“永生”干细胞培养肉问世:有望实现人造肉无限量供应

“永生”干细胞培养肉问世:有望实现人造肉无限量供应专家分析,这一研究成果将会不仅可以提供更多的肉类产品,还意味着研究人员将无需从农场动物活检中重复获取细胞。据了解,大多数细胞,随着它们的分裂和衰老,开始丢失染色体末端的DNA(端粒),端粒就像旧绳索一样会因使用而磨损,出现复制错误或基因丢失,最终导致细胞死亡。研究团队对牛干细胞进行了工程改造,使其不断重建端粒,有效地保持染色体“年轻”,并为新一轮的复制和细胞分裂作好准备。使细胞永生化的第二步是让它们不断产生一种蛋白质,刺激细胞分裂的关键阶段,有效加速该过程并帮助细胞更快地生长。当然,肌肉干细胞不是人们吃的最终产品。它们还要分化成成熟的肌肉细胞,就像人们在牛排或鱼片中吃的肌肉细胞一样。团队发现,新的干细胞分化后,有可能成熟到足以复制天然肉的味道和质地。...PC版:https://www.cnbeta.com.tw/articles/soft/1359709.htm手机版:https://m.cnbeta.com.tw/view/1359709.htm

相关推荐

封面图片

科学家用永生干细胞培育人造肉 未来可能实现无限量供应

科学家用永生干细胞培育人造肉未来可能实现无限量供应分化的永生化牛干细胞完全表达肌肉蛋白(蓝色=细胞核;品红色=肌原蛋白;绿色=肌球蛋白)。比例尺约1毫米。来源:塔夫茨大学AndrewStout《ACS合成生物学》杂志介绍了这一进展,这意味着全球的研究人员和公司可以获得和开发新产品,而不必反复从农场动物活组织中获取细胞。细胞培养肉的生产需要生长和分裂能力极强的肌肉和脂肪细胞。虽然细胞培殖肉已引起媒体关注,例如美国食品及药物管理局初步批准培殖鸡肉,甚至用乳齿象DNA培殖的汉堡,但这些产品仍然昂贵且难以扩大规模。从活体动物身上提取的正常肌肉干细胞通常只能分裂约50次,然后就开始"老化",不再具有活力。虽然理论上这些干细胞可以生产大量肉类,但TUCCA团队开发的永生化细胞具有几个优势。其一是可以生产更多的肉。另一个优势是,通过广泛提供永生化细胞,他们将降低其他研究人员探索细胞农业的准入门槛--找到降低成本和克服扩大生产挑战的方法。TUCCA的研究生、该项目的首席研究员安德鲁-斯托特(AndrewStout)说:"通常情况下,研究人员不得不自己从动物身上分离干细胞,这既昂贵又费力,或者使用相关性较低物种的模型细胞系,如小鼠肌肉细胞。"将普通牛肌肉干细胞转化为永生牛肌肉干细胞有两个关键步骤。大多数细胞在分裂和衰老过程中,染色体末端的DNA开始脱落,这些DNA被称为端粒。这可能导致DNA复制或修复时出现错误。它还会导致基因丢失,最终导致细胞死亡。研究人员设计的牛干细胞可以不断重建端粒,有效保持染色体"年轻",为新一轮复制和细胞分裂做好准备。使细胞永生的第二步是使它们持续产生一种蛋白质,刺激细胞分裂的关键阶段。这有效地加速了细胞分裂过程,帮助细胞更快生长。肌肉干细胞不是人们想吃的最终产品。它们不仅要分裂和生长,还要分化成成熟的肌肉细胞,就像或至少非常类似于我们在牛排或鱼排中食用的肌肉细胞。斯托特和他的研究小组发现,新干细胞确实分化成成熟的肌肉细胞,尽管与动物肌肉细胞或来自传统牛干细胞的肌肉细胞并不完全相同。斯托特说:"它们有可能成熟到足以复制天然肉类的风味和质地。它们正在以非常快的速度翻倍,因此它们可能只需要多一点时间就能达到完全成熟。"塔夫茨大学斯特恩家族生物医学工程教授兼TUCCA主任DavidKaplan说:"虽然有些人可能会质疑摄入永生细胞是否安全,但事实上,当细胞被收获、储存、烹饪和消化后,就没有继续生长的可行途径了。就像我们今天吃的天然肉类一样,细胞只是变成了惰性物质,我们希望它味道鲜美并能提供多种营养。"...PC版:https://www.cnbeta.com.tw/articles/soft/1370613.htm手机版:https://m.cnbeta.com.tw/view/1370613.htm

封面图片

扭转衰老的新潜力:科学家发现老化干细胞的变化

扭转衰老的新潜力:科学家发现老化干细胞的变化在一项激动人心的突破中,香港科技大学(HKUST)生命科学副教授TomCheung领导的研究小组已经开发出一种方法,可以根据染色质特征识别老化的肌肉干细胞(MuSCs)。肌肉干细胞在肌肉修复中发挥着重要作用。与年轻的同类相比,老化的MuSCs的干性(成为新的干细胞或转变成专门的细胞以取代受损组织的能力)有所下降。如果老化细胞的染色质特征能够恢复到年轻细胞的染色质特征,那么细胞老化的过程--在这个例子中,骨骼肌组织的老化--可能会被减缓甚至逆转。这些发现最近发表在《iScience》杂志上。Cheung教授说:"染色质可及性的调节对细胞命运的决定至关重要。染色质状态的变化可以导致基因表达的失调。在我们的研究中,我们能够确定长期激活的染色质状态是干细胞衰老的标志,这可能是开发抗衰老策略的目标。"染色质是一种包裹着组蛋白的DNA复合物,以保持DNA的正确结构,它的结构会随着外在环境的变化而发生快速变化。作为他们之前研究的延续,该团队预先固定了小鼠的肌肉干细胞,以获得静止细胞(将激活修复受伤肌肉的休眠细胞),并获得其基因和染色质特征,然后他们比较了染色质随时间的可及性。"研究表明,年轻肌肉干细胞的染色质环境在静止期非常紧凑,在早期激活时变得高度可及,并在长期再生后逐渐重新建立紧凑状态。然而,老年肌肉干细胞在静止期失去了维持这种紧凑染色质环境的能力。现在,科学家们已经对发生在衰老细胞上的事情有了更好的了解,许多可能性正等待着被发掘出来,为进一步的抗衰老战略开辟了各种途径。"我们已经解决了衰老之谜吗?是的,但不完全是,"张教授指出。"如果我们能找到在老化干细胞中下调的染色质修饰调节器,这些将成为潜在的目标,通过恢复它们的表达来防止老化。由于我们能够对年轻和老年肌肉干细胞的染色质状态进行明确的比较,我们还确定了年轻肌肉干细胞中特别容易接触到的目标位置。如果这些区域的可及性能够在衰老过程中得到维持,我们也许能够找到让细胞保持年轻和健康更久的方法。"Cheung教授说:"我们目前的研究描述了干细胞分离和激活期间染色质可及性的变化,但旅程才刚刚开始期待着进一步研究肌肉干细胞分离和激活过程中改变染色质状态的机制,重要的是我们在体内进行同样的研究,以获得更多的见解。"...PC版:https://www.cnbeta.com.tw/articles/soft/1334727.htm手机版:https://m.cnbeta.com.tw/view/1334727.htm

封面图片

科学家首次从同一个人身上制造出男性和女性干细胞

科学家首次从同一个人身上制造出男性和女性干细胞在医学史的大部分时间里,男性身体是调查疾病、生物学和药物反应的默认对象。如果不是因为明显的生殖差异,那么研究结果多半同样适用于男性和女性,即使只对男性进行了测试。但是近几十年来,越来越多的研究发现,这种差异比我们预期的要广泛得多。这可以表现为不同的倾向性--例如,一般来说,女性患阿尔茨海默氏症的风险更高,而男性更容易患癌症。或者从疾病的严重程度上看,男性更有可能患严重的急性COVID-19,而女性更有可能得Long-COVID,甚至像运动的最佳时间或对婴儿气味的反应在性别之间也有差异。认识到存在差异是一回事,但研究它们完全是另一回事。即使有大量的样本组,要识别因性别而非自然遗传变异或其他因素而产生的差异也很棘手。理想情况下,测试将在除性染色体外基因完全相同的一对男女中进行,但这甚至在双胞胎中也不会发生。一项新的突破可能最终为调查性别差异提供一个适当的平台。以色列哈达萨医疗组织的研究人员现在已经成功地创造出除性染色体外基因相同的男性和女性细胞。这一进展是由一名患有克里内费尔特综合症的男子提供的,这种遗传病使患者拥有一个额外的X染色体。因此,他的血液中含有少量带有XY染色体的男性细胞和女性XX细胞的亚群。科学家们提取了这些血细胞,并利用它们来创造诱导多能干细胞(iPSCs),包括男性和女性细胞的混合。这些iPSCs能够分化成几乎任何其他人类细胞,因此可以同时对基因相同的男性和女性细胞进行实验。这项研究的首席研究员BenjaminReubinoff博士说:"这是性别医学领域的一个突破。我们开发的独特干细胞系统将导致对性别差异的新发现,可以帮助比较药物的疗效和毒性,并有助于开发出适应男性和女性的更好的药物。"该研究发表在《干细胞报告》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1336087.htm手机版:https://m.cnbeta.com.tw/view/1336087.htm

封面图片

胃干细胞有望成为治疗糖尿病的手段

胃干细胞有望成为治疗糖尿病的手段人类胃部分泌胰岛素的器官在分子和功能上与胰岛相似。红色:c-肽,是促胰岛素的副产品。绿色:胰高血糖素(通常由胰腺的α细胞产生)和体肽和胃泌素(通常由胃细胞产生)。蓝色:DAPI,标记细胞核。图片由黄晓峰提供。尽管1型糖尿病的确切原因尚不清楚,但人们认为它是由一种自身免疫反应引起的,即身体攻击并破坏了胰腺的β细胞,即产生胰岛素的细胞。多年来,研究人员一直在研究如何通过使用干细胞来创造产生胰岛素的细胞来取代被免疫系统破坏的细胞来"治愈"糖尿病。人类肠道中的干细胞,即胃干细胞每隔五至七天就会完成再生我们肠道内壁的非凡壮举。它们还分化成肠道特定组织,包括分泌激素的肠道内分泌细胞(EECs)。能够产生分泌激素胰岛素的EECs,对于那些β细胞已经停止产生或没有产生足够的胰岛素的1型糖尿病患者来说,具有很大的治疗价值。现在,威尔康奈尔医学院的研究人员已经实现了这一目标,将人类胃干细胞转化为分泌胰岛素的细胞,这些细胞对血糖水平的反应与健康的胰腺β细胞一样。该研究的通讯作者JoeZhou说:"胃会制造自己的激素分泌细胞,而胃细胞和胰腺细胞在胚胎发育阶段是相邻的,所以从这个意义上说,胃干细胞能够如此轻易地转化为类似β细胞的胰岛素分泌细胞,并不完全令人惊讶。"这是Zhou15年多来一直努力实现的目标。通过早期的实验,他发现他可以通过强制激活三个转录因子(控制基因表达的蛋白质),将小鼠的普通胰腺细胞转化为分泌胰岛素的β细胞。2016年,再次使用小鼠,他和他的研究团队发现,胃干细胞也对这种三因子激活方法高度敏感。在目前的研究中,研究人员通过一种简单的非手术程序,即内窥镜检查,将一根带有摄像头的细软管(内窥镜)通过口腔插入胃部,取出胃干细胞。内窥镜上安装了一个工具,使操作者能够提取组织样本。在将胃干细胞转化为被称为胃胰岛素分泌细胞(GINS)的β样细胞后。研究人员将它们培育成被称为器官的小集群,他们发现,这些细胞在10天内对葡萄糖变得敏感,并通过分泌胰岛素做出反应。当GINS被移植到糖尿病小鼠体内时,它们的行为很像真正的胰腺β细胞,通过分泌胰岛素对血糖的上升作出反应,以保持血糖水平的稳定。移植的细胞在研究人员监测的6个月时间里继续产生胰岛素。他们说,这表明它们的稳健性。这是一项概念验证研究,为开发基于患者自身细胞的1型糖尿病和严重2型糖尿病的治疗方法奠定了基础。2021年,全世界估计有840万1型糖尿病患者。到2040年,这一数字预计将上升到1350万至1740万之间。目前,1型糖尿病患者用胰岛素治疗他们的病情,手动注射或使用可穿戴的胰岛素泵连续注射。一些晚期2型糖尿病患者需要服用胰岛素来补充他们身体的不足水平。研究人员说,移植由患者干细胞产生的胰岛素分泌细胞是改善β细胞功能的一种更自然的方式,并将减少移植排斥问题。研究人员将在推进临床试验之前优化他们的方法,包括增加用于人类移植的β样细胞生产规模。重要的是,他们正在努力修改这些细胞,使它们不那么容易受到免疫系统的攻击,这种攻击会破坏1型糖尿病患者的β细胞。该研究发表在《自然-细胞生物学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1361847.htm手机版:https://m.cnbeta.com.tw/view/1361847.htm

封面图片

仿和牛的3D打印肉 动物干细胞“养成”,你会吃么?

仿和牛的3D打印肉动物干细胞“养成”,你会吃么?3D打印肉已经能吃到了?还是动物干细胞“养成”的那种。据央视财经最新消息,以色列一家初创公司正将3D打印肉产品投入商业领域。不同于我们常见的“植物肉”,这种产品是通过提取动物干细胞培养出来的,肥瘦纹理均可定制。PC版:https://www.cnbeta.com/articles/soft/1327683.htm手机版:https://m.cnbeta.com/view/1327683.htm

封面图片

研究人员首次发现癌细胞抵抗化疗的机制

研究人员首次发现癌细胞抵抗化疗的机制研究人员首次观察到癌细胞如何通过破坏微管(绿色)来抵抗旨在阻止细胞分裂的化疗。但癌细胞非常狡猾,它们已经开发出了确保治疗并非总是有效的方法。现在,新南威尔士大学悉尼分校的研究人员首次观察到了癌细胞抵抗化疗效果的一种机制。该研究的通讯作者彼得-冈宁(PeterGunning)说:"抗微管化疗通常会将机械臂分解成多个枢纽,将染色体拉向多个方向,而不是正常的两个方向。由此产生的混乱阻碍了染色体向两个子细胞的正常分离,并诱导细胞凋亡或程序性细胞死亡"。研究人员发现,癌细胞利用一种巧妙的技术继续分裂,从而避免了化疗的影响。冈宁说:"我们发现,癌细胞利用细胞边缘(称为细胞皮质)提供的机械力来克服常用化疗的影响,因为化疗会阻碍细胞在分裂过程中分离染色体的能力。"当微管发生断裂时,癌细胞会激活一个信号,使"臂"伸向细胞边缘,拉动细胞皮层,使断裂的微管重新组合在一起。这使得臂能够稳定下来,并产生必要的力量,以物理方式抓住染色体并将其拉入每个子细胞,确保癌细胞的繁殖。研究人员在注意到一种用于治疗神经母细胞瘤(一种儿童癌症)的特定微管靶向药物增强了化疗效果后,怀疑这种机制的存在。但是,在他们之前的研究中,成像技术还不够先进,无法证实他们的猜测。"我们需要对癌细胞进行细胞分裂时的良好成像,以便实时观察染色体、微管和细胞结构发生了什么变化,"冈宁说。"这让我们相当惊讶,因为我们没想到癌细胞的这种机制会以这种方式被用来克服癌症疗法,但我们可以看到它在我们眼前发生。"大剂量化疗通常能有效阻止癌细胞分裂。然而,在剂量较低的情况下--比如说,当病人出现化疗毒性而需要减少剂量时,细胞就可以利用这种天生的生存机制,研究人员认为这是细胞生物学的一个基本组成部分。冈宁说:"我们认为这是一种后备机制,它的进化使任何细胞都能克服少量的微管破坏,并确保其能够存活。恰巧癌细胞利用它避开了抗微管化疗"。研究人员正致力于开发与当前化疗药物联合使用的药物,以关闭抗药性机制。"通过攻击癌细胞建立的力量生成机制,我们希望能够让癌症疗法更有效地发挥作用,"冈宁说。"实际上,我们已经成立了一家公司,能够开发出攻击这种救援机制所需的药物,使抗微管化疗能够更有效地发挥作用,并有望改善患者的预后。"这项研究发表在《当代生物学》(CurrentBiology)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1391933.htm手机版:https://m.cnbeta.com.tw/view/1391933.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人