纳米级变化揭示了提高固态电池性能的线索

纳米级变化揭示了提高固态电池性能的线索研究表明,与材料的其他部分相比,接口处的振动增加更多的阻碍了锂离子的移动。这些发现于4月27日发表在《自然-材料》上,可能会导致开发新的方法来改善固态电池的离子传导性。固态电池包含由固体材料制成的电解质,它有希望比使用易燃液体电解质的传统锂离子电池更安全、更持久、更高效。但是这些电池的一个主要问题是,锂离子的运动受到更多限制,特别是在电解质与电极接触的地方。"我们制造更好的固态电池的能力受到了阻碍,因为我们不知道在这两种固体之间的界面上到底发生了什么,这项工作为观察这类界面提供了一个新的显微镜。通过看到锂离子在做什么,了解它们如何在电池中移动,我们可以开始设计方法,让它们更有效地来回移动。"该研究的共同第一作者托德-帕斯卡尔说,他是纳米工程和化学工程教授,也是加州大学圣地亚哥雅各布斯工程学院可持续动力和能源中心的成员。在这项研究中,帕斯卡尔与他的长期合作者、加州大学伯克利分校化学教授MichaelZuerch合作,开发了一种直接探测界面上锂离子的技术。在过去的三年里,这两个小组一直致力于开发一种全新的光谱方法,用于探测埋藏的功能性界面,如电池中存在的界面。帕斯卡尔的实验室领导了理论工作,而祖尔奇的实验室领导了实验工作。他们开发的新技术结合了两种既定的方法。第一种是X射线吸附光谱学,它涉及到用X射线束击中一种材料以确定其原子结构。这种方法对于探测材料内部深处的锂离子很有用,但在界面上却没有。因此,研究人员使用了第二种方法,称为二次谐波生成,它可以专门识别界面上的原子。它涉及到用两个连续的高能粒子脉冲击中原子--在这种情况下,是特定能量的高强度X射线束,这样电子就能达到一个高能状态,称为双激发态。这种激发状态不会持续很久,这意味着电子最终会回到它们的基态,并释放出吸附的能量,随后作为信号被检测到。这里的关键是,只有某些原子,如界面上的原子可以进行这种双重激发。因此,从这些实验中检测到的信号将必然而且只提供关于在界面上发生的事情的信息,帕斯卡尔解释说。研究人员在一个模型固态电池上使用了这种技术,该电池由两种常用的电池材料组成:作为固体电解质的镧系钛酸锂和作为阴极的氧化钴锂。为了验证他们看到的信号确实来自于界面,研究人员根据帕斯卡尔研究小组开发的方法进行了一系列的计算机模拟。当研究人员比较实验和计算数据时,他们发现这些信号几乎完全匹配。研究报告的共同第一作者萨萨瓦-贾姆努奇说:"理论工作使我们能够填补空白,并使我们在实验中看到的信号更加清晰,但是该理论的一个更大的优势是我们可以用它来回答更多的问题。例如,为什么这些信号会以这样的方式出现?"他是帕斯卡尔研究小组的一名纳米工程博士生,最近通过了博士论文答辩。解开界面上的离子运动Jamnuch和Pascal将这项工作向前推进了一步。他们对固体电解质中的锂离子的动态进行建模,并发现了一些意想不到的东西。他们发现,高频振动发生在电解质界面,与材料其他部分的振动相比,这些振动进一步限制了锂离子的移动。"这是这项研究的主要发现之一,我们能够用理论来提取,"Jamnuch说。电池研究人员长期以来一直怀疑固体电解质和电极材料之间的不相容性限制了锂离子在界面的移动。现在,Jamnuch、帕斯卡尔及其同事表明,还有其他东西在起作用。帕斯卡尔说:"实际上,在这种材料的界面上,对离子运动有一些内在的阻力。锂离子通过的障碍不仅仅是两种固体材料在机械上相互不兼容的功能,它也是材料本身振动的功能。"他将离子运动的障碍描述为类似于一个球在一个墙壁也在移动的房间内弹跳时的经历。他说:"想象一下,一个房间的后面有一个球,而这个球正试图向前面移动,现在还可以想象,房间的两侧也在移动,来回移动,这导致球从一侧反弹到另一侧。总的能量是守恒的,所以如果球从侧面反弹得更多,那么它从后面到前面的运动就会更少。换句话说,两侧的运动速度越快,球花在反弹上的时间就越多,到前面的时间就越长。同样,在这些固态电池中,锂离子穿过材料的路径受到材料本身在界面上的振动频率比在体积上的振动频率高的影响。因此,即使电解质和电极材料之间有完美的兼容性,由于这些高频振动,锂扩散通过界面仍然会有阻力。"这一计算工作让研究人员为未来的固态电池设计奠定了基础。"一个想法是减缓固体电解质材料界面的振动,"Jamnuch说。"比如说,可以通过在界面上掺入重元素来做到这一点。现在我们对锂离子如何通过这个系统有了更多的了解,我们可以合理地设计新的系统,使离子更容易通过,我们发现了可以转动的新旋钮,优化这些系统的新方法。"...PC版:https://www.cnbeta.com.tw/articles/soft/1358301.htm手机版:https://m.cnbeta.com.tw/view/1358301.htm

相关推荐

封面图片

近日,不少投资者在互动平台向上市公司提问固态电池相关产业布局情况。“随着固态电池材料体系的优化升级,固态电池产业链还是存在潜在的

近日,不少投资者在互动平台向上市公司提问固态电池相关产业布局情况。“随着固态电池材料体系的优化升级,固态电池产业链还是存在潜在的机会。”有受访电池企业人士表示,在下游需求的带动下,固态电池有望成为液态锂离子电池体系的补充。不过,目前,全固态电池仍面临着大规模量产及商业化的难题。中国科学院院士孙世刚在2024年百人会论坛上表示,全固态电池面临的挑战主要是来自如何进一步提升固态电解质的离子电导率、与锂金属和高比能电极材料的匹配性,和构筑相对稳定的固固界面。已经发展的各种提升固态电解质性能的策略取得重要进展,但还需要加大力度推进固态电池产业化发展。(证券时报)

封面图片

研究人员巧妙的调整使固态电池的充电速度提高一倍

研究人员巧妙的调整使固态电池的充电速度提高一倍ORNL的研究人员开发了一种新的压制方法,如右图蓝圈所示,与传统加工的材料相比,它能产生更均匀的固体电解质,如左图灰圈所示。这种材料可以被整合到电池系统中,中间的位置,以提高稳定性和速率性能。资料来源:AndySproles/ORNL,U.S.Dept.ofEnergy这些电池使用固体电解质而不是潜在的易燃液体。当电池充电或运行时,离子通过电极之间的电解质在电极之间移动。一种压制固体电解质的新方法实际上消除了阻碍离子流动的微小气穴,因此电池的充电速度提高了一倍。ORNL的首席研究员MarmDixit说,这种方法涉及在将电解质摊开后加热压力机,然后让电解质在压力下冷却。由此产生的材料的导电性能几乎提高了1000倍。Dixit说:"这是同样的材料,只是改变了制造它的方式,同时在许多方面改善了电池的性能。"这些结果证明了在工业规模上处理固体电解质的途径,同时为更可靠的电池提供了对其内部结构的前所未有的控制。...PC版:https://www.cnbeta.com.tw/articles/soft/1368503.htm手机版:https://m.cnbeta.com.tw/view/1368503.htm

封面图片

新型锂金属氯化物固态电解质设计可为电池行业带来变革

新型锂金属氯化物固态电解质设计可为电池行业带来变革固态电解质的必要性目前的商用电池亟需解决的一个问题是对液态电解质的依赖,而液态电解质存在易燃和爆炸的风险。因此,开发不可燃的固体电解质对于推动固态电池技术的发展至关重要。在全球向可持续交通转变的过程中,全世界都在加紧管制内燃机汽车并扩大电动汽车的使用,因此,对二次电池核心部件,尤其是固态电池的研究取得了显著的进展。金属离子(本例中为钇)在各层中的排列会影响离子导电性。为确保锂离子畅通无阻地移动,每层中占据可用位置的金属离子数量应少于0.444。此外,要在每一层中为锂离子创造足够宽的通道,金属离子的占有率应大于0.167。因此,每层内金属离子的占有率应介于0.167和0.444之间,这样才能形成具有高离子电导率的导电层。资料来源:基础科学研究所要使固态电池在日常使用中切实可行,关键是要开发出具有高离子导电性、强大的化学和电化学稳定性以及机械灵活性的材料。虽然之前的研究成功地开发出了具有高离子电导率的硫化物和氧化物基固体电解质,但这些材料都不能完全满足所有这些基本要求。氯化物基固体电解质的研究进展过去,科学家们也曾对氯化物基固体电解质进行过探索。氯化物基固体电解质以其卓越的离子导电性、机械柔韧性和高电压稳定性而著称。这些特性使一些人推测氯化物电池最有可能成为固态电池。然而,这些希望很快就破灭了,因为氯化物电池严重依赖昂贵的稀土金属(包括钇、钪和镧系元素)作为辅助成分,因此被认为是不切实际的。为了解决这些问题,IBS研究小组研究了金属离子在氯化物电解质中的分布。他们认为,三元氯化物电解质之所以能达到较低的离子电导率,是基于结构中金属离子排列的变化。他们首先在氯化锂钇(一种常见的氯化锂金属化合物)上测试了这一理论。当金属离子位于锂离子通路附近时,静电力会阻碍锂离子的移动。相反,如果金属离子的占有率过低,锂离子的移动路径就会变得过于狭窄,从而阻碍锂离子的移动。基于这些见解,研究小组引入了设计电解质的策略,以缓解这些相互冲突的因素,最终成功开发出一种具有高离子电导率的固体电解质。研究小组还进一步成功地展示了这一策略,创造出一种基于锆的锂金属氯化物固态电池,其成本远远低于采用稀土金属的变体。这是首次证明金属离子排列对材料离子导电性的重要影响。金属离子分布的影响这项研究揭示了金属离子分布在氯基固体电解质离子电导率中经常被忽视的作用。预计IBS中心的研究将为各种氯基固体电解质的开发铺平道路,并进一步推动固态电池的商业化,有望提高能源存储的经济性和安全性。通讯作者KangKisuk说:"这种新发现的氯化物基固体电解质有望突破传统硫化物和氧化物基固体电解质的限制,使我们离固态电池的广泛应用更近了一步。"...PC版:https://www.cnbeta.com.tw/articles/soft/1394587.htm手机版:https://m.cnbeta.com.tw/view/1394587.htm

封面图片

人工固态电解质层(ASEI)的发明有望在未来全面提高电池的功能和寿命

人工固态电解质层(ASEI)的发明有望在未来全面提高电池的功能和寿命金属锂因其能量密度优于其他材料而被选为电池阳极,这是一个明智的选择。然而,电极与电解液之间的界面存在挑战,这为在未来应用中实现更安全、更高效的性能提供了改进机会。金属锂阳极的挑战和解决方案清华大学的研究人员一开始热衷于用金属锂阳极取代石墨阳极,以构建能量密度更高的电池系统。然而,锂金属并不稳定,很容易与电解质发生反应,形成固体-电解质相(SEI)。遗憾的是,天然的SEI既脆又易碎,因此寿命和性能都很差。在此,研究人员研究了一种天然SEI的替代品,它可以有效缓解电池系统内的副反应。答案就是ASEI:人工固态电解质相。ASEI纠正了困扰裸锂金属阳极的一些问题,使其成为更安全、更可靠、甚至更强大的电源,可更放心地用于电动汽车和其他类似应用。研究成果的发表和意义9月25日,研究人员在《能源材料与器件》(EnergyMaterialsandDevices)杂志上发表了他们的研究成果。电池技术正在彻底改变我们的生活方式,与每个人的生活息息相关。为了实现真正的无碳经济,需要性能更好的电池来取代目前的锂离子电池。每个楔形层由不同的电极-电解质界面结构组成,有助于对锂金属电极进行实用的全面设计。资料来源:王艳艳,阿德莱德大学锂金属电池(LMB)就是这样一种候选电池。然而,阳极(金属锂)与电解质具有反应性,在电池运行过程中会在金属锂表面形成钝化层,即固体-电解质间相。锂金属阳极的另一个问题是电池充电时出现的所谓"枝晶生长"。枝晶看起来像树枝结构,会造成电池内部损坏,刺穿隔膜导致短路、性能不佳和潜在的安全隐患。这些弱点降低了锂金属电池板的实用性,并提出了一些必须解决的挑战。改进锂金属阳极的策略上文介绍了一些可用于制造更有效、更安全的锂金属阳极的策略。研究人员发现,要改进锂金属阳极,必须使锂离子分布均匀,这有助于减少电池负电荷区域的沉积物。这反过来又会减少枝晶的形成,从而防止过早衰变和短路。此外,在确保各层电绝缘的同时,为锂离子扩散提供更便捷的途径,有助于在电池循环过程中保持结构的物理和化学完整性。最重要的是,减少电极与电解液界面之间的应变可确保各层之间的适当连接,而这正是电池功能的重要组成部分。ASEI层的潜力和未来方向看来最有潜力的策略是聚合物ASEI层和无机-有机混合ASEI层。聚合物层在设计上有足够的可调节性,强度和弹性都很容易调节。聚合物层还具有与电解质相似的官能团,因此具有极高的兼容性;而这种兼容性正是其他元件所缺乏的主要方面之一。无机-有机混合层的最大优点是减少了层厚度,明显改善了层内成分的分布,从而提高了电池的整体性能。ASEI层的前景是光明的,但也需要一些改进。研究人员主要希望改善ASEI层在金属表面的附着力,从而全面提高电池的功能和寿命。需要注意的其他方面还有:层内结构和化学成分的稳定性,以及尽量减小层的厚度以提高金属电极的能量密度。一旦这些问题得到解决,改进型锂金属电池的前路就会一片光明。了解更多:https://doi.org/10.26599/EMD.2023.9370005...PC版:https://www.cnbeta.com.tw/articles/soft/1397963.htm手机版:https://m.cnbeta.com.tw/view/1397963.htm

封面图片

新论文回顾力学因素如何改变固态电池的循环过程

新论文回顾力学因素如何改变固态电池的循环过程该图像概念化了固态锂电池玻璃离子导体的加工、结构和机械行为。图片来源:AdamMalin/ORNL,美国能源部"我们的目标是强调力学在电池性能中的重要性,"ORNL多物理场建模与流动小组的科学家SergiyKalnaus说。"很多研究都侧重于化学或电学特性,却忽略了显示潜在的力学特性。"该团队横跨ORNL的多个研究领域,包括计算、化学和材料科学。他们从不同的科学视角出发,对影响SSB的各种条件进行了综合研究,从而描绘出一幅更具凝聚力的图景。Kalnaus说:"我们正在努力弥合学科之间的鸿沟。"固体电解质:更安全、更坚固的替代品在电池中,带电粒子流经称为电解质的材料。大多数电解质都是液体,如电动汽车中的锂离子电池,但固体电解质也正在开发中。这些导体通常由玻璃或陶瓷制成,具有更高的安全性和强度等优点。Kalnaus说:"真正的固态电池内部没有易燃液体。这意味着它们的危险性低于目前常用的电池。"然而,由于这些新型材料所面临的挑战,固态电解质仍处于早期开发阶段。固态电池组件在充电和质量传输过程中会膨胀和收缩,从而改变系统。电极在电池运行过程中不断变形,在与固体电解质的界面处产生分层和空隙。"在当今的系统中,最好的解决办法是施加大量压力,使所有东西保持在一起。这些尺寸变化会损坏固体电解质,因为固体电解质是由脆性材料制成的。它们经常在应变和压力作用下破裂。如果能使这些材料更具延展性,它们就能通过流动而不是开裂来承受压力。通过一些在陶瓷电解质中引入小晶体缺陷的技术,可以实现这种行为。工程阳极和固体电解质电子通过阳极离开系统。在固态电池中,阳极可由能量密度最高的纯锂金属制成。虽然这种材料在电池功率方面具有优势,但它也会产生压力,从而损坏电解质。"在充电过程中,不均匀的电镀和应力消除机制的缺失会造成应力集中。这些应力集中会产生很大的压力,导致锂金属流动,"ORNL的机械性能和力学小组组长ErikHerbert说。"为了优化固态电解质分离器的性能和寿命,我们需要设计下一代阳极和固态电解质,使其能够在固态电解质分离器不断裂的情况下保持界面的机械稳定性。"该团队的工作是ORNL长期研究SSB材料历史的一部分。20世纪90年代初,该实验室开发出一种被称为氧化磷锂(或LiPON)的玻璃电解质。锂磷氧化物已被广泛用作薄膜电池的电解质,这种电池具有金属锂阳极。这种元件可以承受多次充放电循环而不发生故障,这主要归功于LiPON的延展性。当遇到机械应力时,它会流动而不是开裂。"近年来,我们了解到LiPON具有强大的机械性能,可以补充其化学和电化学耐久性,"领导该材料开发团队的ORNL科学家NancyDudney说。该团队的努力凸显了SSB研究不足的一个方面--了解影响SSB寿命和功效的因素。"Kalnaus说:"科学界需要一个路线图。在我们的论文中,我们概述了固态电解质的材料力学,鼓励科学家在设计新型电池时考虑这些因素。"参考文献"固态电池:力学的关键作用",作者:SergiyKalnaus、NancyJ.Dudney、AndrewS.Westover、ErikHerbert和SteveHackney,2023年9月22日,《科学》。DOI:10.1126/science.abg5998编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403615.htm手机版:https://m.cnbeta.com.tw/view/1403615.htm

封面图片

固态电池,小心被“玩”坏

固态电池,小心被“玩”坏来源/镜观台拍摄海外市场方面,丰田计划2027年实现全固态电池装车;韩国SKOn正在开发高分子氧化物复合和硫化物两种固态电池,目标是到2026年生产出原型产品,2028年实现商业化;三星SDI正在开发一种没有负极的固态电池,预计将于2027年量产。固态电池的消息满天飞,动力电池的霸主宁德时代也不得不出来发声。宁德时代首席科学家吴凯表示,全固态电池的成熟度指标,若用1-9数字表示,宁德时代目前的成熟度在4的水平,目标到2027年到7-8的水平。简言之,宁德时代的固态电池离量产还尚早。在全固态电池研发方面已有十多年的积累,且有近千人研发团队的宁德时代尚且如此,近一两年量产,甚至宣称已经搭载上车的固态电池,其成色问题就值得商榷了。固态电池虽好,经不起“恶搞”新能源汽车行业发展离不开动力电池,目前的动力电池无论是三元锂电池还是磷酸铁锂,虽然在整车安全、续航里程等方面还在进步,但一定程度上在技术上已经很难有大的突破了。随着锂离子电池成本优化接近极限,新能源汽车产业正迫切寻求技术革新以突破现有瓶颈。固态电池作为下一代电池技术的明星产品,凭借其在安全、能量密度及循环寿命方面的显著优势,被视为推动电动汽车发展的新引擎。所谓固态电池,顾名思义,是和液态电池相对应的,是一种使用固态电极和固态电解质的电池。目前市面上主要的锂离子电池内置是含有液态电解质的。传统液态电池由正极、负极、电解液、隔膜四大部分组成。固态电池用固态电解质替换传统液态电解液和隔膜。固态电池的核心特征就在于使用固态电解质,这也是实现固态电池高能量密度、高循环稳定性、高安全性的关键。其工作机理与传统锂电池一致,依靠锂离子在正极和负极之间往返移动,进行化学能和电能之间的转换与储存。根据液态电解质的含量逐步下降,固态电池发展路径可分为:半固态电池、准固态电池和全固态电池。这也就给了一些车企在宣传上提供了“便利”,第一家、第一款、第一代的修饰语层出不穷。腾势汽车总经理兼首席共创官赵长江也忍不住在微博吐槽“就是在玩文字游戏”。中科院院士、清华大学教授欧阳明高也认为,中国在全固态电池领域的研发,目前来看认识还不统一。显然,过度炒作对固态电池的发展极为不利。事实上,作为全固态电池的过渡方案,半固态电池在性能上已大幅提升,安全性较好、能量密度较高、循环寿命更长、工作温度范围更宽、耐挤压、耐震动等。但从制造工艺来说,半固态电池基本可沿用现有液态电池的制造工艺,生产难度远远小于全固态。液态变固态,换“汤”也换“药”但液态电池要直接升级为固态电池,就需要“改头换面”了。如果把动力电池比作汤药,那电解质可以说是“汤”,正负电极和隔膜可说成是“药”。从液态电池到固态电池,不光是把“汤”换了,液态电解质变成固态,“药”也逐步换了。基于目前固态电池的发展历程,还可以将固态电池的发展分为三个阶段:第一阶段:将传统的电解液换成固态电解质,正负极和传统用的是一样,均采用负极石墨和正极三元锂或磷酸铁锂;第二阶段:更换负极材料,取消掉负极的石墨或硅,使用金属锂来提升能量密度;正极不变,采用磷酸铁锂或者三元材料。第三阶段:正负极都换,负极用金属锂,正极就可以换成不含锂的高能量的材料。如此来看,第一阶段换的就是“汤”,第二三阶段就是把“药”也换掉了。换“汤”比较好理解,固体电解质相对于电解液,电化学范围更广(电压更广),电解质不参与化学反应,让锂离子通过。因此,可以选择容量更大的正极材料,或者选择电压差更大的正负极材料,从而提高能量密度。那为什么要把作为“药”的正负极也更新换代呢?按照目前提高电池能量密度的手段,在正极端不断地提高镍的含量虽然可以提升电池能量密度,但是高镍电池对电池的稳定性要求具备更高的电池管理基础。因此,三元锂短期内要突破一个量级还是有一定的挑战。未来,可能也只有固态电池会将电池能量密度提升一个量级。太蓝新能源就在近日宣布成功制备出世界首块车规级单体容量120Ah,实测能量密度达到720Wh/kg的超高能量密度体型化全固态锂金属电池。作为对比,目前磷酸铁锂电池的能量密度为160-180wh/kg左右,三元锂在150-250Wh/kg之间。另外,固态电池凭借自身较高的机械强度在运用的过程中可以抑制电池循环使用之中的锂枝晶的刺穿,使锂金属负极的应用不再是梦想。把电极换为金属锂,其比容高,电压大,避免了液态电池用金属锂作负极会因多次充放电粉化、枝晶生长,导致循环性差,甚至枝晶刺穿薄膜,引起短路的风险。固态想上位,至少还需20年?这些显然就是固态电池大受欢迎的原因所在。高安全性一定是固态电池的首要优势。根据有关数据,新能源汽车起火事故原因中,电池自燃占比31%。相较之下,固态电解质不可燃、耐高温、无腐蚀、不挥发、不漏液,同时具有一定机械强度,安全性更好;半固态电解质中液体占比也小于10%,可燃性大大降低。五一假期发生的多起新能源车燃烧事件,更让消费者期待固态电池的到来。同时,固态电池拥有更高能量密度和较小体积。固态电池电化学窗口宽,能承受更高电压(5V以上),材料选择范围广。因此,可通过采用高比容量的正极、负极材料,使能量密度达到500Wh/kg甚至更高,远超液态350Wh/kg理论极限。而固态电解质取代隔膜和电解液,正负极之间的距离可以缩短到只有几到十几个微米,从而大幅降低电池厚度。因此,同样电量情况下,固态电池体积更小。另外,固态电池还具备宽温区运行的优势。电动车在冬季续航里程之所以下滑明显,主要在于液态电解质在冬季低温环境下流动性下降。而固态电解质可以在-30℃至100℃的更广泛温度范围内稳定工作。当然,固态电池也并非完美无缺,目前来看还是有很多缺点存在的。比如:与液态电解质相比,固态电解质与电极材料之间的接触面积较小,导致离子传输速度较慢,影响了电池的充电和放电效率;界面电阻太大,使得快充过程中的能量损耗增加,快充效率受限;固态电池的充放电循环次数有限,循环寿命较短;生产技术尚不成熟,工艺复杂,生产效率低,导致其成本远高于液态电池。这些显然都是固态电池全面商业化必须面对的挑战。欧阳明高就表示,全固态电池是公认的下一代电池的首选方案之一,也是下一代电池技术竞争的关键制高点,但是也要注意防范激进技术路线带来的颠覆性风险。“液态电池的应用周期至少还有20年。固态电池要想替代液态锂离子电池50%的市场份额,至少需要20至30年。”欧阳明高如是说。...PC版:https://www.cnbeta.com.tw/articles/soft/1430090.htm手机版:https://m.cnbeta.com.tw/view/1430090.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人