MIT在酶领域的发现使穿越血脑屏障的新机制成为可能

MIT在酶领域的发现使穿越血脑屏障的新机制成为可能现在,加州理工学院的一项新研究发现了一种以前未知的机制,某些病毒载体--设计成携带各种所需货物的蛋白质外壳--可以穿过BBB。这一机制的洞察力可能为设计用于研究和治疗的病毒载体提供一种新方法。了解这一机制和其他新机制还可以深入了解大脑的防御系统如何被新出现的病原体所利用,使研究人员能够准备好阻止它们的方法。及时发现推定BBB转运体的方法:(1)定向进化产生了具有增强大脑效力的多样化AAVs。(2)识别出BBB特异性膜蛋白,并在体外对其提高AAV效力的能力进行筛选。(3)计算方法使高通量目标筛选和新型病毒、蛋白质和化学工具的反向工程成为可能。资料来源:加州理工学院的蒂姆-谢伊和格拉迪纳鲁实验室这项研究是在VivianaGradinaru(加州理工学院05级学士)的实验室进行的,她是Lois和VictorTroendle神经科学和生物工程教授以及分子和细胞神经科学中心的主任,该中心是加州理工学院天桥和ChrissyChen神经科学研究所的一部分,研究报告于4月19日发表在《科学进展》杂志上。该研究的第一作者是加州理工学院贝克曼研究所CLOVER中心的科学主任TimothyShay(15岁博士);生物工程研究生XiaozheDing(23岁博士);以及CLOVER研究助理ErinSullivan。尽管BBB是大脑的强大防线,但某些病毒已经自然进化出绕过它的能力。几十年来,研究人员一直在研究如何利用这些病毒作为一种跨越BBB的特洛伊木马;为此,研究人员刮出病毒携带的原始病毒基因,然后利用它们的空壳来运送有益的治疗药物或研究工具。具有穿越BBB能力的病毒载体可以通过简单的血液注射将所需基因送入大脑,因此不需要在大脑中进行侵入性注射。不幸的是,大多数来自自然进化的病毒的载体穿越BBB的效率非常低,因此必须以高剂量给药,增加了副作用的风险。碳酸酐酶IV(CA-IV)能够增强从血流进入大脑的能力。CA-IV蛋白在小鼠血脑屏障(BBB)上表达的荧光图像和AlphaFold2生成的CA-IV与穿越BBB病毒载体的工程环结合的结构模型。资料来源:ErinSullivan和XiaozheDing,加州理工学院Gradinaru实验室在自然界的启发下,Gradinaru实验室在过去十年中使用了定向进化过程--一种由诺贝尔奖获得者FrancesArnold在加州理工学院开创的技术--来指导载体的进化并增强它们穿越BBB的能力。多年来,该小组已经产生了几十个具有不同能力的载体,以穿越BBB并针对各种组织和细胞类型,在各种物种中。在这个过程中,他们注意到不同的载体在不同的模型生物体中会有不同的表现,这表明这些载体可能各自确定了从血液到大脑的不同和有效的路径。然而,尽管研究人员知道这些载体可以穿越,但仍不清楚它们是如何穿越的。坚固的BBB墙的进入点在哪里?在这项新的研究中,由Shay、Sullivan和Ding领导的团队旨在使用一种多学科的方法来确定这些机制,该方法结合了研究人员在蛋白质化学、分子生物学和数据科学等技术方面的专长。首先,Shay和Sullivan开发了一种细胞培养筛,以快速测试在BBB表面发现的几十种不同的蛋白质在盘中增强载体感染性的能力。然后,Ding使用一个先进的计算模型(基于一个名为AlphaFold的复杂的人工智能程序)来模拟载体如何与不同的蛋白质相互作用,揭示了屏幕中发现的相互作用的几何形状。接下来,一种"疯狂三月"的竞争过程--这是一篇即将发表的论文的主题--决定了哪些载体与哪些蛋白质的相互作用最好,并重现了屏幕的实验结果。经设计的AAVs可从血液中到达大脑 经过设计的AAVs可以从血液中到达大脑,使人们对血脑屏障生物学有了更深入的了解,包括识别新的受体,这可以帮助设计下一代用于大脑的病毒和非病毒传递载体,也许还可以预测和对抗新出现的病原体。资料来源:CatherineOikonomou和VivianaGradinaru,加州理工学院该团队发现了一种特殊的酶,称为碳酸酐酶IV(CA-IV),它使一些不同的病毒载体能够穿过BBB。有趣的是,CA-IV是一种古老的酶,在包括人类在内的许多不同物种的BBB上都有发现;以前并不知道它能促进任何形式的BBB穿越过程。在未来,这种结合了实验和计算的方法可能会加速发现更多的解决BBB穿越问题的方法,而且该团队对将这些分子门路应用于脑部治疗药物的输送的可能性感到兴奋。"血脑屏障穿越是一个关键的生物学难题,"Gradinaru说。"说一种调节血液pH值并让我们品尝苏打水中的汽水的酶是帮助病毒通过BBB的一个非直观的目标将是一种轻描淡写的说法。现在我们可以利用CA-IV,以及从我们根植于识别穿越BBB的病毒载体机制的方法中继续出现的其他令人兴奋的目标,来帮助我们设计用于大脑的下一代病毒和非病毒传递载体。也许,它还将帮助我们建立起对可能劫持相同的大脑进入途径的新出现的病原体的复原力。"了解病毒载体进入大脑的一系列机制,对实现不同人群的个性化治疗至关重要。大脑和它们的BBB在不同的物种之间,甚至在人类之间都有很大的差异。事实上,一个人的BBB可以在他们自己的一生中变化。通过揭示新的BBB穿越机制,可以为具有不同生物特征的个人定制更广泛的神经药物输送方案。...PC版:https://www.cnbeta.com.tw/articles/soft/1357417.htm手机版:https://m.cnbeta.com.tw/view/1357417.htm

相关推荐

封面图片

科学家发现中风后刺激大脑自我修复的新机制

科学家发现中风后刺激大脑自我修复的新机制缺血性中风后,人们通常可以通过强化康复治疗恢复部分丧失的脑功能,这表明大脑在受伤后可以自我恢复。但直到现在,神经修复的内在机制仍然难以捉摸。众所周知,组织损伤后产生的各种脂质可以调节损伤后的炎症,因此东京医科齿科大学的研究人员将重点放在了这一点上。研究的通讯作者TakashiShichita说:"有证据表明,组织损伤后会产生更多的脂质,并有助于调节炎症。我们研究了缺血性中风后小鼠体内脂质代谢物产生的变化。有趣的是,一种名为二氢-γ-亚麻酸(DGLA)的特殊脂肪酸及其衍生物的水平在中风后有所增加。"DGLA属于ω-6脂肪酸家族,具有已知的抗炎特性。研究人员深入研究后发现,PLA2GE2(磷脂酶A2组IIE)调节着DGLA的释放。通过操纵小鼠体内PLA2GE2的表达,他们发现它会影响脑细胞的恢复。缺乏这种酶会导致炎症加剧、神经元修复刺激因子表达降低以及组织损失增加。这一发现使研究人员进一步深入大脑修复途径。"当我们观察缺乏PLA2GE2的小鼠体内表达的基因时,我们发现一种叫做肽基精氨酸脱氨酶4(PADI4)的蛋白质水平很低,"该研究的第一作者AkariNakamura说。"PADI4调节[参与大脑修复的基因]的转录和炎症反应。值得注意的是,在小鼠体内表达PADI4限制了缺血性中风后组织损伤和炎症的程度!"从DGLA到PLA2GE2再到PADI4,研究人员绘制出了参与大脑修复的整个信号通路。虽然这项研究使用的是小鼠模型,但研究人员发现,在人类中,中风受损部位周围的神经元会表达PLA2GE2和PADI4,这表明我们体内也存在这种恢复途径。研究人员说,发现触发大脑修复的新机制可能会开发出促进PADI4作用的疗法,加快缺血性中风后的恢复。DGLA存在于植物油、谷物、大多数肉类和奶制品中,摄入后会在大脑中积累,这表明饮食疗法有可能预防中风后出现的神经损伤。目前,ω-3脂肪酸二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)是唯一因其抗炎特性和降低心脏病风险的能力而得到推广的营养补充剂。"虽然还需要进行详细的临床研究,但我们的发现可能会改变目前认为只有EPA或DHA才有益于预防动脉粥样硬化和血管疾病的模式"。这项研究发表在《神经元》(Neuron)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1376349.htm手机版:https://m.cnbeta.com.tw/view/1376349.htm

封面图片

MIT强大的可重构天线让先进卫星通信测试成为可能

MIT强大的可重构天线让先进卫星通信测试成为可能在麻省理工学院(MIT)林肯实验室大楼的屋顶上有一个38英尺宽的圆顶形无线电天线罩或称雷达罩。在这个气候控制的环境中,一个钢结构支撑着一个直径20英尺、重达20,000磅的卫星通信(SATCOM)天线,其屏蔽了新英格兰的天气。PC版:https://www.cnbeta.com/articles/soft/1330933.htm手机版:https://m.cnbeta.com/view/1330933.htm

封面图片

研究人员发现癌症免疫防御新机制

研究人员发现癌症免疫防御新机制马格德堡的一个跨学科研究小组现在发现了一种新的机制,它能使免疫系统也消灭这种看不见的癌细胞。这些发现为开发更好的癌症免疫疗法提供了新的可能性。这些成果现已发表在著名的《自然》杂志上。"在我们的工作中,我们一直在寻找针对这种杀手T细胞"看不见"的癌细胞的策略。在此过程中,我们发现了所谓辅助T细胞的特殊能力,"研究小组负责人、马格德堡大学医院皮肤病学教授ThomasTüting博士说。辅助T细胞(绿松石色)和杀伤T细胞(红色)对抗癌细胞(蓝色轮廓)的显微图像。杀伤性T细胞必须大量迁移到癌症组织中,才能有效防御癌症。发表在《自然》(Nature)杂志上的研究结果表明,与此相反,辅助T细胞会停留在癌组织的边缘,从远处协调癌细胞的死亡。与杀伤性T细胞相比,辅助性T细胞的数量要少得多。这两张图片都是使用眼内双光子显微镜拍摄的,这种显微镜可以观察活体组织中免疫细胞的行为。图片来源:马格德堡奥托-冯-盖里克大学研究人员利用一种癌症实验模型观察到,少量辅助性T细胞就能像大量杀伤性T细胞一样有效地消灭晚期癌症。辅助T细胞还能消灭杀伤性T细胞看不见的癌细胞。图为作者在显微镜下。前左:巴斯蒂安-克鲁斯(BastianKruse);前右:安东尼-巴扎伊(AnthonyBuzzai)博士AnthonyBuzzai博士;后左:AndreasMüller教授博士;后右:ThomasTüting教授博士:ThomasTüting教授。图片来源:SarahKossmann/马格德堡奥托冯-盖里克大学医学中心和医学系利用尖端显微镜技术研究活体癌症组织中的免疫细胞发现,辅助性T细胞与杀伤性T细胞的行为有本质区别。马格德堡大学分子和临床免疫学研究所的AndreasMüller教授博士说:"杀伤性T细胞会渗透到癌症组织中,直接与癌细胞发生作用,而辅助性T细胞主要分布在癌症组织的边缘,与其他免疫细胞交换信号。"进一步研究发现,辅助T细胞会分泌化学介质,吸引免疫系统中的清扫细胞,并诱导它们代为消灭癌细胞。这两种细胞可共同有效对抗细菌和病毒感染。还可以利用它们之间的合作,调动全部免疫防御武器来对付癌细胞。在寻找潜在作用机制的过程中,研究人员发现辅助T细胞和清道夫细胞之间的相互作用增强了它们释放炎症介质的能力,而炎症介质能远程驱动癌细胞死亡,就像癌细胞受到病原体感染一样。这种情况究竟是如何发生的,目前还不完全清楚,这一机制对癌症免疫疗法的意义也有待于进一步阐明。研究成果揭示了如何利用免疫系统抵御病原体在体内扩散的能力来消灭癌细胞的机制。基于这些发现,马格德堡的研究人员正在开发癌症免疫疗法的新策略,这种疗法对杀手T细胞无法发现的癌症患者也同样有效。...PC版:https://www.cnbeta.com.tw/articles/soft/1376971.htm手机版:https://m.cnbeta.com.tw/view/1376971.htm

封面图片

MIT研究人员解释说话和吸气不能同时进行的原因

MIT研究人员解释说话和吸气不能同时进行的原因“当你需要吸气时,你必须停止发声。我们发现控制发声的神经元接收到来自呼吸节奏发生器的直接抑制输入,”麻省理工学院脑与认知科学教授、麻省理工学院麦戈文脑研究所成员、该研究的资深作者FanWang说。杜克大学研究生、麻省理工学院访问学者JaehongPark是这项研究的主要作者,该研究发表在今天的《Science》杂志上。该论文的其他作者包括麻省理工学院的技术助理SeonmiChoi和AndrewHarrahill,前麻省理工学院的研究科学家JunTakatoh,以及杜克大学的研究人员ShengliZhao和Bao-XiaHan。发声控制声带位于喉部,是两条肌肉带,可以打开和关闭。当它们大部分闭合或内收时,从肺部呼出的空气通过声带时会产生声音。麻省理工学院的研究小组开始研究大脑是如何控制这种发声过程的,他们使用了一个小鼠模型。小鼠通过一种独特的口哨机制,通过几乎闭合的声带之间的一个小洞呼出空气,从而发出超声波(USVs)的声音。“我们想了解控制声带内收的神经元是什么,然后这些神经元是如何与呼吸回路相互作用的?”Wang说。为了弄清楚这一点,研究人员使用了一种技术,可以让他们绘制神经元之间的突触连接。他们知道声带内收是由喉部运动神经元控制的,所以他们开始往回追溯,寻找支配这些运动神经元的神经元。这表明,输入的一个主要来源是后脑区域的一组运动前神经元,称为后歧义核(RAm)。先前的研究表明,这个区域与发声有关,但不知道RAm的哪一部分是必需的,也不知道它是如何发声的。研究人员发现,这些突触跟踪标记的RAm神经元在USVs期间被强烈激活。这一观察结果促使研究小组使用一种活动依赖方法来瞄准这些发声特异性RAm神经元,称为RAmVOC。他们使用化学遗传学和光遗传学来探索如果他们沉默或刺激他们的活动会发生什么。当研究人员阻断RAmVOC神经元时,小鼠不再能够产生USVs或任何其他类型的发声。他们的声带没有闭合,腹部肌肉也没有收缩,就像他们通常在呼气发声时所做的那样。相反,当RAmVOC神经元被激活时,声带关闭,小鼠呼气,并产生USVs。然而,如果刺激持续两秒或更长时间,这些USVs就会被吸入打断,这表明这个过程是由大脑中调节呼吸的同一部分控制的。“呼吸是生存的需要,”Wang说。“尽管这些神经元足以引起发声,但它们是在呼吸的控制下,这可以超越我们的光遗传刺激。”节奏的一代额外的突触映射显示,脑干部分称为pre-Bötzinger复合物的神经元作为吸入的节奏发生器,为RAmVOC神经元提供直接的抑制性输入。“pre-Bötzinger复合体自动地、连续地产生吸入节律,该区域的抑制神经元投射到这些发声前运动神经元上,基本上可以关闭它们,”Wang说。这确保了呼吸仍然是语言产生的主导,我们在说话时必须停下来呼吸。研究人员认为,尽管人类的语言产生比小鼠的发声更复杂,但他们在小鼠身上发现的回路在人类的语言产生和呼吸中起着保守的作用。“尽管小鼠和人类发声的确切机制和复杂性确实不同,但基本的发声过程,即发声,需要声带闭合和呼气,在人类和小鼠中是共享的,”Park说。研究人员现在希望研究其他功能,如咳嗽和吞咽食物可能会受到控制呼吸和发声的大脑回路的影响。...PC版:https://www.cnbeta.com.tw/articles/soft/1423252.htm手机版:https://m.cnbeta.com.tw/view/1423252.htm

封面图片

抗菌素多重耐药的快速演变新机制揭晓

抗菌素多重耐药的快速演变新机制揭晓该研究的结果挑战了传统观点,即人们通常被病原菌的单一基因克隆(或“菌株”)感染,并且对抗生素治疗的耐药性是由于感染过程中发生的新基因突变的自然选择而进化的。结果表明,患者通常会同时受到多种病原体克隆的共同感染,耐药性的出现是由于选择了预先存在的耐药克隆,而不是新的突变。研究人员采用了一种新方法,研究了从抗生素治疗前后患者身上收集的病原菌(铜绿假单胞菌)的遗传多样性和抗生素耐药性的变化。这些样本是从12家欧洲医院的35名重症监护室(ICU)患者中分离出来的。铜绿假单胞菌是一种机会性病原体,是医院获得性感染的重要原因,尤其是免疫功能低下和危重患者,据信每年在全球造成超过550000人死亡。每名患者进入ICU后不久都会进行铜绿假单胞菌筛查,然后定期采集样本。研究人员结合使用基因组分析和抗生素激发试验来量化患者内的细菌多样性和抗生素耐药性。研究中的大多数患者(约三分之二)都被单一假单胞菌菌株感染。由于感染期间发生的新耐药突变的传播,AMR在其中一些患者中发生了进化,支持了传统的耐药获得模型。令人惊讶的是,作者发现剩下的三分之一的患者实际上感染了多种假单胞菌菌株。至关重要的是,与单一菌株感染的患者相比,当混合菌株感染的患者接受抗生素治疗时,其耐药性增加了约20%。混合菌株感染患者的耐药性迅速增加是由于对抗生素治疗开始时就已经存在的耐药菌株进行自然选择所致。这些菌株通常占抗生素治疗开始时存在的病原体种群的少数,但它们携带的抗生素抗性基因使它们在抗生素治疗下具有强大的选择优势。然而,尽管AMR在多菌株感染中出现得更快,但研究结果表明,它在这些情况下也可能会更快消失。当在没有抗生素的情况下培养单菌株和混合菌株患者的样本时,与非AMR菌株相比,AMR菌株生长得更慢。这支持了这样的假设:AMR基因具有适应性权衡,因此当不存在抗生素时它们会被选择。这些权衡在混合菌株群体中比在单一菌株群体中更强,这表明宿主内部多样性也可以在缺乏抗生素治疗的情况下导致耐药性的丧失。研究人员表示,研究结果表明,旨在限制细菌在患者之间传播的干预措施(例如改善卫生条件和感染控制措施)可能比旨在防止感染期间出现新耐药突变的干预措施更有效地对抗抗菌素耐药性。,例如降低细菌突变率的药物。这在感染率高的环境中可能尤其重要,例如免疫力受损的患者。研究结果还表明,临床测试应着眼于捕获感染中存在的病原体菌株的多样性,而不是仅测试少量病原体分离株(基于病原体群体实际上是克隆的假设)。这可以更准确地预测抗生素治疗在个体患者中是否会成功或失败,类似于癌细胞群多样性的测量如何帮助预测化疗的成功。牛津大学生物系的首席研究员克雷格·麦克林教授表示:“这项研究的主要发现是,由于选择了预先存在的耐药菌株,被不同铜绿假单胞菌群体定植的患者的耐药性迅速演变。不同病原体在患者体内产生耐药性的速度差异很大,我们推测宿主内高水平的多样性可以解释为什么某些病原体(例如假单胞菌)能够快速适应抗生素治疗。”他补充道:“我们用于研究患者样本中抗生素耐药性的诊断方法随着时间的推移发生了非常缓慢的变化,我们的研究结果强调了开发新诊断方法的重要性,这将使评估患者样本中病原体种群的多样性变得更加容易”。世界卫生组织已宣布抗菌素耐药性为人类面临的十大全球公共卫生威胁之一。当细菌、病毒、真菌和寄生虫对抗生素等药物不再有反应时,就会发生抗菌素耐药性,从而使感染变得越来越难以或不可能治疗。特别令人担忧的是多重耐药病原菌的迅速传播,而任何现有的抗菌药物都无法治疗这些细菌。2019年,AMR导致全球近500万人死亡。伯明翰大学微生物学和感染研究所所长WillemvanSchaik教授(未直接参与该研究)表示:“这项研究强烈表明,临床诊断程序可能需要扩大到包括不止一种菌株,需要更多来自患者的数据,以准确捕获危重患者体内的菌株的遗传多样性和抗生素耐药性潜力。它还强调了持续感染预防工作的重要性,这些工作旨在降低住院患者在住院期间被机会性病原体定植并随后感染的风险。”剑桥大学微生物学和公共卫生教授SharonPeacock(未直接参与该研究)表示:“由包括铜绿假单胞菌在内的一系列微生物引起的多重耐药感染是ICU患者管理的主要挑战。这项研究的结果进一步证明了在ICU和医院环境中采取感染预防和控制措施的重要性,以降低感染铜绿假单胞菌和其他病原微生物的风险。”...PC版:https://www.cnbeta.com.tw/articles/soft/1370461.htm手机版:https://m.cnbeta.com.tw/view/1370461.htm

封面图片

中国恐龙蛋研究揭示恐龙灭绝新机制

中国恐龙蛋研究揭示恐龙灭绝新机制6600万年前,雄霸地球的恐龙消失了。究竟是什么原因导致了恐龙的灭绝?是小行星撞地球,是气候变化,还是大面积火山爆发?答案或许不这么简单——来自中国科学院古脊椎动物与古人类研究所、中国科学院地质与地球物理研究所和中国地质大学(武汉)等机构的科学家对陕西山阳盆地恐龙化石开展了系统性研究,提出了一种恐龙灭绝可能的新机制:...PC版:https://www.cnbeta.com/articles/soft/1318797.htm手机版:https://m.cnbeta.com/view/1318797.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人