科学家在黄疯蚁身上发现现实中存在的嵌合体

科学家在黄疯蚁身上发现现实中存在的嵌合体雄性黄疯蚁表现出一种独特的特征,即拥有两个不同的基因组,每个基因组都包含在独立的细胞群中。"以前对黄疯蚁的遗传分析结果表明,这个物种的雄性每条染色体都有两个副本。这非常出乎意料,因为雄性通常由蚂蚁、蜜蜂和黄蜂的未受精卵发育而来--因此每条染色体应该只有一个母体拷贝,"美因茨约翰内斯古腾堡大学(JGU)的助理教授、最近发表在《科学》上的相应文章的主要作者HugoDarras博士解释说。"考虑到这一点,我们决定通过后续的实验来研究这一令人困惑的现象"。两只雄性黄疯蚁(Anoplolepisgracilipes)。资料来源:雨果-达拉斯不同细胞群中的两个基因组这个结果是相当不寻常的。迄今为止,人们一直认为黄疯蚁的雄性在其身体的所有细胞中携带相同的两套染色体。然而,该团队能够证明这一前提是完全不正确的。"我们发现雄性蚂蚁的母系和父系基因组在它们身体的不同细胞中,因此是嵌合体。换句话说,所有雄蚁都有两个基因组,但它们身体的每个细胞只包含这两个基因组中的一个或另一个,"达拉斯总结说。通常情况下,在一个多细胞的生命形式中--无论是人、狗还是蝙蝠--所有的细胞都含有相同的遗传物质。嵌合型雄性黄疯蚁的大脑纵切面,母系(粉色)和父系(蓝色)基因组原位杂交:雄性组织由只携带母系或父系基因组的大细胞团组成。资料来源:雨果-达拉斯研究小组得出结论,雄性黄疯蚁是嵌合体:它们从受精卵发育而来,其中两个亲代配子实际上并没有融合。相反,母体和父体的细胞核在同一个卵子中分别分裂,这意味着所产生的成年雄蚁具有父母双方的DNA序列,但在不同的体细胞中。当配子融合时,根据精子携带的遗传信息,从卵子中发育出女王或工人。目前还不知道是什么机制决定亲代配子的融合是否发生。嵌合体和黄疯蚁:一种以前不为科学所知的繁殖模式嵌合体是指其细胞含有不同遗传物质的个体。它们自然发生在某些物种中,如珊瑚,其中独立的个体可以合并成一个。嵌合体也可以在人类和其他有胎盘的哺乳动物中发现。在妊娠期间,母亲和胎儿可以交换少量的细胞,因此后代通常有几个细胞含有与母亲相同的遗传物质。这种小规模的交换也发生在子宫内的双胞胎之间。一只雄性黄疯蚁(Anoplolepisgracilipes)。资料来源:雨果-达拉斯"与这些已知的案例相比,黄疯蚁的嵌合体并不是由两个独立个体的融合或它们之间的细胞交换造成的。相反,这个过程起源于一个单一的受精卵。"达拉斯总结说:"这是独一无二的。"因此,雄性黄疯蚁的发育似乎违反了生物遗传的基本规律之一,即一个个体的所有细胞都应该包含相同的基因组。...PC版:https://www.cnbeta.com.tw/articles/soft/1364611.htm手机版:https://m.cnbeta.com.tw/view/1364611.htm

相关推荐

封面图片

科学家发现首个有两套DNA的动物

科学家发现首个有两套DNA的动物黄疯蚁是一种臭名昭著的入侵物种,主要分布在东南亚和大洋洲,对无脊椎动物甚至一些小型哺乳动物构成威胁。在爪哇南部的澳大利亚圣诞岛,黄疯蚁捕杀了大量该地区特有的红蟹。关于黄疯蚁怪异生物学特征的第一个线索来自对其基因组中散布的遗传标记的研究。雄性黄疯蚁似乎携带了两个版本的遗传标记。这是一个令人困惑的特征,因为在大多数蚂蚁中,雄性蚂蚁是由未受精卵发育而来,因此只有一个基因组拷贝。一些蚂蚁物种偶尔会有“二倍体”雄性,即有两个基因组拷贝,但这些雄性通常是不育的。德国美茵茨大学进化生物学家HugoDarras指出,黄疯蚁的所有雄性都是二倍体,这真的很奇怪,似乎完全说不通。为了确定发生了什么,Darras团队分析了从东南亚收集的黄疯蚁单个细胞。他们发现,每个雄性细胞只包含蚂蚁基因组的一个拷贝,但这种基因组在细胞之间是不同的。有些细胞拥有存在于蚁后中的谱系,由“R”染色体定义,而其他细胞则携带不同基因组的一个单独拷贝,由“W”染色体定义。蚁后的细胞中有两个W基因组拷贝,而不育的雌性工蚁的每个细胞中都有每个谱系的一个拷贝。Darras团队发现,雄性的嵌合体在蚂蚁的种姓制度中起着至关重要的作用。所有蚁后的卵细胞都携带R基因组的一个拷贝。如果这个卵子被具有R基因组的精细胞受精,就会产生一个蚁后。然而,如果卵子被W精子受精,则有两种可能的结果:如果两个含有基因组的细胞核融合,就会形成二倍体工蚁;如果细胞核不融合,卵子就会发育成一个嵌合的雄性,一些细胞携带R基因,另一些细胞携带W基因。美国洛克菲勒大学生物学家DanielKronauer说:“就我们所知,这是一种无与伦比的生物学现象。”黄疯蚁的嵌合体可能有助于提高该物种逃避生态系统不利影响的能力。蚁后有专门的器官储存来自多个雄性的精子。这意味着一个单独储存R和W精子的蚁后可以建立一个新的蚁群。澳大利亚詹姆斯·库克大学生态学家LoriLach想知道,研究人员是否可以利用它们奇特的生物学特性阻止蚂蚁种群扩大。黄疯蚁...PC版:https://www.cnbeta.com.tw/articles/soft/1353973.htm手机版:https://m.cnbeta.com.tw/view/1353973.htm

封面图片

哈佛大学科学家发现乳腺癌成因中缺失已久的一环

哈佛大学科学家发现乳腺癌成因中缺失已久的一环研究人员说,多达三分之一的乳腺癌病例可能是通过新发现的机制发生的。研究还表明,性激素雌激素是导致这种分子功能障碍的罪魁祸首,因为它直接改变了细胞的DNA。大多数乳腺癌都是由激素波动引起的。关于雌激素在乳腺癌中的作用,普遍的看法是它是癌症生长的催化剂,因为它刺激了乳腺组织的分裂和增殖,而这一过程具有致癌突变的风险。然而,新的研究成果表明,雌激素以一种更为直接的方式造成危害。这项研究的第一作者JakeLee说:"我们的工作表明,雌激素能直接诱导导致癌症的基因组重排,因此它在乳腺癌发展中的作用既是催化剂又是诱因。"虽然这项工作对治疗没有直接影响,但它可以为设计跟踪治疗反应的测试提供信息,并能帮助医生检测有某些乳腺癌病史的患者的肿瘤复发。癌细胞的诞生人体由数以亿计的细胞组成。这些细胞中的大多数都在不断地分裂和复制,这一过程日复一日,终生维持着器官的功能。每次分裂,细胞都会将其染色体--一束束紧密压缩的DNA复制到一个新细胞中。但这一过程有时会出现意外,DNA会断裂。在大多数情况下,这些DNA断裂会被保护基因组完整性的分子机器迅速修复。然而,有时DNA断裂的修复工作会出现失误,导致染色体在细胞内错位或混乱。许多人类癌症就是以这种方式在细胞分裂过程中产生的,当染色体重新排列并唤醒休眠的癌基因时,就会引发肿瘤生长。当染色体发生断裂,而断裂的染色体在断裂处被修复之前又产生了第二个拷贝时,就会发生这样的染色体乱码。然后,在一次失败的修复尝试中,一条染色体的断裂端与其姐妹拷贝的断裂端融合,而不是与其原始伙伴融合。由此产生的新结构是一个畸形的、功能失常的染色体。在下一次细胞分裂过程中,畸形染色体被拉伸到两个新出现的子细胞之间,染色体"桥"断裂,留下含有癌基因的破碎片段,这些片段不断繁殖并被激活。某些人类癌症,包括某些乳腺癌,就是在细胞染色体以这种方式重新排列时产生的。芭芭拉-麦克林托克(BarbaraMcClintock)在20世纪30年代首次描述了这种功能障碍,她随后于1983年获得了诺贝尔生理学或医学奖。癌症专家通常可以通过基因组测序在肿瘤样本中发现这种特殊的畸变。然而,一部分乳腺癌病例并不存在这种突变模式,这就提出了一个问题:是什么导致了这些肿瘤?这些"冷门"病例引起了研究作者Park和Lee的兴趣。为了寻找答案,他们分析了780例乳腺癌患者的基因组。他们期望在大多数肿瘤样本中发现经典的染色体混乱,但许多肿瘤细胞却没有这种经典分子模式的痕迹。他们看到的不是典型的畸形和不适当修补的单条染色体,而是两条染色体融合了,令人怀疑的是,这两条染色体就在癌基因所在的"热点"附近。就像在麦克林托克的模型中一样,这些重新排列的染色体形成了桥,只不过在这种情况下,桥上有两条不同的染色体。在他们的分析中,三分之一(244例)的肿瘤存在这种独特的模式。Lee和Park意识到他们发现了一种新的机制,即"毁容"染色体的产生和断裂助长了神秘的乳腺癌病例。雌激素在乳腺癌中的新作用?当研究人员放大癌基因激活的热点时,他们注意到这些区域与DNA上的雌激素结合区非常接近。众所周知,当细胞受到雌激素刺激时,雌激素受体会与基因组的某些区域结合。研究人员发现,这些雌激素结合点经常位于发生早期DNA断裂的区域附近。这提供了一个强有力的线索,即雌激素可能以某种方式参与了导致癌基因激活的基因组重组。Lee和Park根据这一线索在培养皿中对乳腺癌细胞进行了实验。他们让细胞接触雌激素,然后使用CRISPR基因编辑技术切割细胞的DNA。当细胞修补断裂的DNA时,它们启动了一个修复链,导致了Lee和Park在基因组分析中发现的同样的基因组重排。众所周知,雌激素会促进乳腺细胞的增殖,从而助长乳腺癌的生长。然而,新的观察结果使人们对这种激素有了不同的认识。这表明,雌激素是癌症发生的一个更核心的角色,因为它直接改变了细胞修复其DNA的方式。研究结果表明,他莫昔芬等抑制雌激素的药物--通常用于乳腺癌患者以防止疾病复发--的作用方式比单纯减少乳腺细胞增殖更为直接。Lee说:"根据我们的研究结果,我们认为这些药物除了抑制乳腺细胞增殖外,还可能阻止雌激素在细胞中引发致癌基因组重排。这项研究可改进乳腺癌检测。例如,检测染色体重排的基因组指纹可以提醒肿瘤学家病人的疾病正在复发。"类似的跟踪疾病复发和治疗反应的方法已被广泛用于携带关键染色体易位的癌症,包括某些类型的白血病。研究人员说,从更广泛的意义上讲,这项工作强调了DNA测序和仔细的数据分析在深化癌症发展生物学方面的价值。"这一切都源于一次观察。我们注意到,我们在基因组测序数据中看到的复杂突变模式无法用教科书上的模型来解释,"Park说。"但是现在我们已经把拼图拼好了,根据新的模型,所有的模式都是合理的。这令人无比欣喜"。...PC版:https://www.cnbeta.com.tw/articles/soft/1370689.htm手机版:https://m.cnbeta.com.tw/view/1370689.htm

封面图片

科学家揭示对基因组健康至关重要的145个基因

科学家揭示对基因组健康至关重要的145个基因2月14日,《自然》杂志发表了一项新研究,通过对近千个转基因小鼠品系进行系统筛选,发现了一百多个与DNA损伤有关的关键基因。这项工作为癌症进展和神经退行性疾病提供了见解,也为蛋白质抑制剂提供了潜在的治疗途径。基因组包含生物细胞内的所有基因和遗传物质。当基因组稳定时,细胞就能准确地复制和分裂,将正确的遗传信息传递给下一代细胞。尽管基因组非常重要,但人们对影响基因组稳定性、保护、修复和防止DNA损伤的遗传因素知之甚少。突破性研究及其影响在这项新研究中,威康-桑格研究所的研究人员与剑桥大学英国痴呆症研究所的合作者一起,着手更好地了解细胞健康的生物学特性,并找出维持基因组稳定性的关键基因。研究小组利用一组转基因小鼠品系,确定了145个在增加或减少异常微核结构的形成中起关键作用的基因。这些结构表明基因组不稳定和DNA损伤,是衰老和疾病的常见标志。当研究人员敲除DSCC1基因时,基因组不稳定性的增加最为显著,异常微核的形成增加了五倍。缺乏该基因的小鼠具有与人类凝聚素病症患者相似的特征,这进一步强调了这项研究与人类健康的相关性。通过CRISPR筛选,研究人员发现DSCC1缺失引发的这种效应可以通过抑制蛋白质SIRT1得到部分逆转。这些发现有助于揭示影响人类基因组一生健康和疾病发展的遗传因素。该研究的资深作者、剑桥大学英国痴呆症研究所的加布里埃尔-巴尔穆斯(GabrielBalmus)教授说:"继续探索基因组不稳定性对于开发针对遗传根源的定制治疗方法至关重要,其目标是改善各种疾病的治疗效果和患者的整体生活质量。我们的研究强调了SIRT抑制剂作为治疗粘连蛋白病和其他基因组疾病途径的潜力。它表明,早期干预,特别是针对SIRT1的干预,有助于在基因组不稳定性发展之前减轻与之相关的生物变化。"这项研究的第一作者、威康桑格研究所的大卫-亚当斯(DavidAdams)博士说:"基因组稳定性是细胞健康的核心,影响着从癌症到神经变性等一系列疾病,但这一直是一个探索相对不足的研究领域。这项工作历时15年,体现了从大规模、无偏见的基因筛选中可以学到什么。所发现的145个基因,尤其是那些与人类疾病相关的基因,为开发治疗癌症和神经发育障碍等基因组不稳定疾病的新疗法提供了有希望的靶点。"研究要点:对基因组造成损害的各种来源包括辐射、化学接触以及DNA复制或修复过程中的错误。微核是一种小的异常结构,通常被称为"突变工厂",其中含有错位的遗传物质,而这些物质本应在细胞核中。它们的存在意味着患癌症和发育障碍等疾病的风险增加。凝聚蛋白病是一组因凝聚蛋白功能障碍而导致的遗传病,凝聚蛋白对细胞分裂过程中染色体的正常组织和分离至关重要。这可能导致一系列发育异常、智力障碍、独特的面部特征和生长迟缓。当SIRT1蛋白被抑制时,DNA损伤就会减少,它们就能挽救与内聚力破坏相关的DSCC1缺失所带来的负面影响。这种作用是通过恢复一种名为SMC3的蛋白质的化学水平实现的。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419823.htm手机版:https://m.cnbeta.com.tw/view/1419823.htm

封面图片

科学家发现嗅觉和化学感应进化过程中的意外转折

科学家发现嗅觉和化学感应进化过程中的意外转折"想象一下,在一个世界里,成熟的桃子对一只苍蝇来说尝起来和闻起来都像辛辣的醋,而对另一只苍蝇来说却像一阵夏日的气息,"这项研究的主要作者、伦敦玛丽皇后大学遗传学、基因组学和基础细胞生物学讲师罗曼-阿圭略博士解释说。"我们的研究表明,这不仅是可能的,而且实际上很常见。"研究小组分析了六个不同果蝇物种的五个关键气味检测组织的基因表达模式。这种综合方法使他们能够比以往任何时候都更深入地研究嗅觉的分子基础。一个令人惊讶的发现是"稳定选择"的普遍存在,这种力量使大多数基因在不同世代的表达水平保持不变。然而,在这片稳定的海洋中,研究人员发现数千个基因的表达发生了重大变化,形成了不同苍蝇物种独特的嗅觉景观。化感组织转录组的进化。图片来源:GwénaëlleBontonou等人/《自然通讯阿圭略博士说:"这就像是在一片千篇一律的汪洋大海中发现了隐藏的多样性岛屿。基因表达的这些变化告诉我们新气味、新敏感性的进化,甚至是利用气味导航世界的新方法。"这项研究还揭示了两性之间耐人寻味的差异。在果蝇和许多其他动物中,雌雄常常通过不同的嗅觉镜头来感受世界。研究人员在黑腹果蝇的前肢发现了令人惊讶的过量雄性偏向基因表达,这表明这些前肢在雄性特异性气味检测中起着至关重要的作用。这些发现为了解性别差异如何演变以及它们如何影响动物行为开辟了令人兴奋的新途径。它对感官系统如何进化的一般原理提供了宝贵的见解,为了解包括人类在内的其他动物如何感知其化学环境提供了线索。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1416345.htm手机版:https://m.cnbeta.com.tw/view/1416345.htm

封面图片

这种动物全员雌性 窃取同类精子繁衍 科学家都懵了

这种动物全员雌性窃取同类精子繁衍科学家都懵了亚马逊莫莉鱼,图源:UniversityofTexas随着探索的继续,全员雌性的脊椎动物也积累得越来越多,但是在所有这类动物中,没有一个像钝口螈属的一个全员雌性的谱系蝾螈来的奇怪。钝口螈属有十几个物种,它们普遍分布在北美五大湖区域,全员雌性的这个谱系和其它物种一起生活,但是它会窃取自己同属蝾螈的基因来繁殖,这在所有已知动物是独一无二的繁殖方式,以至于生物学家不得不专门为它创造一个新术语——“kleptogenesis”(基因窃取,我看到有些地方翻译盗癖生殖)。基因窃取者钝口螈是两栖动物,它们的配对方式与青蛙有点像,雄性蝾螈会把自己的精子包裹在一个白色“精囊”里,并将其产在池塘里的树叶、树枝等物体上。然后,雌性根据自己的需求选择最符合标准的“精囊”,并放入自己的泄殖腔中,受精在体内完成,产卵并孵化出后代。这种配对方式给了那些全员雌性谱系的钝口螈机会,它们可以很容易拾取到其它同属物种的遗传物质,但是它们并不会完全利用这些精子。图:钝口螈的精囊很早以前,科学家就了解到,其它钝口蝾螈的精子只是刺激了这些雌性蝾螈产卵,并不会对后代的遗传信息产生影响,它们的后代是通过孤雌生殖的方式复制出来的,所以后代依然全部是雌性。随着研究的继续,科学家发现,通常情况下它们确实只会像其它全员雌性动物一样复制自己,但是有极少数的情况,它们会窃取同属物种雄性的染色体。十几年前(2009年),科学家第一次在这个全雌性谱系蝾螈的细胞中发现了其它同类物种的染色体,这让科学家吃惊不已。全雌性的钝口螈谱系通常拥有三组基因或者称为三倍体(其它正常同类是两组),这是它们只有雌性且孤雌生殖的原因,因为无法完成减数分裂产生生殖细胞(这种谱系通常是两种正常的不同物种杂交突变结果)。然而,有一些个体——也就是我们前面提到的极少数情况,它们拥有更多组基因,而多出的基因组就是来自其它雄性同类的基因。在加入其它雄性同类的基因时,它们的选择其实非常多样化(如下图),可以是加入几种不同雄性的基因组——发现的个体最多加了5个其它物种雄性的基因,当然也可以是一种;除添加之外,它们还可以丢弃自己一组基因,并替换上其它雄性的基因组。图:紫色显示的是其它同属蝾螈的基因组这种钝口螈如何完成这种生殖方式还是一个谜,但是它们并不会一直把其它钝口螈的基因保留在自己的谱系中,通常使用几代就抛弃。另一方面,对于常见的多倍体生物而言,通常会关闭多出的基因组的表达,但是这种钝口螈不会,它们不但获得了其它雄性同类的基因,还将一些基因表达出来了,所以它们是真正的“基因窃贼”。图:这四种钝口螈是它们的窃取对象占据栖息地90%的种群关于这种全雌性的钝口螈,我们前面提到的都是一个谱系,而不是一个物种,这是因为这些蝾螈很难将它们归类为单一物种,因为它们的基因组太多样了,违反了常规物种的定义。但是,这个谱系通过它们这种生殖方式,在自己的栖息地相当成功,你可能想象不到,钝口螈属有十几个物种,而它们的栖息地90%个体都是来自这个全雌性谱系。有性生殖是昂贵的,它消耗时间、精力和资源,所以那些全员雌性或者单性的物种,往往有一个天然的优势——能够高效地占据栖息地。图:大理石纹螯虾不知道大家听说过大理石纹螯虾没,它们也是一种三倍体全雌性的动物,它们通过孤雌生殖的方式不停复制自己,以至于在整个亚欧大陆快速泛滥成灾。然而,任何单性生物都不可能长久,有科学家推算,这类物种不可能存在超过10万年。这是因为这类生物有两个主要的障碍(两个假说):一个是物种必须继续进化才能在环境、疾病和寄生虫的压力下生存,而无性生殖只能提供极其低效的进化动力,这个被称为红皇后假说。图:泛滥成灾的大理石纹螯虾我们现在别看大理石纹螯虾很嚣张,因为体型巨大,所到之处其它同类完全无法与之抗衡,它们可以迅速占据栖息地并泛滥成灾,但是哪天出现一种专门针对它们的疾病,它们可能就会在极短的时间内消失。另一个是无性生殖会让有害的突变不断积累,最终让整个种群覆灭,这是因为它们本质就是复制自己,任何有害的突变都无法从种群中完全剔除。正是因为这些限制的存在,复杂的单性生物很罕见,很多其实都是像大理石纹螯虾一样是最近才进化(突变)出来的。然而,钝口螈属的这个全雌性谱系可能已经存在600万年了,毫无疑问,“基因窃取技术”是它们成功的关键。它们通过“盗窃”基因来增加自己后代基因的多样性,从而提高生存能力,再通过“抛弃”基因来稳定住单性生殖的优势。这是独一无二的生殖方式,是自然界让人惊喜的部分,真的只有我们想象不到,没有生物完成不了。...PC版:https://www.cnbeta.com.tw/articles/soft/1422337.htm手机版:https://m.cnbeta.com.tw/view/1422337.htm

封面图片

科学家确定一个独特的恢复听力的蛋白质网络

科学家确定一个独特的恢复听力的蛋白质网络美国国立卫生研究院的研究人员已经确定了一个特殊的蛋白质网络,该网络对于细胞再生以恢复斑马鱼的听力是必要的。美国国家人类基因组研究所(NHGRI)的研究人员领导了这项研究,这可能有助于创建人类听力损失的治疗方法。该研究结果最近发表在《细胞基因组学》杂志上。PC版:https://www.cnbeta.com/articles/soft/1331037.htm手机版:https://m.cnbeta.com/view/1331037.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人