这位德克萨斯科学家相信他可以帮助你成为烤肉高手

这位德克萨斯科学家相信他可以帮助你成为烤肉高手德克萨斯大学达拉斯分校化学和生物化学副教授仔细研究了在分子水平上制作完美烤牛胸肉的过程,他认为这可以决定烧烤的成功与否。“化学反应很有趣,”加森史密斯说。“这取决于你能让肌肉中的这些蛋白质做你想让它们做的事情,而不是它们想做的事情。”首先,考虑胶原蛋白。在肉中,它看起来像三股捻纱,在融化时会解开。然后它们与水结合,使肉在160°F至180°F(71°C至82°C)的温度下保持湿润。温度太低,绞不开,肉又硬;热量过多,胶原蛋白会纠缠得更紧,从而隔绝水分,最终你会得到一块干燥的牛胸肉。牛胸肉是从牛的肌肉发达的下胸部区域切下来的,当处理牛胸肉时,这种胶原蛋白方程式尤其重要。加森史密斯说:“经常运动的肌肉往往含有大量胶原蛋白,这对于在使用时将肌肉保持在一起很重要,这样它们就不会轻易撕裂。如果烹饪不当,胶原蛋白也会使肉变硬。”另一个需要记住的关键化学反应是烟雾、蛋白质和水之间的相互作用,这对于在肉周围形成美味的深色外壳(也称为树皮)至关重要。蛋白质慢慢地从肌肉迁移到肉的表面,然后在高温下与牛胸肉的摩擦结合在一起,形成紧密基质。“为了获得烟熏味,烟必须有一些东西可以固定并紧密结合,”他补充道。“烟雾实际上是水和烤木微小颗粒的气溶胶,更喜欢停留在潮湿的表面上。”虽然你可能想用油润滑肉,但只能用水喷洒。油和烟在这里不能很好地结合在一起。与流行的观点相反,经过八小时的慢煮后,牛胸肉不需要休息,因为它不会吸收任何汁液。相反,加森史密斯说用烧烤纸包裹它并在烤箱中完成。这种做法可以锁住水分,使肉达到200°F(93°C)左右的理想温度。这位教授最近教授了一门名为“烧烤的科学与历史”的荣誉课程,他还补充说,就像科学中的任何事物一样,变量总是会让人很难每次都得到相同的结果。“化学物质非常复杂,你必须恰到好处才能得到完美的牛胸肉,”他说。“肉中的脂肪和无数其他因素使牛胸肉变得令人惊叹。牛胸肉的简单性在于只有几种成分,通常无法体现煮熟后产生的味道有多么复杂。那不是科学;那是科学。这就是艺术。”密切关注厨师的这几个方面应该有助于你做出最好的牛胸肉。但如果没有,站在吸烟者周围时抛下一些关于胶原蛋白和蛋白质的事实至少应该给公司里的其他业余烧烤爱好者留下深刻的印象。请观看下面的视频,了解Gassensmith的实际操作:https://www.youtube.com/watch?v=LUFMmtLMZJo...PC版:https://www.cnbeta.com.tw/articles/soft/1368257.htm手机版:https://m.cnbeta.com.tw/view/1368257.htm

相关推荐

封面图片

科学家揭示蛋白质如何驱动癌症生长

科学家揭示蛋白质如何驱动癌症生长在圣路易斯华盛顿大学医学院、麻省理工学院和哈佛大学布罗德研究所、杨百翰大学以及世界各地其他机构的领导下,临床蛋白质组肿瘤分析联合会对驱动癌症的关键蛋白质及其调控方式进行了研究。研究结果于8月14日发表在《细胞》(Cell)和《癌细胞》(CancerCell)杂志上的一组论文中。临床肿瘤蛋白质组学分析联合会由美国国立卫生研究院(NIH)国家癌症研究所资助。资深作者、华盛顿大学戴维-英格利希-史密斯医学特聘教授丁力博士说:"在我们开发更好的癌症疗法的努力中,这种对驱动肿瘤生长的蛋白质的新分析是继癌症基因组测序之后的下一步。通过过去的癌细胞基因组测序工作,我们确定了近300个驱动癌症的基因。现在,我们正在研究这些癌基因所启动的机器的细节--实际导致细胞分裂失控的蛋白质及其调控网络。我们希望这项分析能成为癌症研究人员开发多种肿瘤类型新疗法的重要资源。"研究人员分析了涉及10种不同类型癌症的约1万个蛋白质,他们强调了大量数据在这类分析中的重要性;其中许多重要的癌症驱动蛋白在任何一种癌症中都很罕见,如果对肿瘤类型进行单独研究,就不可能发现这些蛋白。这项分析包括两种不同类型的肺癌以及结直肠癌、卵巢癌、肾癌、头颈癌、子宫癌、胰腺癌、乳腺癌和脑癌。丁力也是巴恩斯犹太医院和华盛顿大学医学院西特曼癌症中心的研究成员。他介绍谁哦"当我们对多种癌症类型进行综合分析时,我们就能提高检测导致癌症生长和扩散的重要蛋白质的能力。综合分析还能让我们找出驱动不同类型癌症的主要共同机制。"除了单个蛋白质的功能外,这些数据还能让研究人员了解蛋白质之间是如何相互作用来促进癌症生长的。如果两种蛋白质的水平相互关联--例如,当其中一种蛋白质的水平较高时,另一种蛋白质的水平也总是较高--这就表明这两种蛋白质是作为伙伴作用的。破坏这种相互作用可能是阻止肿瘤生长的一种有效方法。这些研究(包括丁和布罗德研究所的加德-格茨博士共同领导的一项研究)还揭示了通过化学改变蛋白质以改变其功能的不同方法。研究人员记录了这种化学变化--称为乙酰化和磷酸化的过程--如何改变DNA修复、改变免疫反应、改变DNA的折叠和包装方式,以及其他可能在癌症发生过程中发挥作用的重要分子变化。这项研究还揭示了免疫疗法的有效性。检查点抑制剂等免疫疗法通常对突变较多的癌症最有效,但即便如此,它们也并非对所有患者都有效。研究人员发现,大量突变并不总是导致异常蛋白质的大量存在,而异常蛋白质正是免疫系统攻击肿瘤的目标。丁说:"对某些癌症来说,即使突变有可能产生肿瘤抗原,但如果没有异常蛋白表达或表达很少,这种突变就可能不是治疗的靶点。这可以解释为什么有些病人对免疫疗法没有反应,即使他们似乎应该对免疫疗法有反应。因此,我们的蛋白质组学调查涵盖了肿瘤抗原的表达谱,对于设计针对选定突变的新免疫疗法特别有用。"在另一项研究中,丁的团队确定了DNA甲基化模式,这是另一种能影响基因表达方式的化学变化。这种模式可能是癌症的关键驱动因素。在一项重要发现中,研究小组确定了在某些肿瘤类型中抑制免疫系统的分子开关。这组四项研究的最后一篇论文向更广泛的研究界提供了联盟使用的数据和分析资源。她说:"总的来说,这种对多种癌症类型进行的彻底蛋白质组学和化学修饰分析--与我们长期积累的癌症基因组学知识相结合--提供了另一层信息,我们希望这些信息能帮助解答癌症是如何生长并设法躲避我们的许多最佳治疗方法的许多持续存在的问题。"...PC版:https://www.cnbeta.com.tw/articles/soft/1377313.htm手机版:https://m.cnbeta.com.tw/view/1377313.htm

封面图片

科学家利用花卉的“超能力”开发突破性新药

科学家利用花卉的“超能力”开发突破性新药研究人员创新出一种更环保、更简单、更便宜的药物开发方法,利用一种来自兰花耳草(Oldenlandiaaffinis)的酶来生产稳定的环状蛋白质和肽,这有可能彻底改变制药生产,并适用于各行各业。资料来源:彼得-沃伦传统的小分子药物往往难以破坏蛋白质之间的相互作用,而制药业正在探索使用被称为"肽"的小蛋白质。这些肽的作用方式类似,为阻断这些相互作用提供了一种潜在的更有效方法。然而,肽和蛋白质往往不能成为很好的药物,因为它们的三维结构可能会解开,对高温敏感,而且很难进入人体细胞,而人体细胞中存在着许多令人兴奋但具有挑战性的药物靶点。现在,巴斯大学的科学家们开发出了一种解决这一问题的方法:通常蛋白质和肽链都有一个起点和终点--通过将这些松散的末端连接在一起,就有可能创造出非常坚硬的"环状"蛋白质和肽链,从而提高耐热性和化学稳定性,并使它们更容易进入细胞。他们从一种生长在热带地区的紫色小花Oldenlandiaaffinis(兰花耳草)中提取了一种名为OaAEP1的酶,并对其进行了改造,然后将其转移到细菌细胞中。这些细菌培养物在生长过程中可以大量生产蛋白质,同时只需一个步骤就能将两端连接起来。植物可以自然完成这一过程,但速度慢、产量低。另外,也可以通过化学方法进行环化,即分离酶,然后在试管中混合多种试剂,但这需要多个步骤,并使用有毒的化学溶剂。将整个过程置于细菌系统中可提高产量,使用更可持续的生物友好型试剂,而且所需步骤更少。因此,这种方法更简单、更便宜。为了展示这种方法,科学家们将细菌OaAEP1技术应用于一种名为DHFR的蛋白质,结果发现,将其头端和尾端连接在一起可使其更耐温度变化,同时仍能保持正常功能。巴斯大学生命科学系的乔迪-梅森(JodyMason)教授说:"蛋白质和肽通常对热相当敏感,但环化却能使它们更加坚固。奥尔登兰德植物自然会制造环状蛋白质,作为威慑掠食者的防御机制的一部分。因此,我们通过改造OaAEP1,并将其与现有的细菌蛋白质生产技术相结合,利用了这种花卉的超能力,创造出了一种非常强大的工具,将有助于药物发现行业的发展"。巴斯大学生命科学系副研究员SimonTang博士说:"蛋白质和多肽是非常有前景的候选药物,但开发新治疗方法的一个重要瓶颈是如何在不产生天文数字成本的情况下生产出足够多的蛋白质和多肽供患者使用。我们的新工艺让细菌完成所有工作,因此更清洁、更环保,而且步骤更少,操作更简单。我们对这一技术的潜在应用感到非常兴奋,它不仅适用于制药业,还适用于食品业、洗涤剂业、生物技术和生物能源生产等其他行业。"...PC版:https://www.cnbeta.com.tw/articles/soft/1401139.htm手机版:https://m.cnbeta.com.tw/view/1401139.htm

封面图片

科学家揭开可以让人造肉更多汁的秘密

科学家揭开可以让人造肉更多汁的秘密采用植物性肉类替代品的最大障碍之一是它们在食用时通常口感干燥、涩味重。以利兹大学的AnweshaSarkar教授为首的科学家团队正在率先改变植物蛋白的质地。他们正在努力改变人们对植物蛋白的感知,将其从粘稠、干燥的感觉转变为多汁、丰富的感觉,类似于脂肪。而他们在植物蛋白中添加的唯一物质就是水。植物蛋白微凝胶为了实现这种变化,科学家们通过一种叫做微溶胶的过程制造出了植物蛋白微凝胶。植物蛋白一开始是干的,质地粗糙,将其放入水中并加热。这改变了蛋白质分子的结构,使其聚集在一起,形成一个相互连接的网络或凝胶,将水困在植物蛋白质周围。然后对凝胶进行均质处理,将蛋白质网络分解成肉眼无法看到的微小颗粒。在压力下,就像被食用时一样,微凝胶会渗出水,产生类似于单一奶油的润滑效果。使用原子力显微镜进行分析后发现,植物蛋白微凝胶并没有凝结在一起,而是充满了水分。图片来源:利兹大学BenKew萨卡尔教授说:"我们所做的是将干燥的植物蛋白转化为水合植物蛋白,利用植物蛋白形成蜘蛛网状,将水保持在植物蛋白周围。这就为口腔提供了急需的水分和多汁的感觉。利用食品行业目前广泛使用的技术,无需添加任何化学物质或制剂,就能制造出植物蛋白微凝胶。关键成分就是水。"重振消费者兴趣研究小组在科学杂志《自然通讯》(NatureCommunications)上发表了他们的研究成果,并表示植物蛋白的干燥度一直是"......消费者接受度的关键瓶颈"。有了这一突破,研究小组希望能重振消费者对植物蛋白的兴趣,鼓励人们减少蛋白质摄入对动物产品的依赖,而这是实现全球气候变化目标的必要步骤。每年食品生产产生的180亿吨二氧化碳当量中,一半以上来自动物产品的饲养和加工。研究人员说,蛋白质微凝胶"......为设计下一代健康、美味和可持续食品提供了一个独特的平台"。在整个研究过程中,研究小组对植物蛋白微凝胶的行为进行了数学建模,并坚信他们的方法会奏效。但是,在利兹工程与物理科学学院的原子力显微镜套件中产生的可视化效果证明了这一点。原子力显微镜是用一个微小的探针扫描分子表面,以获得分子形状的图像。这些图像相当于概念验证。植物蛋白质一开始是结块的,水合性很差。加入水后对其进行加热。蛋白质会改变形状,将水困在自身周围,形成凝胶。凝胶被分解成植物蛋白微凝胶,植物蛋白颗粒被水包围。图片来源:利兹大学BenKew萨卡尔教授补充说:"看到原子力显微镜的图像是我们激动人心的时刻。可视化图像显示,蛋白质微凝胶基本呈球形,没有聚集或凝结在一起。我们可以看到独立间隔的植物蛋白微凝胶。我们的理论研究曾说过这是会发生的事情,但没有什么能比得上亲眼目睹这一切"。利兹大学食品科学与营养学院副教授、论文作者之一梅尔-霍姆斯博士说:"这项研究揭示了现代食品技术所涉及的科学的独创性和深度,从蛋白质的化学性质、食物在口腔中的感知方式到对摩擦学--材料与口腔中感官细胞之间的摩擦--的理解。解决食品科学中的重大问题需要跨学科科学"。鉴于微凝胶的润滑性(类似于单一奶油的润滑性),这意味着它们可以用于食品加工业的其他用途,例如替代食品中被去除的脂肪,以开发更健康的食品。利兹大学食品科学与营养学院博士生、该项目的首席研究员本-邱(BenKew)说:"这是一个非常了不起的发现。令人吃惊的是,在不添加一滴脂肪的情况下,微凝胶就具有类似于20%脂肪乳液的润滑性,我们是第一个报告这种情况的人"。"我们的实验数据得到了理论分析的支持,这也意味着我们可以开始在必须去除脂肪的食品中使用这些植物蛋白微凝胶,重新配制成更健康的下一代植物蛋白食品。"...PC版:https://www.cnbeta.com.tw/articles/soft/1386241.htm手机版:https://m.cnbeta.com.tw/view/1386241.htm

封面图片

科学家发现一个控制寿命的分子开关CHIP

科学家发现一个控制寿命的分子开关CHIP一个单一的蛋白质可以比在一个群体中更有效地控制衰老信号。根据最近的研究,蛋白质CHIP在单独行动时能比在成对状态下更有效地控制胰岛素受体。在细胞应激情况下,CHIP经常以同源二聚体的形式出现--两个相同的蛋白质的联合体--主要功能是破坏错误折叠的和有缺陷的蛋白质。PC版:https://www.cnbeta.com/articles/soft/1315009.htm手机版:https://m.cnbeta.com/view/1315009.htm

封面图片

科学家开发出阻止癌症生长的新方法 挑战现有范式

科学家开发出阻止癌症生长的新方法挑战现有范式凯斯西储大学的生物化学家们正在集中研究一种驱动癌症的关键蛋白质的降解问题;这是研究领域的一个重大转变。这种蛋白质就是LSD1(赖氨酸特异性组蛋白去甲基化酶1A),它在人体细胞内起着交通警察的作用。它在胚胎发育过程中控制基因活动,并在整个生命过程中调节基因表达。近年来,科学家们还发现,LSD1的过度表达--例如产生过多的蛋白质--会导致癌症和心脏病的发生。最近,一些研究人员希望通过阻止LSDI的催化活性来减缓癌症的生长--LSDI的化学反应会刺激细胞生长,但似乎也会导致其过度表达。但生物化学助理教授曹开祥正带领一个团队挑战这一假设:医学院的研究人员认为,他们可以通过降解整个LSD1蛋白,而不仅仅是短路导致其过度表达的化学反应,来取得更大的成功,从而减缓或阻止干细胞中癌症的生长。他们的研究最近发表在《自然-通讯》(NatureCommunications)杂志上。曾诚艾玛莉-库克(EmmaleeCooke)曹说:"我们需要一种真正精确有效的方法来靶向这些蛋白质,我们的研究表明,停止催化可能在15%的情况下有效(阻止过度表达),而我们的方法接近80%。因此,如果我们能开发出一种LSD1的降解剂,我们就能帮助病人减少治疗的次数--即使我们不能完全治愈癌症"。他和他的团队对LSD1主要以催化无关的方式发挥作用感到惊讶,但既然他们已经为研究界提供了"理论基础,这将是治疗这些疾病的更有效方法",他们将开始进一步测试,首先在癌症组织中测试,然后是动物模型,最终是人体试验。他说:"这就是未来--加入降解剂,就能完全杀死蛋白质。这项技术已经存在,因为其他研究人员已经对其他蛋白质进行过研究,但还没有对LSD1进行过研究。"...PC版:https://www.cnbeta.com.tw/articles/soft/1401491.htm手机版:https://m.cnbeta.com.tw/view/1401491.htm

封面图片

科学家用尖端人工智能揭开蛋白质的秘密

科学家用尖端人工智能揭开蛋白质的秘密该工具由KAUST生物信息学研究员MaxatKulmanov及其同事开发,在预测蛋白质功能方面优于现有的分析方法,甚至能够分析现有数据集中没有明确匹配的蛋白质。该模型被称为DeepGO-SE,它利用了类似于Chat-GPT等生成式人工智能工具所使用的大型语言模型。然后,它根据蛋白质工作方式的一般生物学原理,利用逻辑蕴含得出关于分子功能的有意义的结论。从本质上讲,它通过构建部分世界模型(在本例中为蛋白质功能),并根据常识和推理推断出在这些世界模型中应该发生的事情,从而赋予计算机逻辑处理结果的能力。一种新的人工智能(AI)工具能对未知蛋白质的功能进行逻辑推理,有望帮助科学家揭开细胞内部的奥秘。图片来源:©2024KAUST;IvanGromicho他补充说:"这种方法有很多应用前景,"KAUST生物本体论研究小组负责人罗伯特-霍恩多夫(RobertHoehndorf)说,"特别是当需要对神经网络或其他机器学习模型生成的数据和假设进行推理时。"库尔曼诺夫和霍恩多夫与KAUST的斯特凡-阿罗德(StefanArold)以及瑞士生物信息学研究所的研究人员合作,评估了该模型破译那些在体内作用未知的蛋白质功能的能力。该工具成功地利用了一种鲜为人知的蛋白质的氨基酸序列数据及其与其他蛋白质的已知相互作用,并精确地预测了其分子功能。该模型非常精确,在一次国际功能预测工具竞赛中,DeepGO-SE在1600多种算法中名列前20位。KAUST团队目前正在利用这一工具研究在沙特阿拉伯沙漠极端环境中生长的植物中发现的神秘蛋白质的功能。他们希望这些发现将有助于确定生物技术应用中的新型蛋白质,并希望其他研究人员也能使用这一工具。库尔曼诺夫解释说:"DeepGO-SE分析未表征蛋白质的能力可以促进药物发现、代谢通路分析、疾病关联、蛋白质工程、筛选感兴趣的特定蛋白质等任务。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1418103.htm手机版:https://m.cnbeta.com.tw/view/1418103.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人