科学家用永生干细胞培育人造肉 未来可能实现无限量供应

科学家用永生干细胞培育人造肉未来可能实现无限量供应分化的永生化牛干细胞完全表达肌肉蛋白(蓝色=细胞核;品红色=肌原蛋白;绿色=肌球蛋白)。比例尺约1毫米。来源:塔夫茨大学AndrewStout《ACS合成生物学》杂志介绍了这一进展,这意味着全球的研究人员和公司可以获得和开发新产品,而不必反复从农场动物活组织中获取细胞。细胞培养肉的生产需要生长和分裂能力极强的肌肉和脂肪细胞。虽然细胞培殖肉已引起媒体关注,例如美国食品及药物管理局初步批准培殖鸡肉,甚至用乳齿象DNA培殖的汉堡,但这些产品仍然昂贵且难以扩大规模。从活体动物身上提取的正常肌肉干细胞通常只能分裂约50次,然后就开始"老化",不再具有活力。虽然理论上这些干细胞可以生产大量肉类,但TUCCA团队开发的永生化细胞具有几个优势。其一是可以生产更多的肉。另一个优势是,通过广泛提供永生化细胞,他们将降低其他研究人员探索细胞农业的准入门槛--找到降低成本和克服扩大生产挑战的方法。TUCCA的研究生、该项目的首席研究员安德鲁-斯托特(AndrewStout)说:"通常情况下,研究人员不得不自己从动物身上分离干细胞,这既昂贵又费力,或者使用相关性较低物种的模型细胞系,如小鼠肌肉细胞。"将普通牛肌肉干细胞转化为永生牛肌肉干细胞有两个关键步骤。大多数细胞在分裂和衰老过程中,染色体末端的DNA开始脱落,这些DNA被称为端粒。这可能导致DNA复制或修复时出现错误。它还会导致基因丢失,最终导致细胞死亡。研究人员设计的牛干细胞可以不断重建端粒,有效保持染色体"年轻",为新一轮复制和细胞分裂做好准备。使细胞永生的第二步是使它们持续产生一种蛋白质,刺激细胞分裂的关键阶段。这有效地加速了细胞分裂过程,帮助细胞更快生长。肌肉干细胞不是人们想吃的最终产品。它们不仅要分裂和生长,还要分化成成熟的肌肉细胞,就像或至少非常类似于我们在牛排或鱼排中食用的肌肉细胞。斯托特和他的研究小组发现,新干细胞确实分化成成熟的肌肉细胞,尽管与动物肌肉细胞或来自传统牛干细胞的肌肉细胞并不完全相同。斯托特说:"它们有可能成熟到足以复制天然肉类的风味和质地。它们正在以非常快的速度翻倍,因此它们可能只需要多一点时间就能达到完全成熟。"塔夫茨大学斯特恩家族生物医学工程教授兼TUCCA主任DavidKaplan说:"虽然有些人可能会质疑摄入永生细胞是否安全,但事实上,当细胞被收获、储存、烹饪和消化后,就没有继续生长的可行途径了。就像我们今天吃的天然肉类一样,细胞只是变成了惰性物质,我们希望它味道鲜美并能提供多种营养。"...PC版:https://www.cnbeta.com.tw/articles/soft/1370613.htm手机版:https://m.cnbeta.com.tw/view/1370613.htm

相关推荐

封面图片

“永生”干细胞培养肉问世:有望实现人造肉无限量供应

“永生”干细胞培养肉问世:有望实现人造肉无限量供应专家分析,这一研究成果将会不仅可以提供更多的肉类产品,还意味着研究人员将无需从农场动物活检中重复获取细胞。据了解,大多数细胞,随着它们的分裂和衰老,开始丢失染色体末端的DNA(端粒),端粒就像旧绳索一样会因使用而磨损,出现复制错误或基因丢失,最终导致细胞死亡。研究团队对牛干细胞进行了工程改造,使其不断重建端粒,有效地保持染色体“年轻”,并为新一轮的复制和细胞分裂作好准备。使细胞永生化的第二步是让它们不断产生一种蛋白质,刺激细胞分裂的关键阶段,有效加速该过程并帮助细胞更快地生长。当然,肌肉干细胞不是人们吃的最终产品。它们还要分化成成熟的肌肉细胞,就像人们在牛排或鱼片中吃的肌肉细胞一样。团队发现,新的干细胞分化后,有可能成熟到足以复制天然肉的味道和质地。...PC版:https://www.cnbeta.com.tw/articles/soft/1359709.htm手机版:https://m.cnbeta.com.tw/view/1359709.htm

封面图片

扭转衰老的新潜力:科学家发现老化干细胞的变化

扭转衰老的新潜力:科学家发现老化干细胞的变化在一项激动人心的突破中,香港科技大学(HKUST)生命科学副教授TomCheung领导的研究小组已经开发出一种方法,可以根据染色质特征识别老化的肌肉干细胞(MuSCs)。肌肉干细胞在肌肉修复中发挥着重要作用。与年轻的同类相比,老化的MuSCs的干性(成为新的干细胞或转变成专门的细胞以取代受损组织的能力)有所下降。如果老化细胞的染色质特征能够恢复到年轻细胞的染色质特征,那么细胞老化的过程--在这个例子中,骨骼肌组织的老化--可能会被减缓甚至逆转。这些发现最近发表在《iScience》杂志上。Cheung教授说:"染色质可及性的调节对细胞命运的决定至关重要。染色质状态的变化可以导致基因表达的失调。在我们的研究中,我们能够确定长期激活的染色质状态是干细胞衰老的标志,这可能是开发抗衰老策略的目标。"染色质是一种包裹着组蛋白的DNA复合物,以保持DNA的正确结构,它的结构会随着外在环境的变化而发生快速变化。作为他们之前研究的延续,该团队预先固定了小鼠的肌肉干细胞,以获得静止细胞(将激活修复受伤肌肉的休眠细胞),并获得其基因和染色质特征,然后他们比较了染色质随时间的可及性。"研究表明,年轻肌肉干细胞的染色质环境在静止期非常紧凑,在早期激活时变得高度可及,并在长期再生后逐渐重新建立紧凑状态。然而,老年肌肉干细胞在静止期失去了维持这种紧凑染色质环境的能力。现在,科学家们已经对发生在衰老细胞上的事情有了更好的了解,许多可能性正等待着被发掘出来,为进一步的抗衰老战略开辟了各种途径。"我们已经解决了衰老之谜吗?是的,但不完全是,"张教授指出。"如果我们能找到在老化干细胞中下调的染色质修饰调节器,这些将成为潜在的目标,通过恢复它们的表达来防止老化。由于我们能够对年轻和老年肌肉干细胞的染色质状态进行明确的比较,我们还确定了年轻肌肉干细胞中特别容易接触到的目标位置。如果这些区域的可及性能够在衰老过程中得到维持,我们也许能够找到让细胞保持年轻和健康更久的方法。"Cheung教授说:"我们目前的研究描述了干细胞分离和激活期间染色质可及性的变化,但旅程才刚刚开始期待着进一步研究肌肉干细胞分离和激活过程中改变染色质状态的机制,重要的是我们在体内进行同样的研究,以获得更多的见解。"...PC版:https://www.cnbeta.com.tw/articles/soft/1334727.htm手机版:https://m.cnbeta.com.tw/view/1334727.htm

封面图片

实验室培育肌肉的突破 开启医学和肉类的未来

实验室培育肌肉的突破开启医学和肉类的未来另一方面,在实验室中培养牛的肌肉组织可以改变肉类行业,消除屠宰动物的必要性。不过,目前,ETH团队的研究重点是优化肌肉干细胞的生成,使其更加安全。现在,他们通过一种新方法成功地做到了这一点。肌肉干细胞和纤维可在实验室中由重新编程的结缔组织细胞培育而成(显微镜图片)。资料来源:苏黎世联邦理工学院/巴尔-努尔实验室重编程细胞与该领域的其他研究人员一样,苏黎世联邦理工学院的科学家们使用一种不同的、更容易生长的细胞类型作为生成肌肉细胞的起始材料:结缔组织细胞。他们使用小分子和蛋白质鸡尾酒,对这些细胞进行分子"重编程",从而将它们转化为肌肉干细胞,然后迅速繁殖并产生肌肉纤维。巴尔-努尔小组的博士生、本研究的两位主要合著者之一XhemQabrati解释说:"这种方法使我们能够制造出大量的肌肉细胞。虽然也可以直接从肌肉活检组织中培养肌肉细胞,但细胞在分离后往往会失去功能,因此要生产大量细胞具有挑战性。"所用鸡尾酒的一个重要成分--也是细胞转化的核心催化剂--是蛋白质MyoD。这是一种转录因子,可调节细胞核中某些肌肉基因的活性。MyoD通常不存在于结缔组织细胞中。在这些细胞转变成肌肉细胞之前,科学家必须哄骗它们在细胞核中产生MyoD,持续数天。没有基因工程到目前为止,研究人员都是通过基因工程来完成这一过程:他们利用病毒颗粒将MyoD蛋白的DNA蓝图带入细胞核。在那里,病毒将这些构建指令插入基因组,使细胞能够产生MyoD蛋白。然而,这种方法存在安全风险:科学家无法控制病毒将这些指令插入基因组的具体位置。有时,病毒会整合到一个重要基因的中间,对其造成损害,或者这种插入过程可能导致引发癌细胞形成的变化。这一次,受COVID-19的mRNA疫苗的启发,Bar-Nur和他的同事们采用了一种不同的方法将MyoD传递到结缔组织细胞中:他们没有使用病毒来导入MyoD基因的DNA蓝图,而是将该基因的mRNA转录本导入细胞中。这样细胞的基因组就不会发生变化,从而避免了与这种变化相关的负面影响。mRNA仍能使结缔组织细胞产生MyoD蛋白,从而与ETH研究人员优化的鸡尾酒中的其他成分一起转化为肌肉干细胞和纤维。研究人员最近在《再生医学》(NPJ)杂志上发表了他们的新方法。他们是第一位在没有基因工程的情况下将结缔组织细胞重新编程为肌肉干细胞的人。帮助治疗肌肉萎缩症研究人员在对患有杜兴氏肌肉萎缩症的小鼠进行的实验中表明,这种方法产生的肌肉细胞也具有完全的功能。在人类中,这种罕见的遗传性疾病会导致患者缺乏肌肉稳定性所需的蛋白质,这意味着他们会出现进行性肌肉萎缩和瘫痪。苏黎世联邦理工学院的科学家们将无缺陷的肌肉干细胞注射到携带这种缺陷的杜氏肌营养不良症小鼠的肌肉中。他们能够证明,健康的干细胞能够在肌肉中形成修复的肌纤维。Bar-Nur小组的另一名博士生、本研究的主要合著者InseonKim解释说:"这种肌肉干细胞移植对晚期杜兴患者特别有帮助,因为他们已经受到肌肉萎缩的严重影响。"这种方法适用于生产大量的肌肉干细胞。更重要的是,这种方法不需要进行基因工程,也没有相关风险,因此对人类未来的潜在治疗用途很有吸引力。替代肉类生产不过,研究人员还没有把他们的方法应用到人类细胞上;这是他们的下一步工作。Bar-Nur说:"此外,我们还希望研究是否有可能通过向患有肌肉疾病的小鼠注射MyoDmRNA和其他鸡尾酒成分,在体内直接将结缔组织细胞转化为肌肉细胞。这种方法有朝一日也能帮助人类患者。"最后,Bar-Nur和他的团队希望将他们的新发现融入到目前正在进行的牛细胞研究工作中,这也是实验室的另一项研究方向。他们希望这种方法将有助于目前培养动物肌肉干细胞用于培养肉类生产的努力。...PC版:https://www.cnbeta.com.tw/articles/soft/1377881.htm手机版:https://m.cnbeta.com.tw/view/1377881.htm

封面图片

科学家发现细菌细胞壁的新致命弱点

科学家发现细菌细胞壁的新致命弱点新月柄杆菌是一种新月形二形细菌,是研究细菌细胞周期调控、细胞分化和形态发生的主要模式生物之一。使用DNA-PAINT技术观察细胞,染色体DNA被染成蓝色,细胞膜被染成红色。图片来源:马克斯-普朗克陆地微生物研究所/埃尔南德斯-塔马约在进化过程中,细胞发展出了多种策略来加强其包膜以抵御内部渗透压,从而使它们能够在各种不同的环境中生长。大多数细菌种类都会在细胞质膜周围合成半刚性细胞壁,其主要成分肽聚糖会形成一个致密的网状结构,将细胞包裹起来。细胞壁除了起保护作用外,还能形成特定的细胞形状,如球形、棒状或螺旋形,从而有利于运动、表面定植和致病。细胞壁的存在也带来了挑战:细胞必须不断重塑细胞壁才能生长和分裂。为此,细胞必须小心翼翼地撕裂细胞壁,使其扩张和变化,同时迅速用新材料修补缝隙,防止细胞壁坍塌。这种细胞壁重塑过程包括裂解酶(又称自溶酶)对键的裂解,以及随后肽聚糖合成酶对新细胞壁材料的插入。这两组相互对抗的蛋白质的活动必须密切协调,以防止肽聚糖层出现薄弱点,导致细胞溶解和死亡。马克斯-普朗克陆地微生物学研究所研究员、马尔堡大学微生物学教授马丁-坦比希勒领导的研究小组开始研究自溶机制的组成和功能。他们的研究重点是淡水环境中的新月柄杆菌,这种细菌被广泛用作研究细菌基本细胞过程的模式生物。Thanbichler认为,研究自溶蛋白的功能是一项具有挑战性的任务。"虽然我们对合成机器有很多了解,但自溶蛋白被证明是一个难以攻克的难题"。Thanbichler团队的博士后研究员MariaBillini补充说:"细菌通常含有多种类型的自溶蛋白,它们来自不同的酶家族,具有不同的靶标。这意味着这些蛋白质具有高度冗余性,删除单个自溶蛋白基因往往对细胞形态和生长影响甚微。"通过共免共沉淀筛选和体外蛋白质-蛋白质相互作用试验对潜在的自溶蛋白调节因子进行分析后发现,一种名为DipM的因子在细菌细胞壁重塑过程中发挥着关键作用。这种关键的调节因子是一种可溶性的周质蛋白,竟然与几类自溶蛋白以及一种细胞分裂因子相互作用,显示出这种调节因子以前未知的杂交性。DipM能够刺激两种活性和折叠方式完全不同的肽聚糖分解酶的活性,这使它成为第一个被发现的能够控制两类自溶酶的调节因子。值得注意的是,研究结果还表明,DipM使用单一界面与其各种靶标相互作用。这项研究的第一作者、博士生阿德里安-伊斯基耶多-马丁内斯(AdrianIzquierdoMartinez)说:"破坏DipM会导致细胞壁重塑和分裂过程的各个环节失去调控,最终导致细胞死亡。"因此,它作为自溶蛋白活性协调者的适当功能对于新月柄杆菌正常的细胞形状维持和细胞分裂至关重要。"对DipM的全面表征揭示了一个新颖的相互作用网络,包括一个自我强化环,它将溶解性转糖基酶和可能的其他自溶蛋白与新月柄杆菌细胞分裂装置的核心连接起来,也很可能与其他细菌的细胞分裂装置连接起来。因此,DipM协调着一个复杂的自溶蛋白网络,其拓扑结构与之前研究的自溶蛋白系统大不相同。马丁-坦比希勒(MartinThanbichler)指出:"这种多酶调节器的功能失常会同时影响多个与细胞壁相关的过程,对它们的研究不仅有助于我们了解细胞壁如何对细胞或环境的变化做出反应。它还有助于开发新的治疗策略,通过同时破坏几种自溶途径来对付细菌"。...PC版:https://www.cnbeta.com.tw/articles/soft/1376317.htm手机版:https://m.cnbeta.com.tw/view/1376317.htm

封面图片

科学家从干细胞中创造出类似人类胚胎的模型

科学家从干细胞中创造出类似人类胚胎的模型但这一关键时期在很大程度上仍未被科学家和医生研究,因为胚胎仍然太小,无法在活体患者身上观察。接受试管婴儿的病人的捐赠可用于研究,但供应有限,而且要遵守严格的伦理法规。现在,剑桥大学和加州理工学院的科学家们已经开发出了新的人类胚胎3D模型,该模型由干细胞培育而成,以一种可以在实验室中轻松研究的方式模拟了第9天和第14天之间的发育。这个窗口以前只能在动物细胞中研究。图为由干细胞培育出的人类胚胎样模型在发育的第四天。该研究的主要作者MagdalenaZernicka-Goetz教授说:"我们的人类胚胎样模型完全由人类干细胞创建,使我们能够在通常情况下由于小胚胎植入母亲的子宫而被隐藏的阶段看到发育结构。这一令人兴奋的发展使我们能够在一个模型系统中操纵基因以了解它们的发育作用。这将让我们测试特定因素的功能,这在自然胚胎中很难做到"。这些模型包含制造人类胚胎所需的大部分细胞,包括最终将形成自己的精子或卵子的生殖细胞的前体。它们还包含支持胚胎的细胞,包括那些继续形成胎盘、卵黄囊和羊膜囊的细胞。然而,出于道德原因,这些模型被制成缺少大脑和心脏跳动的细胞,因此它们不能发育到14天以上。这是为了遵守目前在实验室中培养人类胚胎的法律限制。这一里程碑是Zernicka-Goetz和她的团队十年来逐步改进小鼠胚胎模型的工作成果。其他研究人员,包括来自以色列魏茨曼科学研究所的一个团队,也将小鼠胚胎模型推到了心脏细胞跳动的程度。多个团队在这一领域的工作不断增加,可能有助于提高寻求受孕的夫妇的存活率,更好地治疗遗传疾病,以及用于移植的实验室培育的器官。这项新研究发表在《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1367837.htm手机版:https://m.cnbeta.com.tw/view/1367837.htm

封面图片

纯私人太空任务Ax-2将在太空中培育干细胞 为世界首次

纯私人太空任务Ax-2将在太空中培育干细胞为世界首次据悉,Ax-2任务计划于美国东部时间5月21日下午5时37分从佛罗里达州肯尼迪航天中心搭乘SpaceX的猎鹰9号火箭发射升空。按照任务计划,Ax-2任务宇航员将在国际空间站培育诱导性多能干细胞(iPSC),其可以发育成构成人体的三种主要细胞群。培育这些干细胞并让它们在太空中分化,可以让研究人员确定微重力如何影响其发育成大脑和心脏细胞等其他类型的细胞。这项研究的联合负责人、洛杉矶西达赛奈医疗中心细胞生物学家阿伦·夏尔马(ArunSharma)在一份声明中说:“将iPSC用于医疗领域的一个主要挑战是培育足够多的高质量干细胞。”“我们希望能够以数十亿计的数量进行大规模培育,这样就可以将它们用于许多不同的方面,包括发现可能改善心脏功能的新药。虽然在过去的几年里,我们在这方面做得越来越好,但在培育干细胞方面仍然存在一定限制,我们认为微重力可能会克服其中的一些限制。”根据洛杉矶西达赛奈医疗中心的说法,iPSC是一种功能强大的干细胞。科学家通过对成年细胞进行重新编程,使其回到一种被称为“多能性”的状态,几乎可以发育成人体中发现的任何细胞类型。这使得多能干细胞在开发疾病模型和定制化治疗方法方面非常重要。然而,在地面培育多能干细胞很麻烦,部分原因是地球引力效应会影响这些细胞的发育。在国际空间站的低重力环境中,可以解决这个棘手的问题。这项任务的联合首席研究员、西达赛奈医疗中心理事会再生医学研究所执行主任克莱夫·斯文森(CliveSvendsen)在声明中说,“重力不断地将这些多能干细胞拉向地球,对它们施加压力,刺激干细胞开始转化为其他细胞。但在微重力环境下,这种影响将不复存在,”通过移除重力因素,研究人员能够测试干细胞是否会在太空中生长得更快,是否会出现更少的基因突变,并保持多能性的状态。斯文森说:“这是这次新任务的目标,我们都非常期待看到那里发生的事情。”西达赛奈医疗中心的一个团队将在发射前一周抵达肯尼迪航天中心,准备干细胞并将其装载到载人龙飞船上。如果一切顺利,Ax-2任务的机组成员将在5月21日乘坐猎鹰9号火箭搭载的载人龙飞船发射升空。这次任务只持续一周时间,未来几个月还有更长时间的任务,计划进一步测试干细胞在太空飞行中分裂和复制DNA的能力。私人太空公司AxiomSpace总部位于美国国家航空航天局约翰逊航天中心所在地德克萨斯州休斯顿。公司表示,AxiomSpace目标是“为创新者、政府和个人普遍提供造访近地轨道的服务”。Ax-2任务将是AxiomSpace组织前往国际空间站的第二次任务。第一次任务Ax-1于2022年4月份通过SpaceX的猎鹰9号火箭发射升空,并将四名私人宇航员送入国际空间站,前后持续两周多的时间。Ax-1也是第一次前往国际空间站的私人宇航员任务。AxiomSpace也在自行开发空间站模块,并将在未来几年内发射到国际空间站。最终这些空间站模块将从国际空间站分离出来,在近地轨道上组成公司自己的私人空间站。(辰辰)...PC版:https://www.cnbeta.com.tw/articles/soft/1358895.htm手机版:https://m.cnbeta.com.tw/view/1358895.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人