麻省理工学院的研究人员实现在硅片上直接生长出晶体管

麻省理工学院的研究人员实现在硅片上直接生长出晶体管麻省理工学院的团队克服了这一挑战,创造了一种低温生长工艺,保留了芯片的完整性,使二维半导体晶体管可以直接集成在标准硅电路之上。新方法在整个8英寸晶圆上生长出一个光滑、高度均匀的层,而不像以前的方法,在将二维材料转移到芯片或晶圆之前,要在其他地方生长二维材料。这一过程经常导致不完美,对设备和芯片性能产生负面影响。此外,这项新技术可以在不到一个小时的时间里在8英寸晶圆上生长出一层均匀的TMD材料,与以前的方法相比,这是一个重大的改进,因为以前的方法需要一天以上的时间才能完成一个单层。这项技术的增强的速度和均匀性使它适合于商业应用,因为8英寸或更大的晶圆是必不可少的。研究人员专注于二硫化钼,一种灵活、透明的二维材料,具有强大的电子和光子特性,是半导体晶体管的理想选择。他们为金属有机化学气相沉积工艺设计了一种新炉子,它有独立的低温和高温区域。硅片被放置在低温区,同时气化的钼和硫前体流入炉内。钼保持在低温区,而硫前体在高温区分解,然后流回低温区,在硅片表面生长出二硫化钼。人工智能、汽车和高性能计算等新兴应用要求计算非常密集,而堆叠晶体管可能是一个挑战。这种新方法对行业有重大影响,能够快速、有效地将二维材料整合到工业制造中。未来的发展包括对该技术进行微调,以生长多层二维晶体管,并探索柔性表面的低温生长工艺,如聚合物、纺织品,甚至是纸张。...PC版:https://www.cnbeta.com.tw/articles/soft/1357631.htm手机版:https://m.cnbeta.com.tw/view/1357631.htm

相关推荐

封面图片

麻省理工学院的工程师们培育出"完美"的仅有原子厚度的材料

麻省理工学院的工程师们培育出"完美"的仅有原子厚度的材料再来谈谈二维材料-精致的、二维的完美晶体片,其厚度只有一个原子。在纳米尺度上,二维材料可以比硅更有效地传导电子。因此,寻找下一代晶体管材料的工作集中在二维材料上,作为硅的潜在继承者。但是在电子工业能够过渡到二维材料之前,科学家们必须首先找到一种方法,在工业标准的硅片上安放这些材料,同时保留其完美的结晶形式。而麻省理工学院的工程师现在可能有一个解决方案。该团队已经开发出一种方法,可以使芯片制造商通过在现有的硅和其他材料的晶圆上生长,用二维材料制造出更小的晶体管。这种新方法是一种"非外延式单晶生长"的形式,该团队首次使用这种方法在工业硅晶圆上生长出纯净的、无缺陷的完美二维材料。通过他们的方法,研究小组用一种叫做过渡金属二氯化物(TMDs)的二维材料制造了一个简单的功能晶体管,众所周知,这种材料在纳米尺度上的导电性能比硅更好。麻省理工学院机械工程系副教授JeehwanKim说:"我们预计我们的技术可以使基于二维半导体的高性能下一代电子设备得到发展。我们已经解开了一个使用二维材料追赶摩尔定律的方法。"Kim和他的同事在最近发表于《自然》杂志的一篇论文中详细介绍了他们的方法。这项研究的麻省理工学院合作者包括KiSeokKim、DoyoonLee、CelestaChang、SeunghwanSeo、HyunseokKim、JihoShin、SanghoLee、JunMinSuh和Bo-InPark,以及德克萨斯大学达拉斯分校、加州大学河滨分校、圣路易斯华盛顿大学和韩国各地机构的合作者。通过在涂有"掩膜"的晶圆上沉积原子(左上),麻省理工学院的工程师可以将原子聚集在掩膜的各个口袋里(中间),并鼓励原子生长成完美的二维单晶层(右下)。资料来源:JeehwanKim,KiSeokKim,et.晶体拼接为了生产二维材料,研究人员通常采用手工工艺,将原子厚度的薄片从块状材料中小心翼翼地剥离出来,就像剥去洋葱的一层。但是大多数块状材料是多晶体的,包含多个以随机方向生长的晶体。在一个晶体与另一个晶体相遇的地方,"晶界"就像一个电障。任何流经一个晶体的电子在遇到一个不同方向的晶体时突然停止,从而抑制了材料的导电性。即使在剥离二维薄片后,研究人员也必须在薄片上寻找"单晶"区域--这是一个繁琐而耗时的过程,很难在工业规模上应用。最近,研究人员发现了其他制造二维材料的方法,即在蓝宝石晶片上生长二维材料--一种具有六角形原子图案的材料,它推动二维材料以相同的单晶方向组装。"但在内存或逻辑行业中没有人使用蓝宝石,"Kim说。"所有的基础设施都是基于硅的。对于半导体加工,你需要使用硅晶圆。"然而,硅晶圆缺乏蓝宝石的六边形支撑支架。当研究人员试图在硅上生长二维材料时,其结果是晶体的随机拼凑,胡乱地合并,形成许多阻碍导电性的晶界。"人们认为在硅上生长单晶二维材料几乎是不可能的,"Kim说。"现在我们表明它可以,我们的诀窍是从源头防止形成晶界。"“种子袋”该团队新的"非外延式单晶生长"不需要剥离和搜索二维材料的薄片。相反,研究人员使用传统的气相沉积方法,将原子抽过硅片。原子最终在晶圆上"定居"并形成晶核,直接生长为二维晶体方向。如果不加处理,每个"核"或晶体的种子将在硅片上以随机的方向生长。但是Kim和他的同事们找到了一种方法,使每个生长中的晶体对齐,在整个硅片上形成单晶区域。为了做到这一点,他们首先在硅片上覆盖了一层"掩膜"-一层二氧化硅涂层,他们将其图案化为微小的口袋,每一个口袋都被设计用来捕获一个晶体种子。然后,他们在被遮蔽的硅片上流淌着原子的气体,这些原子沉淀在每个口袋里,形成一种二维材料--在这种情况下是一种过渡金属二氯化物。掩膜的口袋聚集了原子,并鼓励它们以相同的单晶方向在硅片上组装。"这是一个非常令人震惊的结果,"Kim说,"到处都有单晶生长,即使2D材料和硅片之间没有外延关系。"利用他们的遮蔽方法,该团队制造了一个简单的TMD晶体管,并显示其电气性能与相同材料的纯片一样好。他们还应用该方法设计了一个多层器件。在用图案化的掩模覆盖硅片后,他们生长出一种二维材料来填充每个方块的一半,然后在第一层上生长出第二种二维材料来填充其余方块。结果是在每个方块内形成了超薄的单晶双层结构,往后,多种二维材料可以通过这种方式生长并堆叠在一起,以制造超薄、灵活和多功能的薄膜。"直到现在,还没有办法在硅片上以单晶形式制造二维材料,因此整个社区几乎放弃了为下一代处理器追求二维材料,"Kim说。"现在我们已经完全解决了这个问题,有了制造小于几纳米的器件的方法。这将改变摩尔定律的范式"。...PC版:https://www.cnbeta.com.tw/articles/soft/1343087.htm手机版:https://m.cnbeta.com.tw/view/1343087.htm

封面图片

麻省理工学院在将二维材料集成到设备方面取得突破

麻省理工学院在将二维材料集成到设备方面取得突破这幅艺术家的作品展示了麻省理工学院研究人员开发的一种新型集成平台。通过对表面力进行工程设计,他们只需一个接触和释放步骤,就能将二维材料直接集成到设备中。图片来源:SampsonWilcox/电子研究实验室提供但是,将二维材料集成到计算机芯片等设备和系统中是众所周知的难题。这些超薄结构可能会受到传统制造技术的破坏,这些技术通常依赖于使用化学品、高温或蚀刻等破坏性工艺。为了克服这一挑战,麻省理工学院和其他大学的研究人员开发出了一种新技术,只需一步就能将二维材料集成到设备中,同时保持材料表面和由此产生的界面原始无缺陷。他们的方法依赖于纳米级的工程表面力,使二维材料可以物理叠加到其他预制设备层上。由于二维材料不会受损,研究人员可以充分利用其独特的光学和电学特性。所开发的平台利用行业兼容的工具集,使这一过程可以扩展。在这里,主要作者彼得-萨特斯韦特(PeterSatterthwaite)使用MIT.nano中修改过的配准工具进行图案化配准集成。他们利用这种方法制造出了二维晶体管阵列,与使用传统制造技术制造出的器件相比,实现了新的功能。他们的方法用途广泛,可用于多种材料,可在高性能计算、传感和柔性电子器件等领域广泛应用。释放这些新功能的核心是形成清洁界面的能力,所有物质之间存在的特殊力量(称为范德华力)将这些界面连接在一起。电子工程与计算机科学(EECS)助理教授、电子学研究实验室(RLE)成员FarnazNiroui是介绍这项工作的新论文的资深作者。"范德华积分有一个基本限制,"她解释说,"由于这些作用力取决于材料的内在特性,因此无法轻易调整。因此,有些材料无法仅利用其范德华相互作用来直接相互整合。我们提出了一个解决这一限制的平台,以帮助范德华集成变得更加通用,从而促进具有新功能和改进功能的基于二维材料的设备的开发。"Niroui与论文第一作者、电子工程与计算机科学研究生PeterSatterthwaite,电子工程与计算机科学教授、RLE成员JingKong,以及麻省理工学院、波士顿大学、台湾国立清华大学、台湾国家科学技术委员会和台湾国立成功大学的其他人共同撰写了这篇论文,这项研究最近发表在《自然-电子学》上。纳米级表面力的多样性使研究人员能够将粘合剂基质转移到许多不同的材料上。例如,在这里,通过使用粘合聚合物,他们能够将图案化的石墨烯(一原子厚的碳薄片)从源基底(上图)转移到接收粘合聚合物(下图)上。图片来源:Niroui小组提供使用传统制造技术制造计算机芯片等复杂系统可能会变得一团糟。通常情况下,像硅这样的硬质材料会被凿成纳米级,然后与金属电极和绝缘层等其他元件连接,形成有源器件。这种加工过程会对材料造成损害。最近,研究人员专注于使用二维材料和一种需要连续物理堆叠的工艺,自下而上地构建设备和系统。在这种方法中,研究人员不是使用化学胶水或高温将脆弱的二维材料粘合到硅等传统表面上,而是利用范德华力将一层二维材料物理集成到设备上。范德华力是存在于所有物质之间的自然吸引力。例如,壁虎的脚会因为范德华力而暂时粘在墙上。虽然所有材料都存在范德华力,但根据材料的不同,范德华力并不总是强大到足以将它们粘在一起。例如,一种名为二硫化钼的流行半导体二维材料会粘在黄金上,但不会通过与二氧化硅等绝缘体表面的物理接触直接转移到该表面上。然而,通过整合半导体层和绝缘层制成的异质结构是电子设备的关键组成部分。以前,实现这种集成的方法是将二维材料粘合到一个中间层(如金)上,然后使用该中间层将二维材料转移到绝缘体上,最后再使用化学品或高温去除中间层。麻省理工学院的研究人员没有使用这种牺牲层,而是将低粘性绝缘体嵌入高粘性基质中。这种粘合基质使二维材料粘附在嵌入的低粘合力表面上,提供了在二维材料和绝缘体之间形成范德华界面所需的力。制作矩阵为了制造电子设备,他们在载体基底上形成金属和绝缘体的混合表面。然后将该表面剥离并翻转,就会看到一个完全光滑的顶面,其中包含所需的器件构件。这种光滑度非常重要,因为表面和二维材料之间的间隙会阻碍范德华相互作用。然后,研究人员在完全洁净的环境中单独制备二维材料,并将其与制备好的器件堆栈直接接触。"一旦混合表面与二维层接触,无需任何高温、溶剂或牺牲层,它就能拾取二维层并将其与表面整合在一起。"萨特斯韦特解释说:"通过这种方式,我们可以实现传统上被禁止的范德华集成,但现在却可以实现,而且只需一步就能形成功能齐全的器件。"这种单步工艺可使二维材料界面保持完全清洁,从而使材料达到其性能的基本极限,而不会受到缺陷或污染的影响。而且,由于二维材料的表面也保持原始状态,研究人员可以对二维材料的表面进行工程设计,以形成与其他元件的特征或连接。例如,他们利用这种技术制造出了p型晶体管,而利用二维材料制造这种晶体管通常是具有挑战性的。他们的晶体管在以前的研究基础上有所改进,可以为研究和实现实用电子产品所需的性能提供一个平台。展望未来他们的方法可以大规模地制造更大的装置阵列。粘合基质技术还可用于一系列材料,甚至与其他力量结合使用,以增强这一平台的多功能性。例如,研究人员将石墨烯集成到器件上,利用聚合物基质形成所需的范德华界面。在这种情况下,粘附依靠的是化学作用,而不仅仅是范德华力。未来,研究人员希望以此平台为基础,整合各种二维材料库,在不受加工损伤影响的情况下研究其内在特性,并利用这些卓越功能开发新的设备平台。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423078.htm手机版:https://m.cnbeta.com.tw/view/1423078.htm

封面图片

麻省理工学院物理学家首次在三维晶体中捕获电子 有助于解开超导之谜

麻省理工学院物理学家首次在三维晶体中捕获电子有助于解开超导之谜麻省理工学院的物理学家在纯净的晶体中捕获了电子,标志着在三维材料中首次实现了电子平带。这种罕见的电子状态得益于一种特殊的立方体原子排列(如图),这种排列类似于日本的"编织篮"艺术。该成果为科学家探索三维材料中的稀有电子状态提供了一种新的途径。图片来源:研究人员提供发现三维平带现在,麻省理工学院的物理学家成功地将电子困在了纯净的晶体中。这是科学家首次在三维材料中实现电子平带。通过一些化学操作,研究人员还表明他们可以将晶体转化为超导体--一种零电阻导电的材料。这些成果为探索三维材料中的超导性和其他奇异电子状态打开了大门。这种罕见的电子状态得益于一种特殊的立方体原子排列(如图),这种排列类似于日本的"Kagome"编织篮艺术。图片来源:研究人员提供由于晶体的原子几何结构,电子被困状态成为可能。物理学家合成的这种晶体的原子排列类似于日本编织艺术"kagome"中的编织图案。研究人员发现,在这种特定的几何结构中,电子不是在原子间跳跃,而是被"关在笼子里",固定在同一能带上。潜在应用和研究动机研究人员说,这种平带状态几乎可以用任何原子组合来实现--只要它们以这种卡戈米启发的三维几何形状排列。这些成果于11月8日发表在《自然》(Nature)杂志上,为科学家探索三维材料中的稀有电子态提供了一种新方法。有朝一日,这些材料可能会被优化,以实现超高效电力线、超级计算量子比特以及更快、更智能的电子设备。研究报告的作者、物理学副教授约瑟夫-格切尔斯基(JosephCheckelsky)说:"既然我们知道可以用这种几何形状制造出平面带,我们就有很大的动力去研究其他结构,这些结构可能具有其他新的物理特性,可以成为新技术的平台。"Checkelsky在麻省理工学院的共同作者包括:研究生JoshuaWakefield、MinguKang、PaulNeves和博士后DongjinOh(他们是共同第一作者);研究生TejLamichhane和AlanChen;博士后ShiangFang和FrankZhao;本科生RyanTigue;核科学与工程学副教授李明达、物理学副教授里卡多-科明(他与查尔斯基合作指导了这项研究)以及其他多个实验室和机构的合作者。设置三维陷阱近年来,物理学家已经成功地在二维材料中捕获电子并确认其电子平带状态。但科学家们发现,被困在二维中的电子很容易从三维中逃逸出来,这使得平带态难以在二维中维持。在他们的新研究中,Checkelsky、Comin和他们的同事希望在三维材料中实现平带,这样电子就会被困在所有三个维度中,任何奇异的电子状态都能得到更稳定的维持。他们认为,"Kagome"可能会在其中发挥作用。在之前的工作中,科学家们观察到二维原子晶格中的电子被捕获,这种晶格类似于一些可果美的图案。当原子排列成相互连接、共用边角的三角形图案时,电子被限制在三角形之间的六边形空间内,而不是在晶格中跳跃。但是,和其他研究人员一样,研究人员发现电子可以向上逸出晶格,穿过三维空间。研究小组想知道由类似晶格组成的三维结构能否将电子封闭起来?他们在材料结构数据库中寻找答案,发现了一种原子的特定几何构型,一般被归类为火成岩--一种原子几何高度对称的矿物。火成岩的三维原子结构形成了一个重复的立方体图案,每个立方体的表面都像一个Kagome状的晶格。他们发现,从理论上讲,这种几何结构可以有效地将电子俘获在每个立方体中。为了验证这一假设,研究人员在实验室中合成了一种烧绿石晶体。"这与自然界制造晶体的方式并无二致,"Checkelsky解释说。"我们把某些元素放在一起--在本例中是钙和镍--在极高的温度下熔化它们,然后冷却,原子本身就会排列成这种晶体状的Kagome构造。"随后,他们测量了晶体中单个电子的能量,看它们是否确实属于同一平坦的能量带。要做到这一点,研究人员通常要进行光发射实验,在实验中,他们将单个光子照射到样品上,进而发射出单个电子。然后,探测器可以精确测量单个电子的能量。科学家利用光发射来确认各种二维材料中的平带状态。由于这些材料在物理上是平面的、二维的,因此使用标准激光进行测量相对简单。但对于三维材料来说,这项任务更具挑战性。科明解释说:"这个实验通常需要一个非常平整的表面。但如果你观察一下这些三维材料的表面,它们就像落基山脉一样,呈现出非常波状的地貌。在这些材料上进行实验非常具有挑战性,这也是没有人证明它们能承载被困电子的部分原因"。研究小组利用角度分辨光发射光谱(ARPES)清除了这一障碍,这种超聚焦光束能够瞄准凹凸不平的三维表面上的特定位置,并测量这些位置上的单个电子能量。这就像直升机在非常小的垫子上着陆一样,在岩石上到处都是。利用ARPES,研究小组在大约半小时内测量了合成晶体样品上数千个电子的能量。他们发现,绝大多数晶体中的电子表现出完全相同的能量,这证实了三维材料的平带状态。迈向超导为了了解他们能否操纵配位电子进入某种奇特的电子状态,研究人员合成了相同的晶体几何形状,这次用铑和钌原子代替了镍原子。根据纸上计算,研究人员认为这种化学交换应该将电子的平带转移到零能--一种自动导致超导的状态。而事实上,他们发现,当他们用略微不同的元素组合,在相同的卡戈米式三维几何中合成出一种新晶体时,晶体的电子呈现出平带,这次是超导状态。科明说:"这为我们思考如何找到新的、有趣的量子材料提供了一种新的范式。我们发现,有了这种可以捕获电子的原子排列的特殊成分,我们总能找到这些平带。这不仅仅是运气好。从这一点出发,我们面临的挑战是如何进行优化,以实现平带材料的承诺,从而有可能在更高温度下维持超导性。"...PC版:https://www.cnbeta.com.tw/articles/soft/1395965.htm手机版:https://m.cnbeta.com.tw/view/1395965.htm

封面图片

光电纳米技术的创新:麻省理工学院培育出精确的纳米LED阵列

光电纳米技术的创新:麻省理工学院培育出精确的纳米LED阵列麻省理工学院的一个新平台使研究人员能够"生长"卤化物包晶纳米晶体,并精确控制每个晶体的位置和尺寸,将它们集成到纳米级发光二极管中。图为纳米晶体阵列发光效果图。图片来源:SampsonWilcox,RLE提供卤化物钙钛矿是一类材料,因其优异的光电特性以及在高性能太阳能电池、发光二极管和激光器等器件中的潜在应用而引起人们的关注。这些材料已主要应用于薄膜或微米尺寸的设备应用中。在纳米尺度上精确集成这些材料可以开辟更非凡的应用,例如片上光源、光电探测器和忆阻器。然而,实现这种集成仍然具有挑战性,因为这种精致的材料可能会被传统的制造和图案化技术损坏。为了克服这一障碍,麻省理工学院的研究人员发明了一种技术,可以在需要的地方现场生长单个卤化物钙钛矿纳米晶体,并精确控制位置,尺寸在50纳米以内。(一张纸的厚度为100000纳米)纳米晶体的尺寸也可以通过该技术精确控制,这一点很重要,因为尺寸会影响其特性。由于材料是局部生长的,具有所需的特征,因此不需要可能造成损坏的传统光刻图案化步骤。NanOLED阵列(如图所示)可应用于光通信和计算、无透镜显微镜、新型量子光源以及用于增强和虚拟现实的高密度、高分辨率显示器。图片来源:研究人员提供该技术还具有可扩展性、多功能性,并且与传统的制造步骤兼容,因此它可以使纳米晶体集成到功能性纳米级器件中。研究人员用它来制造纳米级发光二极管(nanoLED)阵列,这是一种在电激活时发光的微小晶体。这种阵列可应用于光通信和计算、无透镜显微镜、新型量子光源以及用于增强和虚拟现实的高密度、高分辨率显示器。“正如我们的工作所示,开发新的工程框架将纳米材料集成到功能性纳米器件中至关重要。通过超越纳米制造、材料工程和设备设计的传统界限,这些技术可以让我们在极端纳米尺度上操纵物质,帮助我们实现非常规设备平台,这对于满足新兴技术需求非常重要。”Landsman电气工程和计算机科学(EECS)职业发展助理教授、电子研究实验室(RLE)成员,也是描述这项工作的新论文的资深作者。Niroui的合著者包括主要作者PatriciaJastrzebska-Perfect,她是EECS研究生;朱伟坤,化学工程系研究生;MayuranSaravanapavanantham、SarahSpector、RobertoBrenes和PeterSatterthwaite,均为EECS研究生;郑莉,RLE博士后;RajeevRam,电气工程教授。该研究于7月6日发表在《自然通讯》杂志上。微小的晶体,巨大的挑战使用传统的纳米级制造技术将卤化物钙钛矿集成到片上纳米级器件中是极其困难的。在一种方法中,可以使用光刻工艺对易碎的钙钛矿薄膜进行图案化,该工艺需要可能损坏材料的溶剂。在另一种方法中,首先在溶液中形成较小的晶体,然后以所需的图案从溶液中拾取并放置。“这两种情况都缺乏控制、分辨率和集成能力,这限制了材料扩展到纳米设备的方式,”尼鲁伊说。相反,她和她的团队开发了一种方法,可以在精确的位置直接“生长”卤化物钙钛矿晶体到所需的表面,然后在该表面上制造纳米器件。他们的流程的核心是本地化纳米晶体生长中使用的解决方案。为此,他们创建了一个带有小孔的纳米级模板,其中包含晶体生长的化学过程。它们修改模板的表面和孔的内部,控制一种称为“润湿性”的特性,因此含有钙钛矿材料的溶液不会聚集在模板表面上,并将被限制在孔内。“现在就有了这些非常小的、确定性的反应堆,材料可以在其中生长,”她说。他们将含有卤化物钙钛矿生长材料的溶液施加到模板上,随着溶剂蒸发,材料生长并在每个孔中形成微小的晶体。一种多功能且可调节的技术研究人员发现孔的形状在控制纳米晶体的位置方面起着关键作用。如果使用方形孔,由于纳米级力的影响,晶体有相同的机会放置在孔的四个角中。对于某些应用来说,这可能已经足够了,但对于其他应用来说,纳米晶体的放置需要更高的精度。通过改变孔的形状,研究人员能够设计这些纳米级的力,使晶体优先放置在所需的位置。当溶剂在孔内蒸发时,纳米晶体会经历压力梯度,产生定向力,确切的方向由孔的不对称形状确定。Niroui说:“这使我们不仅在生长方面,而且在这些纳米晶体的放置方面都具有非常高的精度。”他们还发现可以控制井内形成的晶体的大小。改变孔的大小以允许内部更多或更少的生长溶液产生更大或更小的晶体。通过制造精确的nanoLED阵列展示了其技术的有效性。在这种方法中,每个纳米晶体都被制成发光的纳米像素。这些高密度nanoLED阵列可用于片上光通信和计算、量子光源、显微镜以及增强和虚拟现实应用的高分辨率显示器。未来,研究人员希望探索这些微小光源的更多潜在应用。他们还想测试这些设备的极限,并努力将它们有效地整合到量子系统中。除了纳米级光源之外,该过程还为开发基于卤化物钙钛矿的片上纳米器件开辟了其他机会。他们的技术还为研究人员提供了一种更简单的方法来研究单个纳米晶体水平的材料,他们希望这将激励其他人对这些和其他独特材料进行更多研究。Jastrzebska-Perfect补充道:“通过高通量方法研究纳米级材料通常需要对材料进行精确定位并按该规模进行设计。通过提供局部控制,我们的技术可以改善研究人员研究和调整材料性能以适应不同应用的方式。”“该团队开发了一种非常聪明的方法,可以在基板上确定性地合成单个钙钛矿纳米晶体。他们可以以前所未有的规模控制纳米晶体的精确放置,从而为基于单纳米晶体制造高效纳米级LED提供了一个平台。”加州大学伯克利分校电气工程和计算机科学教授AliJavey说道,他没有参与这项研究。“这是一项令人兴奋的工作,因为它克服了该领域的基本挑战。”...PC版:https://www.cnbeta.com.tw/articles/soft/1370463.htm手机版:https://m.cnbeta.com.tw/view/1370463.htm

封面图片

科学家发现完美2D超薄材料 造出全新晶体管

科学家发现完美2D超薄材料造出全新晶体管但在此之前,科学家们必须首先找到一种方法,在保持其完美结晶形态的同时,在工业标准硅片上设计这种材料。近期,麻省理工学院(MIT)的工程师们似乎找到了一个可能的解决方案,他们将研究成果发表在了《自然》杂志上。据悉,该团队开发出了一种“非外延单晶生长”方法,可以在现有的工业硅晶圆上生长出纯净的、无缺陷的二维材料,以制造出更小的晶体管。通过新方法,研究小组用一种叫做过渡金属二硫化物(TMD)的2D材料制造了一个简单的功能晶体管,这种材料在纳米尺度上的导电性比硅更好。麻省理工学院机械工程副教授JeehwanKim说,“我们希望我们的技术能够开发基于二维半导体的高性能下一代电子设备。我们已经开启了一种利用2D材料来追赶摩尔定律的方法。”一般而言,为生产2D材料,研究人员通常采用一种手工工艺,即从大块材料中小心地剥离原子般薄的薄片,就像剥洋葱层一样。但大多数块状材料都是多晶的,包含多个随机方向生长的晶体。当一种晶体与另一种晶体相遇时,“晶界”起到了电屏障的作用。任何流过一个晶体的电子在遇到不同方向的晶体时都会突然停止,从而降低材料的导电性。即使在剥离2D薄片之后,研究人员也必须搜索薄片中的“单晶”区域,这是一个繁琐且耗时的过程,很难应用于工业规模。在上述新研究中,研究人员发现了制造二维材料的其他方法,即通过在蓝宝石晶片上生长它们。蓝宝石是一种具有六角形原子图案的材料,可促使二维材料以相同的单晶方向组装。新的“非外延单晶生长”方法不需要剥离和搜索二维材料的薄片,并可使晶体向同一方向生长。研究小组据此制造了一个简单的TMD晶体管,其电性能与相同材料的纯薄片一样好。研究人员表示,未来或可制造出小于几纳米的器件,这将改变摩尔定律的规律。...PC版:https://www.cnbeta.com.tw/articles/soft/1340041.htm手机版:https://m.cnbeta.com.tw/view/1340041.htm

封面图片

美国西北大学、波士顿学院和麻省理工学院研究人员从人脑中汲取灵感,开发出一种能够进行更高层次思维的新型突触晶体管,可像人脑一样同时

美国西北大学、波士顿学院和麻省理工学院研究人员从人脑中汲取灵感,开发出一种能够进行更高层次思维的新型突触晶体管,可像人脑一样同时处理和存储信息。在新的实验中,研究人员证明晶体管对数据进行分类的能力,超越了简单的机器学习任务,并且能够执行联想学习。研究成果20日发表在《自然》杂志上。尽管之前的研究已利用类似的策略来开发类脑计算设备,但这些晶体管只能在低温之下运行。相比来说,新设备在室温下运行很稳定。它在快速运行时消耗的能量很少,即使断电也能保留存储的信息,这使其成为实际应用中的理想选择。(科技日报)

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人