全新的氧化铪计算机内存原型抛弃了1和0 可用于更密集的数据存储

全新的氧化铪计算机内存原型抛弃了1和0可用于更密集的数据存储但是,一种新兴的计算机内存形式,即所谓的电阻开关内存,被设计得更加高效。这种新的存储器不是将信息翻转到两种可能的状态中的一种,而是可以创造一个连续的状态范围。这是通过对某些类型的材料施加电流来实现的,这导致其电阻变得更强或更弱。这些电阻的微小差异的广泛范围创造了一系列可能的状态来存储数据。该研究的第一作者MarkusHellenbrand博士说:"例如,一个基于连续范围的典型U盘将能够容纳10到100倍的信息。"在这项新的研究中,该团队开发了一个电阻式开关记忆装置的原型,该装置由一种叫做氧化铪的材料制成,这种材料已经在半导体行业中作为绝缘体使用。通常情况下,将其用于存储器是具有挑战性的,因为它在原子水平上没有结构--其铪和氧原子随机地混合在一起。但在这里,剑桥大学的研究人员发现,添加一种额外的成分有助于改变这种情况。当钡被扔进混合物时,它在堆叠的氧化铪薄膜之间形成了垂直的"桥"。由于这些钡桥是高度结构化的,电子可以轻易地穿过它们。在桥与设备接触的地方产生了一个能量屏障,这个屏障的高度可以被控制,从而改变整个材料的电阻。这反过来又是对数据进行编码的原因。Hellenbrand说:"这允许材料中存在多种状态,而不像传统的存储器只有两种状态。这些材料真正令人兴奋的是它们可以像大脑中的突触一样工作:它们可以在同一个地方存储和处理信息,就像我们的大脑一样,这使得它们在快速增长的人工智能和机器学习领域具有很大的前景。"研究人员说,他们的设备使用由钡桥连接的氧化铪薄膜,有一些优势可以帮助它走上商业化的道路。首先,这些结构可以在相对较低的温度下自我组装,这比许多其他设备需要的高温制造要容易。此外,这些材料已经在计算机芯片行业中广泛使用,因此将它们纳入现有的制造技术应该更容易。对这些材料的可行性研究将使科学家们能够调查它们在更大范围内的工作情况。该研究发表在《科学进展》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1367423.htm手机版:https://m.cnbeta.com.tw/view/1367423.htm

相关推荐

封面图片

超密集量子计算机破局者:1 个锑原子存储 16 个量子态

超密集量子计算机破局者:1个锑原子存储16个量子态通常情况下,1个量子位(qubits)对应1个量子态(quantumstate)。悉尼新南威尔士大学(UNSW)的研究人员证明,锑(Sb)原子可以同时拥有16种量子态。锑原子本身有8个量子态,此外其电子还能额外提供2个量子态,而通过叠加锑原子和锑电子,就能产生总共16种量子态,这就像未来的3DNAND,每个单元可以写入16位数据。https://www.ithome.com/0/751/251.htm

封面图片

压力下的原子:研究人员看到超高效计算内存的曙光

压力下的原子:研究人员看到超高效计算内存的曙光艺术家绘制的二维材料效果图,这种材料经过战略应变,处于两种不同的晶相之间。罗切斯特大学助理教授斯蒂芬-吴(StephenWu)正在利用这种材料制造混合相变忆阻器,以提供快速、低功耗和高密度的计算存储器。图片来源:罗切斯特大学插图/MichaelOsadciw混合电阻开关这种方法是由电子与计算机工程和物理学助理教授StephenM.Wu的实验室开发的,它结合了现有的两种用于存储器的电阻开关形式:忆阻器和相变材料的最佳品质。与当今最普遍的存储器形式(包括动态随机存取存储器(DRAM)和闪存)相比,这两种形式都具有优势,但也有缺点。吴说,忆阻器的工作原理是在两个电极之间的细丝上施加电压,与其他形式的存储器相比,它往往缺乏可靠性。同时,相变材料需要选择性地将一种材料熔化成非晶态或结晶态,需要消耗过多的电能。存储器技术的突破研究人员们把忆阻器和相变器件的理念结合在一起,超越了这两种器件的局限性。"我们正在制造一种双端忆阻器装置,它能将一种晶体驱动到另一种晶体相位。这两种晶体相具有不同的电阻,然后你可以将其存储为存储器。"吴介绍说。关键在于利用二维材料,这种材料可以被拉伸到在两种不同晶相之间的临界部位,并且可以用相对较小的力量向任一方向推移。工程与合作吴说:"我们的工程设计本质上只是在一个方向上拉伸材料,在另一个方向上压缩材料。通过这样做,性能可以提高几个数量级。在我看来,这种材料最终可以作为一种超快、超高效的内存形式应用于家用电脑。这可能会对整个计算产生重大影响。"吴和他的研究生团队开展了实验工作,并与罗切斯特机械工程系的研究人员(包括助理教授赫萨姆-阿斯卡里和索比特-辛格)合作,确定在哪里以及如何对材料施加应变。制造相变忆阻器的最大障碍是继续提高其整体可靠性,但他对团队迄今取得的进展感到鼓舞。参考文献"垂直二碲化钼相变忆阻器的应变工程",作者:侯文辉、AhmadAzizimanesh、AdityaDey、杨玉峰、王无修、邵晨、吴辉、HesamAskari、SobhitSingh和StephenM.Wu,2023年11月23日,《自然-电子学》。DOI:10.1038/s41928-023-01071-2编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1402467.htm手机版:https://m.cnbeta.com.tw/view/1402467.htm

封面图片

IBM计算机“基准”实验显示量子计算机将在两年内超越传统计算机

IBM计算机“基准”实验显示量子计算机将在两年内超越传统计算机这项新研究的成果发表在上周的《自然》杂志上。科学家们使用IBM量子计算机Eagle来模拟真实材料的磁性,处理速度比传统计算机更快。IBM量子计算机之所以能超越传统计算机,是因为其使用了一种特殊的误差缓解过程来补偿噪声带来的影响。而噪声正是量子计算机的一个基本弱点。基于硅芯片的传统计算机依赖于“比特(bit)”进行运算,但其只能取0或1这两个值。相比之下,量子计算机使用的量子比特可以同时呈现多种状态。量子比特依赖于量子叠加和量子纠缠等量子现象。理论上这使得量子比特的计算速度更快,而且可以真正实现并行计算。相比之下,传统计算机基于比特的计算速度很慢,而且需要按顺序依次进行。但从历史上看,量子计算机有一个致命的弱点:量子比特的量子态非常脆弱,来自外部环境的微小破坏也会永远扰乱它们的状态,从而干扰所携带的信息。这使得量子计算机非常容易出错或“出现噪声”。在这一新的原理验证实验中,127量子比特的Eagle超级计算机用建立在超导电路上的量子比特计算了二维固体的完整磁性状态。然后,研究人员仔细测量每个量子比特所产生的噪声。事实证明,诸如超级计算材料中的缺陷等因素可以可靠预测每个量子比特所产生的噪声。据报道,研究小组随后利用这些预测值来模拟生成没有噪音的结果。量子霸权的说法之前就出现过。2019年,谷歌的科学家们声称,公司开发的量子计算机Sycamore在200秒内解决了一个普通计算机需要1万年才能破解的问题。但谷歌量子计算机所解决的问题本质上就是生成一长串随机数,然后检查它们的准确性,并没有什么实际用途。相比之下,用IBM量子计算机完成的新实验是一个高度简化但有真实应用价值的物理问题。2019年谷歌量子霸权研究成果参与者之一、加州大学圣巴巴拉分校物理学家约翰·马丁尼斯(JohnMartinis)表示,“这能让人们乐观认为,它将在其他系统和更复杂的算法中发挥作用。”(辰辰)...PC版:https://www.cnbeta.com.tw/articles/soft/1366285.htm手机版:https://m.cnbeta.com.tw/view/1366285.htm

封面图片

微小磁涡流可推动高性能计算机进步 号称效率提高100倍

微小磁涡流可推动高性能计算机进步号称效率提高100倍美国能源部阿贡国家实验室的科学家们正在努力用微小的磁涡(被称为skyrmions)取代这些条形磁铁。这些小至十亿分之一米的旋涡在某些磁性材料中形成,并有可能带来新一代的微电子技术,用于高性能计算机的内存存储。在阿贡材料科学部(MSD)工作的西北大学研究生亚瑟-麦克雷(ArthurMcCray)说:"计算机存储器中的条形磁铁就像打了一个活结的鞋带,几乎不需要任何能量就能解开它们。而且任何条形磁铁由于某种破坏而出现故障,都会影响到其他的磁铁。相比之下,skyrmions就像打了死结的鞋带。无论你如何用力拉动一根线,鞋带都会保持更加系紧。因此,skyrmions对任何干扰都非常稳定。另一个重要特点是,科学家可以通过改变温度或施加电流来控制它们的行为。"随着温度从-92华氏度(204开尔文)到-272华氏度(104开尔文),skyrmion分组从高度有序到无序的变化。明亮的点表示有序。资料来源:阿贡国家实验室科学家们对不同条件下的skyrmion行为有很多需要学习。为了研究它们,阿贡领导的团队开发了一个人工智能(AI)程序,该程序与阿贡的纳米材料中心(CNM)的高功率电子显微镜一起工作,CNM是美国能源部科学办公室的用户设施。该显微镜可以在非常低的温度下观察到样品中的天体。该团队的磁性材料是一种铁、锗和碲的混合物。在结构上,这种材料就像一叠有很多张的纸。一叠这样的纸片包含许多天体,而一张纸片可以从顶部剥离,并在CNM这样的设施中进行分析。MSD的博士后YueLi说:"CNM的电子显微镜加上一种被称为机器学习的人工智能,使我们能够直观地看到skyrmion片以及它们在不同温度下的行为。我们最有趣的发现是,在华氏零下60度及以上的温度下,天离子以高度有序的模式排列,"MSD的材料科学家和小组负责人CharudattaPhatak说。"但是当我们冷却样品时,天体离子的排列就会发生变化。就像啤酒泡沫中的气泡一样,一些skyrmions变得更大,一些更小,一些合并,一些消失。"在零下270度,该层达到了几乎完全无序的状态,但当温度回到零下60度时,秩序又回来了。这种随着温度变化的有序-无序过渡可以在未来的微电子学中被利用,用于存储。科学家估计skyrmion的能源效率可能比目前用于研究的高性能计算机的存储器好100到1000倍。能源效率对下一代微电子技术至关重要,今天的微电子学已经占到了世界能源使用量的一个显著部分,并可能在十年内消耗近25%。必须找到更加节能的电子产品。...PC版:https://www.cnbeta.com.tw/articles/soft/1339047.htm手机版:https://m.cnbeta.com.tw/view/1339047.htm

封面图片

探索未来的数据存储技术 - 科学家取得超分子化学领域的突破

探索未来的数据存储技术-科学家取得超分子化学领域的突破在大数据和先进的人工智能时代,传统的数据存储方法已显得力不从心。为了满足对大容量和高能效存储解决方案的需求,开发新一代技术至关重要。其中,电阻式随机存取存储器(RRAM)依靠改变电阻水平来存储数据。最近发表在《AngewandteChemie》杂志上的一项研究详细介绍了一个研究小组的工作,他们开创了一种制造超分子忆阻器的方法,而忆阻器是构建纳米随机存取存储器的关键部件之一。忆阻器(memristor,memory-resistor的缩写)会根据施加的电压改变电阻。然而,在分子尺度上构建忆阻器是一项巨大的挑战。虽然可以通过氧化还原反应实现电阻切换,而且分子的带电状态很容易通过溶液中的反离子来稳定,但这种稳定在忆阻器所需的固态结中却很难实现。现在,中国北京清华大学李原领导的研究小组选择了超分子方法。它基于一种双稳态的索烃,这意味着它在氧化态和还原态都很稳定,可以以正电、负电或不带电的状态存在。索烃是由两个大分子环组成的系统,这两个环就像链条中的两个链节一样环环相扣,但没有化学键。为了构建忆阻器,研究小组将索烃沉积在涂有含硫化合物的金电极上,通过静电作用将其结合在一起。在此基础上,他们又放置了第二个电极,该电极由涂有氧化镓的镓铟合金制成。索烃在两个电极之间形成了一个由扁平分子组成的自组装单层。这种被命名为AuTS-S-(CH2)3-SO3-Na+//[2]catenane//Ga2O3/EGaIn的组合形成了忆阻器。正如RRAM所要求的那样。这些新型超分子忆阻器可根据外加电压在高阻态(关)和低阻态(开)之间切换。这些分子电阻开关实现了至少1000次擦除-读取(开)-写入-读取(关)循环。接通和断开之间的切换时间大大小于一毫秒,可与商用无机忆阻器媲美。分子开关可在几分钟内"记住"设定状态-开或关。这使它们成为具有非易失性存储能力的高效分子忆阻器的一个非常有前途的起点。此外,它们还具有二极管或整流器的功能,这使它们成为开发分子纳米忆阻器的有趣元件。...PC版:https://www.cnbeta.com.tw/articles/soft/1400983.htm手机版:https://m.cnbeta.com.tw/view/1400983.htm

封面图片

质子介导法为下一代内存设备和神经形态计算芯片提供动力

质子介导法为下一代内存设备和神经形态计算芯片提供动力硒化铟等铁电材料本身具有极性,在受到电场作用时可以改变极性。这一特性使它们成为开发存储器技术的一个极具吸引力的选择。由此产生的存储器件在低电压下工作时,具有卓越的读/写耐久性和写入速度。然而,它们的存储容量有限。该研究的共同负责人何新解释说,容量限制源于目前的技术只能诱导少数几个铁电相,而记录这些铁电相给实验带来了巨大挑战。他在薛飞和张锡祥的指导下开展了这项研究。研究小组的铁电神经形态计算芯片正在实验室进行测试。图片来源:©2023KAUST;FeiXue.研究团队的新方法以硒化铟的质子化为基础,从而产生多种铁电相。研究人员将这种铁电材料纳入了一个由硅支撑的堆叠异质结构组成的晶体管中进行评估。他们在异质结构上层叠了一层硒化铟薄膜,异质结构由嵌套在底部铂层和顶部多孔二氧化硅之间的氧化铝绝缘片组成。铂层充当外加电压的电极,而多孔二氧化硅则充当电解质,为铁电薄膜提供质子。研究人员通过改变外加电压,逐渐从铁电薄膜中注入或移除质子。这就可逆地产生了几种具有不同质子化程度的铁电相,而质子化对于实现具有巨大存储容量的多级存储设备至关重要。正电压越高,质子化程度越高;负电压越高,质子化程度越低。质子化水平的变化还取决于薄膜层与二氧化硅的距离。在与二氧化硅接触的底层,质子化水平达到最高值,而在顶层,质子化水平逐级降低,达到最低值。令人意想不到的是,当电压关闭时,质子诱导的铁电相又恢复到初始状态。薛解释说:"我们观察到这种不寻常的现象,是因为质子从材料中扩散出来,进入了二氧化硅。"通过创造一种与二氧化硅具有平滑、连续界面的薄膜,研究小组实现了一种质子注入效率高、工作电压低于0.4伏特的设备。这是开发低功耗存储器件的一个重要因素。薛承认,降低工作电压是一项重大挑战,但他解释说,界面上的质子注入效率可以控制工作电压,并可进行相应调整。他说:"我们面临的最大挑战是降低工作电压,但我们意识到,接口上的质子注入效率控制着工作电压,并可以进行相应的调整。我们致力于开发能耗更低、运行更快的铁电神经形态计算芯片。"...PC版:https://www.cnbeta.com.tw/articles/soft/1372197.htm手机版:https://m.cnbeta.com.tw/view/1372197.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人