮度来看,它正是结束宇宙幼年“黑暗时代”的典型星系。研究员指出,受限于观测技术,此前人们发现的最遥远星系大多比较明亮,且数量稀少,在早期星系中不具备代表性。理论认为,对宇宙再电离作出主要贡献的应该是众多低亮度星系,但它们被中性氢原子包裹,难以观测。宇宙大爆炸之后,随着宇宙膨胀、冷却,质子与电子结合成中性氢,此时第一批恒星和星系尚未诞生,宇宙进入没有光芒的“黑暗时代”。几亿年后,第一批恒星和星系发出的高能紫外线使氢原子发生电离,开启“再电离时代”,宇宙变得越来越透明。

相关推荐

封面图片

天体物理学家发现了宇宙的耳语 早期宇宙中最微弱的JD1星系

天体物理学家发现了宇宙的耳语早期宇宙中最微弱的JD1星系JD1星系的投影图(插图),它位于一个名为Abell2744的明亮星系团后面。GuidoRoberts-Borsani/UCLA);原始图像:NASA,ESA,CSA,SwinburneUniversityofTechnology,UniversityofPittsburgh,STScI在大爆炸之后,宇宙膨胀并冷却到足以让氢原子形成。由于没有来自第一批恒星和星系的光,宇宙进入了一个被称为宇宙黑暗时代的时期。第一批恒星和星系在几亿年后出现,并开始燃烧掉大爆炸留下的氢雾,使宇宙变得透明,就像今天这样。由加州大学洛杉矶分校的天体物理学家领导的研究人员证实了一个遥远的、微弱的星系的存在,该星系是那些光线烧穿氢原子的典型星系;这一发现应该有助于他们理解宇宙黑暗时代是如何结束的。由加利福尼亚大学洛杉矶分校(UCLA)天体物理学家领导的一个国际研究小组已经证实了早期宇宙中所见到的最微弱的星系的存在。这个被称为JD1的星系是迄今为止被确认的最遥远的星系之一,它是典型的那种烧穿大爆炸留下的氢原子雾的星系,让光线照亮宇宙并将其塑造为今天的样子。这一发现是利用美国宇航局的詹姆斯-韦伯太空望远镜进行的,其结果发表在《自然》杂志上。宇宙生命的头十亿年是其演变的关键时期。在大爆炸之后,大约138亿年前,宇宙膨胀并冷却到足以让氢原子形成。氢原子吸收来自年轻恒星的紫外线光子;然而,在第一批恒星和星系诞生之前,宇宙变得黑暗,进入了一个被称为宇宙黑暗时代的时期。几亿年后,第一批恒星和星系的出现使宇宙沐浴在充满活力的紫外线中,开始燃烧,或电离氢雾。这反过来又使光子能够穿越空间,使宇宙变得透明。确定在那个时代占主导地位的星系类型--被称为"离子化时代"--是今天天文学的一个主要目标,但是在韦伯望远镜开发之前,科学家们缺乏研究第一代星系所需的敏感的红外仪器。加州大学洛杉矶分校博士后研究员、该研究的第一作者GuidoRoberts-Borsani说:"迄今为止,用JWST发现的大多数星系都是明亮的星系,这些星系很罕见,而且不被认为特别能代表填充早期宇宙的年轻星系。因此,虽然很重要,但它们不被认为是烧掉所有氢雾的主要媒介。""另一方面,像JD1这样的超暗星系要多得多,这就是为什么我们相信它们更能代表进行再电离过程的星系,使紫外线在空间和时间中不受阻碍地传播。"JD1是如此的昏暗和遥远,以至于如果没有强大的望远镜--以及来自大自然的帮助,研究它是具有挑战性的。JD1位于附近一个名为Abell2744的大型星系团后面,这些星系团的综合引力弯曲并放大了来自JD1的光线,使得它看起来更大,比原来的亮度高13倍。这种效应被称为引力透镜,类似于放大镜如何扭曲和放大其视野内的光线;如果没有引力透镜,JD1可能会被错过。研究人员利用韦伯望远镜的近红外光谱仪NIRSpec获得了该星系的红外光谱,使他们能够确定它的精确年龄和与地球的距离,以及它在相对较短的寿命内形成的恒星数量和灰尘及重元素数量。该星系的引力放大和韦伯望远镜的另一个近红外仪器NIRCam的新图像相结合,也使研究小组有可能以前所未有的细节和分辨率研究该星系的结构,揭示了正在形成恒星的三个主要拉长的灰尘和气体团块。研究小组利用新的数据将JD1的光线追溯到它的原始来源和形状,揭示了一个紧凑的星系,其大小只是像银河系这样的老星系的一小部分,而银河系的年龄为136亿年。由于光线到达地球需要时间,所以JD1被看作是大约133亿年前的样子,当时宇宙的年龄只有现在的大约4%。"在韦伯望远镜开启之前,就在一年前,我们甚至无法梦想确认这样一个微弱的星系,"加州大学洛杉矶分校物理学和天文学教授、该研究的第二作者TommasoTreu说。"JWST和引力透镜的放大能力的结合是一场革命。我们正在改写关于星系如何在大爆炸后立即形成和演化的书"。...PC版:https://www.cnbeta.com.tw/articles/soft/1364163.htm手机版:https://m.cnbeta.com.tw/view/1364163.htm

封面图片

韦伯太空望远镜观察到以“宇宙火球”形态存在的早期星系

韦伯太空望远镜观察到以“宇宙火球”形态存在的早期星系该研究的主要作者、加州大学洛杉矶分校物理学和天文学教授TommasoTreu说:"我们看到星系以一种令人激动的速度形成新的恒星。韦伯令人难以置信的分辨率使我们能够以前所未有的细节研究这些星系,我们看到所有这些恒星的形成都发生在这些星系的区域内。"特鲁指导着GLASS-JWST早期发布科学计划,该计划的第一个结果是该特刊的主题。这期杂志中另一项由加州大学洛杉矶分校领导的研究发现,在大爆炸后不久--不到10亿年内--形成的星系可能已经开始燃烧剩余的吸收光子的氢,为黑暗的宇宙带来光明。图为GuidoRoberts-Borsani"即使是我们最好的望远镜也确实难以确认如此遥远的星系的距离,所以我们不知道它们是否使宇宙变得透明,"领导这项研究的加州大学洛杉矶分校博士后研究员GuidoRoberts-Borsani说。"韦伯正在向我们展示,它不仅可以做这项工作,而且可以以惊人的速度完成。它是一个游戏规则的改变者。"这些发现是加州大学洛杉矶分校天体物理学家的许多令人惊叹的发现中的两个,他们是第一批通过韦伯新近打开的一扇窗户窥视过去的人。韦伯是目前人类在太空中设置的最大的近红外望远镜,其卓越的分辨率提供了一个无与伦比的视角,可以看到如此遥远的天体,其光线需要数十亿年才能到达地球。尽管这些天体现在已经老化,但只有它们最早的时候发出的光才有足够的时间穿越宇宙,最终出现在韦伯的探测仪上。因此,韦伯不仅起到了某种时间机器的作用--将科学家们带回到宇宙大爆炸后不久的时期--而且它所产生的图像已经成为一个家庭相册,其中有婴儿星系和星星的快照。图为TommasoTreuGLASS-JWST是美国宇航局在2017年选择的13个早期发布科学项目之一,以快速产生可公开访问的数据集,并展示和测试韦伯号上仪器的能力。该项目旨在了解第一批星系的光线是如何以及何时烧穿大爆炸留下的氢雾的--这一现象和时间段被称为"重化纪元"--以及气体和重元素如何在宇宙时间内分布在星系内部和周围。两位天文学家合作利用韦伯的三个创新的近红外仪器对早期宇宙中的遥远星系进行详细测量。离子化纪元是一个科学家们仍然不甚了解的时期。直到现在,研究人员还没有观测当时存在的星系所需的极其敏感的红外仪器。在宇宙再电离化之前,早期宇宙仍然没有光,因为来自早期恒星的紫外线光子被饱和空间的氢原子所吸收。科学家们认为,在宇宙最初的十亿年中的某个时候,由第一批星系和可能由第一批黑洞发出的辐射导致氢原子失去电子,或被电离,防止光子"粘"在它们身上,并为光子穿越空间清除了一条通道。随着星系开始电离出越来越大的气泡,宇宙变得透明,光线自由传播,就像今天一样,让我们每晚都能看到星星和星系的辉煌天幕。Roberts-Borsani发现星系的形成比以前认为的要快要早,这可以证实它们是宇宙再电离的罪魁祸首。这项研究还证实了已知的最远的两个星系的距离,使用一种新技术使天文学家能够探测宇宙再电离的开始。...PC版:https://www.cnbeta.com.tw/articles/soft/1336367.htm手机版:https://m.cnbeta.com.tw/view/1336367.htm

封面图片

韦伯望远镜首次捕捉到宇宙最早期星系的诞生过程

韦伯望远镜首次捕捉到宇宙最早期星系的诞生过程这幅插图显示了一个在宇宙大爆炸后几亿年才形成的星系,在重离子时代,气体是透明和不透明的混合体。来自美国宇航局詹姆斯-韦伯太空望远镜的数据显示,这些早期星系附近存在大量冷的中性气体--而且这些气体的密度可能比预想的要高。韦伯望远镜在2022年开始观测几个月后,作为其宇宙演化早期释放科学(CEERS)调查的一部分观测到了这些星系。CEERS包括图像和来自其NIRSpec(近红外摄谱仪)上微型遮光器的光谱数据。作为韦伯早期发布科学(ERS)计划的一部分,CEERS的数据被立即发布,以支持类似的发现。资料来源:NASA、ESA、CSA、JosephOlmsted(STScI)这一发现是利用詹姆斯-韦伯太空望远镜(JamesWebbSpaceTelescope)完成的,该望远镜为我们地球上的人们带来了对形成中星系的首次"实时观测"。通过这架望远镜,研究人员能够看到大量气体发出的信号,这些气体在形成过程中不断积累并吸附到一个小型星系上。虽然根据理论和计算机模拟,星系就是这样形成的,但实际情况却从未出现过。"可以说,这是我们看到的第一张'直接'拍摄的星系形成图像。詹姆斯-韦伯之前向我们展示的是处于演化后期的早期星系,而在这里,我们见证了它们的诞生,从而也见证了宇宙中第一批恒星系统的构建。"尼尔斯-玻尔研究所的卡斯帕-埃尔姆-海因茨助理教授说,他领导了这项新研究。这项研究发表在备受推崇的科学杂志《科学》上。他们是如何做到的:研究人员利用复杂的模型,研究了来自这些星系的光线是如何被其内部和周围的中性气体吸收的,从而能够测量出宇宙第一批星系的形成过程。这种转变被称为莱曼-阿尔法转变。通过测量光线,研究人员能够将新形成的星系中的气体与其他气体区分开来。这些测量结果之所以能够实现,要归功于詹姆斯-韦伯太空望远镜极其灵敏的红外摄谱仪功能。大爆炸后不久诞生的星系研究人员估计,这三个星系的诞生大约发生在宇宙大爆炸之后的4-6亿年。虽然这听起来像是一个很长的时间,但它相当于在宇宙138亿年总寿命的前3%到4%的时间里形成的星系。宇宙大爆炸后不久,宇宙还是一团由氢原子组成的巨大不透明气体--与今天不同的是,今天的夜空中布满了轮廓分明的恒星。"在宇宙大爆炸后的几亿年里,第一批恒星形成,之后恒星和气体开始凝聚成星系。"达拉赫-沃森(DarachWatson)副教授解释说:"这就是我们在观测中看到的开始过程。"星系的诞生发生在宇宙历史上被称为"再电离纪元"的时期,当时一些第一批星系的能量和光线冲破了氢气迷雾。研究人员正是利用詹姆斯-韦伯太空望远镜的红外视觉捕捉到了这些大量的氢气。这是迄今为止科研人员发现的对寒冷的中性氢气最遥远的测量,氢气是恒星和星系的组成部分。关于早期宇宙宇宙的"生命"始于大约138亿年前的一次巨大爆炸--宇宙大爆炸。这一事件产生了大量的亚原子粒子,如夸克和电子。这些粒子聚集在一起形成质子和中子,随后凝聚成原子核。宇宙大爆炸后大约38万年,电子开始围绕原子核运行,宇宙中最简单的原子逐渐形成。第一批恒星是在几亿年后形成的。在这些恒星的内部,形成了我们周围更大、更复杂的原子。后来,恒星凝聚成星系。我们已知最古老的星系是在宇宙大爆炸后大约3-4亿年形成的。我们的太阳系诞生于大约46亿年前--宇宙大爆炸后90多亿年。进一步了解我们的起源这项研究是由卡斯帕-埃尔姆-海因茨(KasperElmHeintz)与哥本哈根大学尼尔斯-玻尔研究所宇宙曙光中心的研究同事达拉赫-沃森(DarachWatson)、加布里埃尔-布拉莫尔(GabrielBrammer)和博士生西蒙妮-维加尔(SimoneVejlgaard)等人密切合作完成的。这项最新成果让他们离实现这一目标更近了一步。研究小组已经申请了更多的詹姆斯-韦伯太空望远镜的观测时间,希望能够扩大他们的新成果,了解更多关于星系形成的最早时代的信息。"目前,我们正在绘制新观测到的星系形成图,其细节比以前更加丰富。与此同时,我们也在不断尝试突破我们所能看到的宇宙的极限。因此,也许我们会走得更远,"SimoneVejlgaard说。研究人员认为,新知识有助于回答人类最基本的问题之一。"我们人类一直在问的一个最基本的问题是:'我们从哪里来?'在这里,我们通过揭示宇宙中一些最初的结构产生的时刻,拼凑出了更多的答案。"加布里埃尔-布拉莫尔(GabrielBrammer)副教授总结说:"我们将进一步研究这个过程,希望能够拼凑出更多的拼图碎片。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1433169.htm手机版:https://m.cnbeta.com.tw/view/1433169.htm

封面图片

韦伯望远镜揭示了低质量星系在早期宇宙再电离过程中的关键作用

韦伯望远镜揭示了低质量星系在早期宇宙再电离过程中的关键作用包括两位宾夕法尼亚州立大学天体物理学家在内的国际研究小组最近在《自然》杂志上发表了他们的研究成果。这些光谱揭示了宇宙中被称为再电离时期的一些最初的可见光,该时期的动力来自最早的恒星和星系的到来。美国国家航空航天局詹姆斯-韦伯太空望远镜(NASA'sJamesWebbSpaceTelescope)拍摄的深场图像首次提供了超微弱星系的一瞥,研究人员将这些星系确定为引发宇宙再电离的天体的有力候选者。图片来源:HakimAtek/索邦大学/JWST原始宇宙从黑暗到光明的过渡论文作者、宾夕法尼亚州立大学天文学和天体物理学助理教授乔尔-莱亚解释说,宇宙中的正常物质最初是一团炙热的浓雾,几乎完全由氢原子核和氦原子核组成。随着它的膨胀和冷却,孤质子和电子开始结合,第一次形成了中性氢。然后,在宇宙大爆炸发生后大约5亿至9亿年,在早期宇宙中占主导地位的中性氢开始再次分离成电离气体,从而促进了恒星和星系的诞生,并拨开了原始迷雾,使光线第一次可以畅通无阻地穿过宇宙。莱亚说:"有一些东西开始向星际虚空泵送高能光子。这些光源就像宇宙灯塔,烧掉了中性氢的雾气。不管是什么,它的能量如此之大,如此持久,以至于整个宇宙都重新电离了。"通过分析年轻的低质量星系的光谱,科学家们证明,小型星系是引发宇宙再电离的"东西"的有力候选者,它们加热了周围致密的原始气体,并电离了曾经中性的氢。"如果宇宙中的其他低质量星系也像这些星系一样常见和充满能量,那么我们认为我们终于了解了照亮宇宙迷雾的灯塔,"莱亚说。"它们是许许多多微小星系中能量惊人的恒星"。早期宇宙中的大多数星系预计都相对较小,因此研究它们的频率和特性极其困难。由于JWST的灵敏度与Abell2744星团的引力透镜效应(附近的星系就像宇宙放大镜,会扭曲空间并放大背景星系的光线)的独特结合,现在有可能确定宇宙最初十亿年期间小型星系的丰度及其电离特性。索邦大学天体物理学家、巴黎天体物理研究所研究员、论文第一作者哈基姆-阿泰克(HakimAtek)在一份新闻稿中说:"我们发现,在宇宙再电离的这一时期,小星系的数量比大质量星系多出约一百比一。这些新的观测结果还显示,这些小星系产生了大量的电离光子,比通常假设的遥远星系的标准值高出四倍。这意味着,这些星系发出的电离光子总通量远远超过了再电离所需的阈值"。绘制宇宙演化图:未来方向宾夕法尼亚州立大学的研究小组领导了UNCOVER勘测的建模工作,该勘测以大型前景星系团为目标,这些星系团对更微小、更遥远的星系产生了透镜效应。宾夕法尼亚州立大学的研究人员分析了巡天中的所有小光点,以了解天体的特性以及它们可能的质量和距离。Leja解释说,这一分析随后被用来指导后来JWST更详细的观测,从而推动了这一发现。在这些发现之前,有一些假说指出了宇宙再电离的其他来源,如超大质量黑洞、质量超过10亿太阳质量的大星系和质量小于10亿太阳质量的小星系。研究人员说,由于低质量星系的光度较低,证实与低质量星系有关的假说尤其困难,但新发现提供了迄今为止最明确的证据,证明低质量星系在宇宙再电离过程中发挥了核心作用。研究人员现在希望将这项研究扩展到更大的范围,以确认他们分析的特定位置能够代表宇宙中星系的平均分布情况。除了再电离过程之外,他们的观测还提供了对早期恒星形成过程、星系如何从原始气体中产生--以及它们如何演变成我们今天所知的宇宙的深入了解。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1425740.htm手机版:https://m.cnbeta.com.tw/view/1425740.htm

封面图片

来自第一批星系的关键信号揭示了有关早期宇宙的关键信息

来自第一批星系的关键信号揭示了有关早期宇宙的关键信息与此相反的是,研究人员通过没有发现他们一直在寻找的信号,即所谓的21厘米氢线,能够对最早的星系进行这些限制。这种未被发现的情况使研究人员能够对宇宙的黎明做出其他判断,对最早的星系进行限制,使他们能够排除一些情况,包括星系是宇宙气体的低效加热器和无线电发射的有效生产者。虽然我们还不能直接观察到这些早期星系,但《自然-天文学》杂志上报道的这些结果代表了理解我们的宇宙是如何从大部分虚无过渡到充满恒星的一个重要步骤。了解早期宇宙,即第一批恒星和星系形成的时间是新的观测站的主要目标之一。使用SARAS3数据获得的结果是一项概念验证研究,为了解宇宙发展的这一时期铺平了道路。SKA项目--涉及两台将在本世纪末完成的下一代望远镜--将有可能制作出早期宇宙的图像,但是对于目前的望远镜来说,挑战在于探测厚厚的氢云重新辐射出来的第一批恒星的宇宙学信号。这个信号被称为21厘米线--由早期宇宙中的氢原子产生的无线电信号。与最近发射的JWST(韦伯望远镜)不同,JWST将能够直接对早期宇宙中的单个星系进行成像,而用射电望远镜,如剑桥大学领导的REACH(分析宇宙氢的无线电实验)对21厘米线进行的研究,能够告诉我们关于甚至更早的星系的整个群体。预计在2023年初,REACH会有第一个结果。为了探测21厘米线,天文学家们寻找早期宇宙中氢原子产生的无线电信号,该信号受到第一批恒星的光和氢雾背后的辐射的影响。今年早些时候,同样的研究人员开发了一种方法,他们说这将使他们能够看穿早期宇宙的雾气,并探测到来自第一批恒星的光,这些技术中的一些已经在目前的研究中得到了实践。2018年,另一个操作EDGES实验的研究小组发表了一项结果,暗示可能探测到这种最早的光。与早期宇宙最简单的天体物理学图景中的预期相比,报告的信号异常强烈。最近,SARAS3的数据对这一探测提出了异议:EDGES的结果仍在等待独立观测的确认。在对SARAS3数据的重新分析中,剑桥大学领导的团队测试了各种有可能解释EDGES结果的天体物理情景,但他们没有发现相应的信号。相反,该小组能够对第一批恒星和星系的属性做出一些限制。SARAS3的分析结果是第一次对平均21厘米线的无线电观测能够以限制其主要物理属性的形式提供对第一批星系属性的洞察。与印度、澳大利亚和以色列的合作者合作,剑桥大学的团队使用来自SARAS3实验的数据来寻找来自宇宙黎明的信号,当时第一批星系形成。利用统计建模技术,研究人员无法在SARAS3数据中找到一个信号。剑桥大学卡文迪什实验室的博士生、该论文的第一作者哈里-贝文斯说:"我们正在寻找一个具有一定振幅的信号。但是通过没有找到这个信号,我们可以对其深度进行限制。这反过来又开始告诉我们第一批星系的亮度如何。""我们的分析表明,氢信号可以让我们了解第一批恒星和星系的数量,"来自剑桥大学天文学研究所的共同领衔作者阿纳斯塔西娅-菲亚尔科夫博士说。"我们的分析对第一批光源的一些关键属性进行了限制,包括最早的星系的质量以及这些星系能够形成恒星的效率。我们还解决了这些光源如何有效地发射X射线、无线电和紫外线辐射的问题。"同样来自卡文迪什实验室的EloydeLeraAcedo博士说:"这是我们的一个早期步骤,我们希望这将是一个发现宇宙如何从黑暗和空虚过渡到我们今天从地球上可以看到的恒星、星系和其他天体的复杂领域的十年,"他共同领导这项研究。deLeraAcedo说:"我们的数据还揭示了一些以前被暗示过的东西,那就是最早的恒星和星系可能对背景辐射有可测量的贡献,这些背景辐射是由于大爆炸而出现的,并且从那时起就一直向我们传播。能够在如此遥远的年代--大爆炸后仅仅2亿年--查看并了解早期宇宙的情况,这真是令人惊奇。"...PC版:https://www.cnbeta.com.tw/articles/soft/1336605.htm手机版:https://m.cnbeta.com.tw/view/1336605.htm

封面图片

韦伯揭示了早期宇宙中紧凑星系的物理特性

韦伯揭示了早期宇宙中紧凑星系的物理特性最早的星系发出的光逐渐使星系间介质中的大部分气体电离,改变了宇宙,使其变得透明。然而,再电离的精确时间表和宇宙最早的星系对这一过程的相对贡献仍然不确定。艺术家对詹姆斯-韦伯太空望远镜的构想。资料来源:NASAGSFC/CIL/AdrianaManriqueGutierrezHayleyWilliams及其同事报告了JWST对一个被引力透镜放大的遥远星系的近红外成像和光谱学观测。观察到的星系位于红移9.5,相当于大爆炸后约5.1亿年,再电离完成之前。引力透镜提供的高放大率使作者能够探测到这个本质上微弱的星系,并获得具有强烈星云发射线的光谱信息,从而揭示了该星系的一些物理特性。根据Williams等人的说法,研究结果显示,该星系的半径为16.2帕斯卡,比其他具有同等光度的星系要紧凑得多,这表明有高密度的恒星形成。更重要的是,光谱分析显示,该星系有丰富的氧气和氢气。...PC版:https://www.cnbeta.com.tw/articles/soft/1354665.htm手机版:https://m.cnbeta.com.tw/view/1354665.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人