科学家发现完美2D超薄材料 造出全新晶体管

科学家发现完美2D超薄材料造出全新晶体管但在此之前,科学家们必须首先找到一种方法,在保持其完美结晶形态的同时,在工业标准硅片上设计这种材料。近期,麻省理工学院(MIT)的工程师们似乎找到了一个可能的解决方案,他们将研究成果发表在了《自然》杂志上。据悉,该团队开发出了一种“非外延单晶生长”方法,可以在现有的工业硅晶圆上生长出纯净的、无缺陷的二维材料,以制造出更小的晶体管。通过新方法,研究小组用一种叫做过渡金属二硫化物(TMD)的2D材料制造了一个简单的功能晶体管,这种材料在纳米尺度上的导电性比硅更好。麻省理工学院机械工程副教授JeehwanKim说,“我们希望我们的技术能够开发基于二维半导体的高性能下一代电子设备。我们已经开启了一种利用2D材料来追赶摩尔定律的方法。”一般而言,为生产2D材料,研究人员通常采用一种手工工艺,即从大块材料中小心地剥离原子般薄的薄片,就像剥洋葱层一样。但大多数块状材料都是多晶的,包含多个随机方向生长的晶体。当一种晶体与另一种晶体相遇时,“晶界”起到了电屏障的作用。任何流过一个晶体的电子在遇到不同方向的晶体时都会突然停止,从而降低材料的导电性。即使在剥离2D薄片之后,研究人员也必须搜索薄片中的“单晶”区域,这是一个繁琐且耗时的过程,很难应用于工业规模。在上述新研究中,研究人员发现了制造二维材料的其他方法,即通过在蓝宝石晶片上生长它们。蓝宝石是一种具有六角形原子图案的材料,可促使二维材料以相同的单晶方向组装。新的“非外延单晶生长”方法不需要剥离和搜索二维材料的薄片,并可使晶体向同一方向生长。研究小组据此制造了一个简单的TMD晶体管,其电性能与相同材料的纯薄片一样好。研究人员表示,未来或可制造出小于几纳米的器件,这将改变摩尔定律的规律。...PC版:https://www.cnbeta.com.tw/articles/soft/1340041.htm手机版:https://m.cnbeta.com.tw/view/1340041.htm

相关推荐

封面图片

麻省理工学院的工程师们培育出"完美"的仅有原子厚度的材料

麻省理工学院的工程师们培育出"完美"的仅有原子厚度的材料再来谈谈二维材料-精致的、二维的完美晶体片,其厚度只有一个原子。在纳米尺度上,二维材料可以比硅更有效地传导电子。因此,寻找下一代晶体管材料的工作集中在二维材料上,作为硅的潜在继承者。但是在电子工业能够过渡到二维材料之前,科学家们必须首先找到一种方法,在工业标准的硅片上安放这些材料,同时保留其完美的结晶形式。而麻省理工学院的工程师现在可能有一个解决方案。该团队已经开发出一种方法,可以使芯片制造商通过在现有的硅和其他材料的晶圆上生长,用二维材料制造出更小的晶体管。这种新方法是一种"非外延式单晶生长"的形式,该团队首次使用这种方法在工业硅晶圆上生长出纯净的、无缺陷的完美二维材料。通过他们的方法,研究小组用一种叫做过渡金属二氯化物(TMDs)的二维材料制造了一个简单的功能晶体管,众所周知,这种材料在纳米尺度上的导电性能比硅更好。麻省理工学院机械工程系副教授JeehwanKim说:"我们预计我们的技术可以使基于二维半导体的高性能下一代电子设备得到发展。我们已经解开了一个使用二维材料追赶摩尔定律的方法。"Kim和他的同事在最近发表于《自然》杂志的一篇论文中详细介绍了他们的方法。这项研究的麻省理工学院合作者包括KiSeokKim、DoyoonLee、CelestaChang、SeunghwanSeo、HyunseokKim、JihoShin、SanghoLee、JunMinSuh和Bo-InPark,以及德克萨斯大学达拉斯分校、加州大学河滨分校、圣路易斯华盛顿大学和韩国各地机构的合作者。通过在涂有"掩膜"的晶圆上沉积原子(左上),麻省理工学院的工程师可以将原子聚集在掩膜的各个口袋里(中间),并鼓励原子生长成完美的二维单晶层(右下)。资料来源:JeehwanKim,KiSeokKim,et.晶体拼接为了生产二维材料,研究人员通常采用手工工艺,将原子厚度的薄片从块状材料中小心翼翼地剥离出来,就像剥去洋葱的一层。但是大多数块状材料是多晶体的,包含多个以随机方向生长的晶体。在一个晶体与另一个晶体相遇的地方,"晶界"就像一个电障。任何流经一个晶体的电子在遇到一个不同方向的晶体时突然停止,从而抑制了材料的导电性。即使在剥离二维薄片后,研究人员也必须在薄片上寻找"单晶"区域--这是一个繁琐而耗时的过程,很难在工业规模上应用。最近,研究人员发现了其他制造二维材料的方法,即在蓝宝石晶片上生长二维材料--一种具有六角形原子图案的材料,它推动二维材料以相同的单晶方向组装。"但在内存或逻辑行业中没有人使用蓝宝石,"Kim说。"所有的基础设施都是基于硅的。对于半导体加工,你需要使用硅晶圆。"然而,硅晶圆缺乏蓝宝石的六边形支撑支架。当研究人员试图在硅上生长二维材料时,其结果是晶体的随机拼凑,胡乱地合并,形成许多阻碍导电性的晶界。"人们认为在硅上生长单晶二维材料几乎是不可能的,"Kim说。"现在我们表明它可以,我们的诀窍是从源头防止形成晶界。"“种子袋”该团队新的"非外延式单晶生长"不需要剥离和搜索二维材料的薄片。相反,研究人员使用传统的气相沉积方法,将原子抽过硅片。原子最终在晶圆上"定居"并形成晶核,直接生长为二维晶体方向。如果不加处理,每个"核"或晶体的种子将在硅片上以随机的方向生长。但是Kim和他的同事们找到了一种方法,使每个生长中的晶体对齐,在整个硅片上形成单晶区域。为了做到这一点,他们首先在硅片上覆盖了一层"掩膜"-一层二氧化硅涂层,他们将其图案化为微小的口袋,每一个口袋都被设计用来捕获一个晶体种子。然后,他们在被遮蔽的硅片上流淌着原子的气体,这些原子沉淀在每个口袋里,形成一种二维材料--在这种情况下是一种过渡金属二氯化物。掩膜的口袋聚集了原子,并鼓励它们以相同的单晶方向在硅片上组装。"这是一个非常令人震惊的结果,"Kim说,"到处都有单晶生长,即使2D材料和硅片之间没有外延关系。"利用他们的遮蔽方法,该团队制造了一个简单的TMD晶体管,并显示其电气性能与相同材料的纯片一样好。他们还应用该方法设计了一个多层器件。在用图案化的掩模覆盖硅片后,他们生长出一种二维材料来填充每个方块的一半,然后在第一层上生长出第二种二维材料来填充其余方块。结果是在每个方块内形成了超薄的单晶双层结构,往后,多种二维材料可以通过这种方式生长并堆叠在一起,以制造超薄、灵活和多功能的薄膜。"直到现在,还没有办法在硅片上以单晶形式制造二维材料,因此整个社区几乎放弃了为下一代处理器追求二维材料,"Kim说。"现在我们已经完全解决了这个问题,有了制造小于几纳米的器件的方法。这将改变摩尔定律的范式"。...PC版:https://www.cnbeta.com.tw/articles/soft/1343087.htm手机版:https://m.cnbeta.com.tw/view/1343087.htm

封面图片

科学家实现钙钛矿单晶薄膜技术突破 晶体生长周期缩短至1.5天

科学家实现钙钛矿单晶薄膜技术突破晶体生长周期缩短至1.5天据介绍,金属卤化物钙钛矿是一类光电性质优异、可溶液制备的新型半导体材料,在太阳能电池、发光二极管和辐射探测器等领域有重要应用。目前,这些器件主要采用多晶薄膜为光活性材料,其表界面悬挂键、不饱和键等缺陷将显著降低器件性能和使用寿命。单晶薄膜材料本体不含有晶界等缺陷,是制备光电子器件的理想候选材料,但如何可控、低温合成该类材料仍是该领域所面临的主要挑战。官方资料显示,单晶材料生长涉及到成核、溶解、传质、反应等多个过程。对钙钛矿单晶而言,其生长过程中的控制步骤仍不明确。研究团队采用原位显微观测、胶体扩散吸光度测试、核磁共振扩散序谱等手段,定量化分析了钙钛矿前驱体溶液中的溶质扩散过程,同时结合分子动力学和数值仿真,证实了物质传递过程是钙钛矿单晶薄膜生长的决速步骤。随后,研究团队开发了以二甲氧基乙醇为代表的高通量单晶生长溶液体系,通过多官能团配位作用细化前驱体胶束尺寸,将前驱体体系的扩散系数由1.7×10-10m2s-1提高至5.4×10-10m2s-1,从而使得单晶薄膜的生长速率提高约3倍,制备环境温度普遍降低了30℃~60℃。例如,在70℃下,甲胺铅碘单晶薄膜的生长速度可达到8.0µmmin-1,在一个结晶周期内单晶薄膜尺寸可达2cm。研究团队进一步证实了该单晶薄膜生长技术的普适性,实现了30余种厘米级单晶薄膜的低温、快速、高通量生长方法。另外,该晶体生长技术可抑制单晶薄膜中的晶格缺陷形成,制备单晶薄膜的载流子迁移率高达160cm2V-1s-1、扩散长度超80µm,这些物理性质参数达到了目前商业化晶硅半导体材料水平。以制备的单晶薄膜为活性层的辐射探测器件,在零偏压模式下的灵敏度高达到1.74×105µCGy−1cm−2,并在英寸级像素阵列化器件中展示出优异的空间尺度上一致性,实现了自供电模式下大面积复杂物体的X射线成像。这项工作阐明了钙钛矿单晶薄膜的晶化机理,为新一代的高性能光电器件提供了丰富的材料库。据悉,相关成果发表于国际知名学术期刊《自然-通讯》。...PC版:https://www.cnbeta.com.tw/articles/soft/1426595.htm手机版:https://m.cnbeta.com.tw/view/1426595.htm

封面图片

麻省理工学院的研究人员实现在硅片上直接生长出晶体管

麻省理工学院的研究人员实现在硅片上直接生长出晶体管麻省理工学院的团队克服了这一挑战,创造了一种低温生长工艺,保留了芯片的完整性,使二维半导体晶体管可以直接集成在标准硅电路之上。新方法在整个8英寸晶圆上生长出一个光滑、高度均匀的层,而不像以前的方法,在将二维材料转移到芯片或晶圆之前,要在其他地方生长二维材料。这一过程经常导致不完美,对设备和芯片性能产生负面影响。此外,这项新技术可以在不到一个小时的时间里在8英寸晶圆上生长出一层均匀的TMD材料,与以前的方法相比,这是一个重大的改进,因为以前的方法需要一天以上的时间才能完成一个单层。这项技术的增强的速度和均匀性使它适合于商业应用,因为8英寸或更大的晶圆是必不可少的。研究人员专注于二硫化钼,一种灵活、透明的二维材料,具有强大的电子和光子特性,是半导体晶体管的理想选择。他们为金属有机化学气相沉积工艺设计了一种新炉子,它有独立的低温和高温区域。硅片被放置在低温区,同时气化的钼和硫前体流入炉内。钼保持在低温区,而硫前体在高温区分解,然后流回低温区,在硅片表面生长出二硫化钼。人工智能、汽车和高性能计算等新兴应用要求计算非常密集,而堆叠晶体管可能是一个挑战。这种新方法对行业有重大影响,能够快速、有效地将二维材料整合到工业制造中。未来的发展包括对该技术进行微调,以生长多层二维晶体管,并探索柔性表面的低温生长工艺,如聚合物、纺织品,甚至是纸张。...PC版:https://www.cnbeta.com.tw/articles/soft/1357631.htm手机版:https://m.cnbeta.com.tw/view/1357631.htm

封面图片

中国在二维高性能浮栅晶体管存储器方面取得重要进展

中国在二维高性能浮栅晶体管存储器方面取得重要进展中国华中科技大学的材料成形与模具技术全国重点实验室教授翟天佑团队,在二维高性能浮栅晶体管存储器方面取得重要进展,研制了一种具有边缘接触特征的新型二维浮栅晶体管器件,与现有商业闪存器件性能对比,其擦写速度、循环寿命等关键性能均有提升。新华社星期一(9月18日)报道上述消息。浮栅晶体管作为一种电荷存储器,是构成当前大容量固态存储器发展的核心元器件。然而,当前商业闪存内硅基浮栅存储器件所需的擦写时间约在10微秒至1毫秒范围内,远低于计算单元CPU纳秒级的数据处理速度,且其循环耐久性约为10万次,也难以满足频繁的数据交互。二维材料具有原子级厚度和无悬挂键表面,在器件集成时可有效避免窄沟道效应和界面态钉扎等问题,是实现高密度集成、高性能闪存器件的理想材料。不过,在此前的研究中,其数据擦写速度多异常缓慢,鲜有器件可同时实现高速和高循环耐久性。根据新华社,面对这一挑战,翟天佑团队研制了一种具有边缘接触特征的新型二维浮栅晶体管器件,通过对传统金属-半导体接触区域内二硫化钼进行相转变,使其由半导体相(2H)向金属相(1T)转变,使器件内金属-半导体接触类型由传统的3D/2D面接触过渡为具有原子级锐利界面的2D/2D型边缘接触,实现了擦写速度在10纳秒至100纳秒、循环耐久性超过300万次的高性能存储器件。报道引述翟天佑说:“通过对比传统面接触电极与新型边缘接触,该研究说明了优化制备二维浮栅存储器件内金属-半导体接触界面对改善其擦写速度、循环寿命等关键性能有重要作用。”

封面图片

科学家们终于解决了一个有关晶体形状的难题

科学家们终于解决了一个有关晶体形状的难题莱斯大学的研究小组能够成功地使用他们的多功能方程来预测两种不同晶体的形状:由二维硒化锡(一种有前途的热能和压电材料)形成的截断矩形和由亚硝酸银形成的不对称针形。这些预测后来通过实验得到了证实。是的,这看起来像作弊,但是就像魔术师通过缩小可能性来找到一副牌中的大牌一样,一点代数技巧对解决预测晶体形状的问题有很大帮助。莱斯大学的研究人员已经开发出一种方法来预测晶体如何从其内部化学成分中获得形状,即使晶体缺乏对称性。这个硝酸银晶体的代表有八条边,其中没有一条与其他边相匹配。莱斯大学团队的算法仍然能够预测其形状。刊登在《自然-计算科学》中描述的方法显示,使用他们所谓的辅助边缘能量可以使预测重新符合伍尔夫结构,这是一个使用了一个多世纪的几何配方,以确定晶体如何到达其最终平衡形状。材料物理学家BorisYakobson、主要作者和校友LuqingWang以及他们在莱斯大学GeorgeR.Brown工程学院的同事发表的这篇开放性论文介绍了一些算法,这些算法在方程中采用任意数字作为右手因素,并且仍然提供适当的独特形状解决方案。Yakobson说:"形状的问题是引人注目的,但研究人员多年来一直在尝试计算不对称晶体的表面能,但都失败了。但是我们知道,如果大自然能够通过几十亿个原子运动找到一个解决方案,那么也应该有一个方法让我们来确定它。"他说,近来对二维材料兴趣的上升促使了这项新的研究。"我们有一个'尤里卡'时刻。在将我们的几何思维转换为代数思维后,我们增加了包含任意参数的封闭方程,"Yakobson说。"这些看起来毫无用处,但我们把它全部通过计算机,观察到一个定义明确的形状出来,"他说。"困难的部分是说服我们的评审员,边缘能量确实是无法定义的,但仍然可以实现一个解决方案,"Wang说。这项工作可以为那些自下而上生长晶体用于催化、发光、传感、磁性和等离子体应用的研究人员提供一个有价值的工具,特别是当它们的形状和活性边缘特别重要的时候。研究人员指出,天然晶体享有地质学上的"奢侈时间",它们通过"无情地进行试错实验"的方式来达到它们的稳定形状,因为它们寻求平衡,即它们所有组成原子的最小能量。但是计算和理论方法根本无法同时处理数十亿个原子,所以他们一般都倾向于朝外的原子的能量,对于许多具有等效面或边缘的晶体来说,这很好用。在二维材料中,基本上所有的原子都是"朝外的"。当它们的边缘因对称性而相等时--例如在矩形中--在通过密度泛函理论计算边缘能量后,完成伍尔夫结构的搭建是很简单的。但是在没有对称性的情况下,当所有的边缘都不同时,计算出的平均能量是没有意义的,Yakobson说。"自然界有塑造晶体的答案,不管它对边缘能量'知道'或不知道什么,所以有一个答案。我们的挑战是用理论来模仿它。"Yakobson说,走向解决方案的第一步是有意识地放弃寻找不可知的绝对边缘能量,而是处理其明确定义的可计算组合。从几何学上讲,这是一个相当大的谜题,对于不对称的大块材料来说,是无可奈何的复杂。但是二维材料和它们的平面多边形使得解决这个问题比处理多面体更容易思考。寻找和建立平均能量只是第一步,接下来是"闭合方程",该方程的右侧使用了任意的潜在材料能量。即使后边的数字是故意不正确的,但将其全部应用于教科书上的伍尔夫结构,就能得到正确的晶体形状。该小组在几个二维晶体上测试了其理论,并将结果与观察到的晶体的最终形式进行了比较。他们的多功能方程成功地预测了由二维硒化锡形成的截断矩形的形状,这是一种有前途的热电和压电材料,以及由亚硝酸银形成的不对称针状物。...PC版:https://www.cnbeta.com.tw/articles/soft/1336497.htm手机版:https://m.cnbeta.com.tw/view/1336497.htm

封面图片

科学家们创造出能从热能中产生电能的晶体

科学家们创造出能从热能中产生电能的晶体这种新型合成材料由铜、锰、锗和硫组成,它的生产过程相当简单,法国卡昂CRISMAT实验室的CNRS研究员、材料科学家EmmanuelGuilmeau解释说,他是该研究的通讯作者。"这些粉末通过球磨进行简单的机械合金化,形成一个预结晶相,然后在600摄氏度下进行致密化。他说:"这个过程可以很容易地扩大生产规模。"热电材料可将热量转化为电能。这在工业过程中特别有用,因为在工业过程中,废热被重新利用为有价值的电力。相反的方法是冷却电子部件,例如在智能手机或汽车中。这类应用中使用的材料不仅要高效,而且要便宜,更重要的是要对健康安全。然而,迄今为止使用的热电设备使用了昂贵和有毒的元素,如铅和碲,它们提供了最佳的转换效率。但为了找到更安全的替代品,EmmanuelGuilmeau和他的团队已经转向天然铜基硫化物矿物的衍生物。这些矿物衍生物主要由无毒和丰富的元素组成,其中一些还具有热电特性。现在,该团队已经成功地生产出一系列的热电材料,在同一材料中显示出两种晶体结构。"我们对这个结果感到非常惊讶。通常情况下,稍微改变成分对这一类材料的结构没有什么影响,"EmmanuelGuilmeau在描述他们的发现时说。研究小组发现,用铜取代一小部分锰产生了复杂的微结构,具有相互连接的纳米域、缺陷和连贯的界面,这影响了材料的电子和热的传输特性。EmmanuelGuilmeau说,所生产的新型材料在400摄氏度(750华氏度)以下都很稳定,这个范围在大多数工业的废热温度范围内。他相信,在这一发现的基础上,可以设计出更便宜、无毒的新型热电材料来取代更多有问题的材料。...PC版:https://www.cnbeta.com.tw/articles/soft/1332391.htm手机版:https://m.cnbeta.com.tw/view/1332391.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人