原子"呼吸" - 量子技术的新构件

原子"呼吸"-量子技术的新构件华盛顿大学的研究人员检测到了原子"呼吸",或原子层之间的机械振动,这可能有助于编码和传输量子信息。他们还创造了一个操纵这些原子振动和光发射的集成设备,推进了量子技术的发展。研究人员还开发了一种装置,可以作为量子技术的一种新型构件,人们普遍预计量子技术未来将在计算、通信和传感器开发等领域有许多应用。研究人员最近在《自然-纳米技术》杂志上发表了他们的发现。"这是一个新的原子级平台,使用科学界所称的'光学机械学',其中光和机械运动被内在地耦合在一起,"高级作者MoLi说,他是华盛顿大学电气和计算机工程及物理学教授。"它提供了一种新型的参与性量子效应,可以利用它来控制通过集成光学电路运行的单光子,用于许多应用。"AdinaRipin此前,该团队曾研究过一种叫做"激子"的量子级准粒子。信息可以被编码到一个激子中,然后以光子的形式释放出来--一个被认为是光的量子单位的微小能量粒子。每个发射的光子的量子属性--如光子的偏振、波长和/或发射时间--可以作为量子比特的信息,或"量子比特",用于量子计算和通信。而且,由于这个量子比特是由光子携带的,它以光速传播。"为了可行地拥有一个量子网络,我们需要有可靠地创建、操作、存储和传输量子比特的方法,"主要作者、华盛顿大学物理学博士生AdinaRipin说。"光子是传输这种量子信息的自然选择,因为光纤使我们能够以高速远距离传输光子,而且能量或信息的损失很低。"研究人员正在研究激子,以便创造一个单光子发射器,或"量子发射器",这是基于光和光学的量子技术的一个关键组成部分。为了做到这一点,研究小组将两层薄薄的钨和硒原子(被称为二硒化钨)放在彼此的上面。LiMo当研究人员测量发射光的光谱时,他们注意到几个等距的峰值。由激子发射的每一个光子都与一个或多个声子耦合在一起。这有点类似于在量子能量阶梯上一次一次地攀登,而在光谱上,这些能量峰值在视觉上被等距的峰所代表。Li说:"声子是二硒化钨材料的自然量子振动,它具有垂直拉伸坐在两层中的激子电子-空穴对的效果,"他也是华盛顿大学QuantumX指导委员会的成员,并且是纳米工程系统研究所的一名教师。"这对激子发射的光子的光学特性有明显的影响,这在以前从未报道过。"研究人员很好奇他们是否能将声子用于量子技术。他们施加电压,看到他们可以改变相关声子和发射的光子的相互作用能量。这些变化是可测量并可控制的,其方式与将量子信息编码到单一的光子发射有关,而这一切都在一个集成系统中完成--一个只涉及少量原子的装置。下一步,该团队计划建立一个波导--芯片上的纤维,捕捉单光子发射并将它们引向它们需要去的地方,然后扩大该系统的规模。该团队不希望一次只控制一个量子发射器,而是希望能够控制多个发射器及其相关的声子状态。这将使量子发射器能够相互"交谈",这是朝着为量子电路建立一个坚实基础迈出的一步。Li说:"我们的首要目标是创建一个带有量子发射器的集成系统,该系统可以使用通过光路运行的单光子和新发现的声子来做量子计算和量子传感,这一进展当然将有助于这一努力,它有助于进一步发展量子计算,而量子计算在未来将有许多应用。"...PC版:https://www.cnbeta.com.tw/articles/soft/1366241.htm手机版:https://m.cnbeta.com.tw/view/1366241.htm

相关推荐

封面图片

MPQ团队利用单个铷原子产生了数量破纪录的量子纠缠光子簇

MPQ团队利用单个铷原子产生了数量破纪录的量子纠缠光子簇在2022年8月24日发表于《自然》杂志上的一篇文章中,来自马克斯·普朗克量子光学研究所(MPQ)的一支团队,详细介绍了一种高效驱动光量子纠缠的新方法。虽然听起来有些违反直觉,但数十年来的量子实验已经充分证明——无论相距多远,改变其中一个结对粒子的状态、就会同步改变另一粒子的状态。一个铷原子被困在一个由两个高反射镜组成的光学谐振器中(渲染图,来自:MPQ)受量子纠缠现象的启发,近年来已有大量团队投入新兴商业技术的开发。真空状态下的光学谐振器,单个铷原子被困于支架内的锥形镜之间。以量子计算器为例,其中纠缠的例子,就可用于存储和存储信息的量子比特。研究配图1-实验设置/协议概述为实现最佳效果,量子计算机需要用到能够产生大量粒子、并将之纠缠到一起的装置,但这显然并非易事。研究配图2-GHz状态好消息是,MPQ研究人员找到了一种更可靠的量子纠缠方法,并成功地将14个光子纠缠到了一起——这也是迄今为止规模最喜人的“光子簇”。研究配图3-集簇状态具体说来是,研究团队从单独的铷原子开始上手,将它困在一个以特定模式反射电磁波的光学腔中。当被特定频率的激光击中时,原子就被赋予了准备就绪的给定特定。研究配图4-测得N光子重合率接着研究人员向它发射另一调制脉冲,以使原子发射一个与它纠缠的光子。通过重复该过程,原子便可在每个光子发射之间旋转,直到产生一整条相互纠缠的“光子链”。扩展数据图1-详细的实验序列更棒的是,该过程较现有技术的效率更加出众——产生光子的时间占比超过43%,近乎每两次光脉冲就能产生一个光子。扩展数据图2-奇偶性振荡尽管对于长期关注量子纪录的朋友们来说,14个纠缠量子可能听起来不算多——毕竟此前科学家已设法通过气体实验、实现了数万亿个原子的纠缠——但此类系统并不适用于量子计算机或量子通信。扩展数据图3-发射器的相干特性相比之下,通过常规技术手段产生的光子,其量子应用也要简单得多。更何况这项新技术颇具效率优势,意味着后续能够轻松扩展光子的产量。下一步,MPQ团队计划开展至少利用两个原子的新实验。扩展数据图4-vSTIRAP过程引发的失真最后,有关这项研究的详情,已发表于近日出版的《Nature》期刊上,原标题为《Efficientgenerationofentangledmultiphotongraphstatesfromasingleatom》。PC版:https://www.cnbeta.com/articles/soft/1309989.htm手机版:https://m.cnbeta.com/view/1309989.htm

封面图片

量子互联网的重要里程碑: 新实验实现在技术之间"翻译"量子信息

量子互联网的重要里程碑:新实验实现在技术之间"翻译"量子信息这代表了一种将量子信息从量子计算机使用的格式转化为量子通信所需格式的创新方法。一个铌超导空腔。孔洞通向隧道,隧道相交以捕获光和原子。光子--光的粒子--对量子信息技术至关重要,但不同的技术以不同的频率使用它们。例如,一些最常见的量子计算技术是基于超导量子比特,如科技巨头Google和IBM使用的那些;这些量子比特将量子信息存储在以微波频率移动的光子中。但是,如果你想建立一个量子网络,或连接量子计算机,你就不能四处发送微波光子,因为它们对量子信息的控制力太弱,无法在旅途中生存。"我们用于经典通信的很多技术--手机、Wi-Fi、GPS以及诸如此类的东西--都使用微波频率的光,"芝加哥大学詹姆斯-弗兰克研究所的博士后、该论文的第一作者AishwaryaKumar说。"但你不能这样做量子通信,因为你需要的量子信息是在一个单一的光子中。而在微波频率下,这种信息会被埋没在热噪声中。"铷的电子能级示意图。其中两个能级间隙分别与光学光子和微波光子的频率相符。激光被用来迫使电子跳到更高的层次或降到更低的层次。解决方案是将量子信息转移到更高频率的光子上,称为光学光子,它对环境噪声的抵抗力要强得多。但信息不能直接从光子转移到光子;相反,我们需要中间物质。一些实验为此目的设计了固态设备,但库马尔的实验瞄准了更基本的东西:原子。原子中的电子只允许拥有某些特定的能量,称为能级。如果一个电子处于一个较低的能级,它可以被激发到一个较高的能级,方法是用一个能量正好与较高和较低能级之间的差异相匹配的光子击中它。同样地,当一个电子被迫降到一个较低的能级时,原子就会发射出一个能量与能级之间的能量差相匹配的光子。铷原子恰好有两个空隙,库马尔的技术利用了这两个空隙:一个正好等于微波光子的能量,另一个正好等于光子的能量。通过使用激光使原子的电子能量上下移动,该技术允许原子吸收带有量子信息的微波光子,然后发射带有该量子信息的光学光子。这种不同模式的量子信息之间的转换被称为"转导"。有效地将原子用于这一目的是由于科学家们在操纵这种小物体方面取得的重大进展而成为可能。库马尔说:"在过去的20或30年里,我们作为一个群体已经建立了卓越的技术,使我们能够控制关于原子的一切,所以实验是非常可控和有效的。"他说,他们成功的另一个秘密是该领域在腔体量子电动力学方面的进展,在那里,一个光子被困于一个超导反射室。迫使光子在一个封闭的空间里反弹,超导腔加强了光子和放在里面的任何物质之间的相互作用。他们的腔体看起来不是很封闭,事实上,它更像一块瑞士奶酪。但看起来像洞的地方实际上是以非常特殊的几何形状相交的隧道,因此光子或原子可以被困在一个交叉点上。这是一个聪明的设计,也允许研究人员进入腔室,以便他们能够注入原子和光子。该技术可以双向工作:它可以将量子信息从微波光子转移到光学光子,反之亦然。因此,它可以在两个超导量子计算机之间的长距离连接的任何一侧,并作为量子互联网的基本构件。但库马尔认为,这项技术的应用可能比量子网络多得多。它的核心能力是强纠缠原子和光子--这是整个领域中许多不同的量子技术中必不可少的,也是困难的任务。他说:"我们真正感到兴奋的事情之一是这个平台能够产生真正有效的纠缠,纠缠是我们关心的几乎所有量子的核心,从计算到模拟到计量学和原子钟。我很高兴看到我们还能做什么。"...PC版:https://www.cnbeta.com.tw/articles/soft/1352151.htm手机版:https://m.cnbeta.com.tw/view/1352151.htm

封面图片

量子技术的新基石:量子点和扭曲光

量子技术的新基石:量子点和扭曲光通过量子点源设计基于粒子内和粒子间轨道角动量纠缠态的灵活平台方案。资料来源:NicolòSpagnolo量子点:桥梁技术量子点(QDs)是一种具有巨大潜力的微小粒子。来自罗马萨皮恩扎大学、巴黎萨克雷大学和那不勒斯费德里科二世大学的研究团队将OAM的特性与量子点的特性相结合,在两种尖端技术之间架起了一座桥梁。他们的研究成果发表在同行评审金牌娱乐《先进光子学》(AdvancedPhotonics)杂志上。拟议协议的概念方案。以近乎确定性的方式操纵由QD光源产生的单光子的偏振和OAM,通过q板使两个自由度相互作用,产生粒子内纠缠态。在粒子间机制中,两个光子在由偏振和OAM组成的混合空间中以特定状态为特征,通过分束器发生干涉。通过对重合次数的后选择,实现了一个概率纠缠门。资料来源:AlessiaSuprano创新在哪里?他们建造的这座桥可以灵活地用于两个目标。首先,它可以制造在OAM偏振空间内纠缠的纯单光子,研究人员可以直接对其进行计数。其次,这座桥还能制造量子世界中强相关的光子对。它们是纠缠在一起的,因此每个单光子的状态都不能独立于另一个光子的状态来描述,即使它们相距甚远。这对量子通信和加密来说意义重大。这个新平台有可能在粒子内部和粒子之间创建混合纠缠态,所有这些都属于高维希尔伯特空间。一方面,研究小组实现了纯单光子的产生,其量子态在混合OAM极化域内表现出不可分离性。通过利用几乎确定性的量子源与q板(一种能够根据单光子偏振调整OAM值的设备)的结合,研究人员可以通过单光子计数直接验证这些状态,从而避免了预示过程的需要并提高了生成率。另一方面,研究小组还利用单光子内部的不可分性概念作为资源,生成在混合OAM偏振空间内具有纠缠性的单光子对。罗马萨皮恩扎大学物理系量子信息实验室主任FabioSciarrino教授对此评论说:"提出的灵活方案代表着高维多光子实验向前迈进了一步,它可以为基础研究和量子光子应用提供一个重要平台。"对量子技术的影响从本质上讲,这项研究标志着在追求先进量子技术的道路上迈出了重要一步。这就好比连接了两座大城市。这种连接为量子计算、通信以及更多领域带来了令人兴奋的可能性。因此这不仅是科学,更是未来。...PC版:https://www.cnbeta.com.tw/articles/soft/1396377.htm手机版:https://m.cnbeta.com.tw/view/1396377.htm

封面图片

操控"量子光"的空前突破 让光子与人造原子相互作用

操控"量子光"的空前突破让光子与人造原子相互作用艺术家对光子与人造原子相互作用后如何结合的印象。资料来源:巴塞尔大学爱因斯坦在1916年提出的刺激性光发射被广泛观察到,用于大量的光子,并为激光的发明奠定了基础。通过这项研究,现在已经观察到了单光子的刺激发射。具体来说,科学家们可以测量一个光子和一对绑定的光子从一个量子点(一种人工创造的原子)散射出来的直接时间延迟。悉尼大学物理学院的SahandMahmoodian博士和这项研究的共同主要作者说:"这为操纵我们可以称之为'量子光'打开了大门。这一基础科学为量子增强测量技术和光子量子计算的进步开辟了道路。"来自悉尼大学物理学院的联合主要作者SahandMahmoodian博士。资料来源:悉尼大学一个多世纪前,通过观察光与物质的相互作用,科学家们发现光不是一束粒子,也不是能量的波型--而是同时表现出这两种特性,即所谓的波粒二象性。光与物质相互作用的方式继续让科学家和人类的想象力着迷,既因为其理论上的美丽,也因为其强大的实际应用。无论是光如何穿越星际介质的广阔空间,还是激光的发展,对光的研究都是一门具有重要实际用途的科学。没有这些理论基础,几乎所有的现代技术都是不可能的。没有移动电话,没有全球通信网络,没有计算机,没有GPS,没有现代医学成像。联合第一作者巴塞尔大学纳米光子学小组的娜塔莎-托姆博士。在通信中使用光--通过光导纤维--的一个优势是,光能包,即光子不容易相互影响,这创造了近乎无失真的光速信息传输。然而,我们有时希望光能够相互作用。在这里,事情变得很棘手。例如,光被用来测量距离的微小变化,使用的仪器称为干涉仪。这些测量工具现在很普遍,无论是在先进的医学成像中,还是在对牛奶进行质量控制等重要但也许更平凡的任务中,或是以LIGO等精密仪器的形式,它在2015年首次测量了引力波。量子力学定律对此类设备的灵敏度设定了限制。这个限制是在测量的敏感程度和测量设备中的平均光子数量之间设定的。对于经典激光,这与量子光不同。联合主要作者、巴塞尔大学的娜塔莎-托姆博士说。"我们建造的设备在光子之间诱发了如此强烈的相互作用,我们能够观察到一个光子与之相互作用与两个光子之间的差异。"我们观察到,与两个光子相比,一个光子被延迟了更长的时间。有了这种真正强大的光子-光子互动,两个光子以所谓的双光子束缚状态的形式变得纠缠在一起。"像这样的量子光有一个优势,即原则上它可以用更少的光子进行更敏感的测量,具有更好的分辨率。这对于生物显微镜的应用非常重要,因为大的光强度可能会损坏样品,而且要观察的特征特别小。Mahmoodian博士说:"通过证明我们可以识别和操纵光子结合状态,我们已经向利用量子光的实际用途迈出了重要的第一步。我研究的下一步是看这种方法如何被用来产生对容错量子计算有用的光态,这是由数百万美元的公司,如PsiQuantum和Xanadu追求的。"Tomm博士说:"这个实验是令人惊艳的,不仅因为它验证了一个基本的效应--刺激发射--的终极极限,而且它还代表了向先进应用迈出的巨大技术一步。我们可以应用同样的原理来开发更有效的设备,给我们提供光子束缚状态。这对广泛领域的应用是非常有希望的:从生物学到先进的制造业和量子信息处理。"...PC版:https://www.cnbeta.com.tw/articles/soft/1350677.htm手机版:https://m.cnbeta.com.tw/view/1350677.htm

封面图片

量子物质突破:研究人员发现独特的量子行为

量子物质突破:研究人员发现独特的量子行为一个科学家小组将冷原子气体的操纵潜力提高了一倍,创造出了一种新型物质。这一突破可以通过激发特制气体中的"密度波"来推动量子技术的发展。密度波插图。由HaraldRitsch绘制。资料来源:因斯布鲁克大学/EPFL过去,冷原子气体因能够"编程"原子之间的相互作用而闻名于世,洛桑联邦理工学院的让-菲利普-布兰特教授(Jean-PhilippeBrantut)说。"我们的实验让这种能力翻了一番!"他们与因斯布鲁克大学的赫尔穆特-里奇(HelmutRitsch)教授小组合作,取得了一项突破性进展,这不仅会影响量子研究,还会影响未来的量子技术。长期以来,科学家们一直对了解材料如何自组织成晶体等复杂结构感兴趣。在量子物理学这个常常令人费解的世界里,粒子的这种自组织表现为"密度波",即粒子排列成一种有规律的、重复的模式或"秩序";就像一群穿着不同颜色衬衫的人站成一排,但没有两个穿着相同颜色衬衫的人站在一起。在金属、绝缘体和超导体等多种材料中都能观察到密度波。然而,对它们的研究一直很困难,尤其是当这种秩序(波中粒子的模式)与其他类型的组织(如超流体--一种允许粒子无阻力流动的特性)同时出现时。值得注意的是,超流动性并不仅仅是一种理论上的好奇心;它对于开发具有独特性质的材料(例如高温超导性,它可以带来更高效的能量传输和存储)或建造量子计算机具有巨大的意义。为了探索这种相互作用,布兰特和他的同事们创造了一种"单元费米气体",这是一种由冷却到极低温度的锂原子组成的稀薄气体,其中的原子经常相互碰撞。然后,研究人员将这种气体置于光腔中,光腔是一种用于将光线长时间限制在狭小空间内的装置。光腔由两面反射镜组成,能将射入的光线在两面反射镜之间来回反射数千次,从而使光粒子(光子)在光腔内积聚。在这项研究中,研究人员利用空腔使费米气体中的粒子发生远距离相互作用:第一个原子会发射一个光子,光子反弹到镜子上,然后被气体中的第二个原子重新吸收,无论它与第一个原子的距离有多远。当发射和重新吸收的光子足够多时(在实验中很容易调整),原子就会集体组织成密度波模式。布兰特说:"原子在费米气体中直接相互碰撞,同时又在很远的距离上交换光子,这是一种新型物质,其中的相互作用是极端的。我们希望,我们在那里看到的东西将增进我们对物理学中遇到的一些最复杂材料的理解。"...PC版:https://www.cnbeta.com.tw/articles/soft/1372485.htm手机版:https://m.cnbeta.com.tw/view/1372485.htm

封面图片

量子照明:先进设备可产生单光子并用于编码信息

量子照明:先进设备可产生单光子并用于编码信息洛斯阿拉莫斯国家实验室(LosAlamosNationalLaboratory)的科学家团队将两种不同的原子薄材料堆叠在一起,实现了一种手性量子光源。这种量子光发射器的新方法可产生圆偏振单光子流或光粒子流,可用于一系列量子信息和通信应用。洛斯阿拉莫斯国家实验室科学家HanHtoon说:"我们的研究表明,单层半导体有可能在没有外部磁场的帮助下发射圆偏振光。以前只有通过大型超导磁体产生的高磁场、将量子发射器与非常复杂的纳米级光子学结构耦合或向量子发射器注入自旋偏振载流子才能实现这种效果,而我们的近程效应方法具有低成本制造和可靠性高的优势"。偏振态是对光子进行编码的一种手段,因此这一成果是朝着量子密码学或量子通信方向迈出的重要一步。有了一个既能产生单光子流又能引入偏振的光源,基本上就把两种设备合二为一了。手性量子光发射是在两种不同层状材料(一种单层半导体和一种反铁磁晶体)的叠层中形成的,从材料中升起,可用于量子信息和通信应用。资料来源:洛斯阿拉莫斯国家实验室压痕是光致发光的关键正如发表在《自然-材料》(NatureMaterials)杂志上的一篇论文所描述的,研究团队在集成纳米技术中心(CenterforIntegratedNanotechnologies)工作,将单分子厚的二硒化钨半导体层堆叠在更厚的三硫化镍磷磁性半导体层上。博士后助理研究员李向志利用原子力显微镜在这层薄薄的材料上制造出了一系列纳米级的压痕。这些压痕的直径约为400纳米,因此200多个这样的压痕可以很容易地穿过一根头发的宽度。事实证明,当激光聚焦在这堆材料上时,原子显微镜工具产生的压痕会产生两种效果。首先,压痕在势能图中形成了一个井或凹陷。二硒化钨单层的电子落入凹陷处。这刺激了井中单光子流的发射。纳米压痕还破坏了底层三硫化二磷镍晶体的典型磁性,产生了一个局部磁矩,从材料中指向上方。该磁矩使发射的光子产生圆极化。为了在实验中证实这一机制,研究小组首先与位于洛斯阿拉莫斯的国家高磁场实验室脉冲磁场设备合作,进行了高磁场光学光谱实验。然后,研究小组与瑞士巴塞尔大学合作测量了局部磁矩的微小磁场。实验证明,研究小组成功地展示了一种控制单光子流偏振态的新方法。量子信息编码研究小组目前正在探索如何通过施加电刺激或微波刺激来调节单光子的圆偏振程度。这种能力将提供一种将量子信息编码到光子流中的方法。进一步将光子流耦合到波导--光的微观管道--将提供允许光子单向传播的光子电路。这种电路将成为超安全量子互联网的基本构件。...PC版:https://www.cnbeta.com.tw/articles/soft/1379591.htm手机版:https://m.cnbeta.com.tw/view/1379591.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人