新研究探讨了灌装不同容量的碳酸饮料需要多长时间才能失去其气泡

新研究探讨了灌装不同容量的碳酸饮料需要多长时间才能失去其气泡酵母、糖和酒的结合产生了气体(和酒精含量),虽然酵母在几个月内死亡,但随着香槟酒在几个月到几十年内的陈酿,形成了复杂的、受欢迎的香气。但是,与此同时,二氧化碳逐渐从瓶中逸出,导致香槟失去其标志性的气泡,改变了味道和香气。这促使研究人员关注二氧化碳的流失过程,以确定哪些因素有助于香槟的保质期。研究人员测量了13个不同年份的香槟酒中的二氧化碳溶解浓度,年份在25至47年之间,并估计了酵母产生的二氧化碳的原始数量。每个瓶子都是用相同型号的金属盖密封。不出所料,他们发现,瓶子里的二氧化碳量随着瓶子老化时间的延长而减少。例如,最古老的1974年的葡萄酒,几乎失去了80%的汽。然而,研究人员注意到瓶子的大小和二氧化碳水平之间的关联,小瓶子比大瓶子容易失去更多的气体。他们设计了一个公式来计算香槟的保质期,或者说,当香槟倒入杯中时,在多长时间内不再自发产生气泡。他们的计算预测,一个标准的25盎司(750毫升)的瓶子有40年的保质期,而一个50盎司(1.5升)的瓶子,也就是所谓的大香槟,可以持续82年。101盎司(3升)的Jeroboam香槟被预测可以保持其气泡长达132年之久。研究人员表示,增加瓶子的尺寸可以极大地提高其保存溶解的二氧化碳的能力,从而提高品尝时香槟的起泡能力。结果表明,香槟的起泡性取决于它所装的瓶子的大小。他们还说他们的预测公式是通用的,这意味着它可以预测香槟的保质期,无论在陈酿过程中是用金属还是软木塞来密封瓶子。该研究发表在ACSOmega杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1368715.htm手机版:https://m.cnbeta.com.tw/view/1368715.htm

相关推荐

封面图片

中国将建立电力二氧化碳排放因子常态化发布机制

中国将建立电力二氧化碳排放因子常态化发布机制中国生态环境部、国家统计局发布公告称,将建立电力二氧化碳排放因子常态化发布机制,并拟于2024年尽早发布2022年电力二氧化碳排放因子。根据《人民日报》星期二(4月16日)报道,中国生态环境部、国家统计局发布《关于发布2021年电力二氧化碳排放因子的公告》。此次发布的2021年电力二氧化碳排放因子,分为三种口径,包括2021年全国、区域及省级电力平均二氧化碳排放因子,2021年全国电力平均二氧化碳排放因子(不包括市场化交易的非化石能源电量)和2021年全国化石能源电力二氧化碳排放因子。据介绍,电力二氧化碳排放因子是核算电力消费二氧化碳排放量的重要基础参数。本次发布的电力二氧化碳排放因子可供不同主体核算电力消费的二氧化碳排放量时参考使用,是落实《关于加快建立统一规范的碳排放统计核算体系实施方案》中“统筹推进排放因子测算”要求的重要举措,为碳排放核算提供基础数据支撑。公告说,下一步,生态环境部、国家统计局将建立电力二氧化碳排放因子常态化发布机制。根据基础数据更新情况,拟于2024年尽早发布2022年电力二氧化碳排放因子。2024年4月16日8:16PM

封面图片

这块有5万年历史的冰块揭示了目前二氧化碳水平的真实状况

这块有5万年历史的冰块揭示了目前二氧化碳水平的真实状况俄勒冈州立大学(OSU)和圣安德鲁斯大学(UniversityofStAndrews)的科学家们与美国国家科学基金会(USNationalScienceFoundation)合作,在一项新的研究中采用了这种大胆的方法,通过南极冰层中的微小气泡,揭开了大气中二氧化碳长达5万年的时间线,这些气泡在地球表面下数英里处被时间冻结。奥斯陆大学助理教授、该研究的第一作者凯瑟琳-温特(KathleenWendt)说:"研究过去可以告诉我们今天有什么不同。今天的二氧化碳浓度变化速度确实是前所未有的。"研究小组利用通过钻探两英里(3.2千米)深的南极西部冰原(WAIS)分水岭冰芯提取的冷冻样本,对冰块中保存的小块气体进行了化学分析,以清楚地了解大气中二氧化碳在许多许多年中的变化情况。研究人员发现,大气中的二氧化碳浓度曾有过远超过"正常"范围的升高期,但与我们现在所面临的情况相比,人为温室气体排放所造成的二氧化碳浓度就显得微不足道了。在5万年的时间里,大气中二氧化碳的自然消长确实在55年中增加了大约百万分之14,每7000年左右增加一次。而现在,每隔五到六年,大气中的二氧化碳含量就会增加相同的数量。从根本上说,现在二氧化碳含量的增长速度是过去5万年任何时候的10倍。温特说:"我们的研究确定了有史以来观测到的二氧化碳自然上升的最快速度,而今天主要由人类排放驱动的二氧化碳上升速度要高出10倍。"研究小组的分析为我们描绘了一幅清晰的地球大气二氧化碳历史波动的长期图景,其中还揭示了与北大西洋寒冷间歇(或海因里希事件)相吻合的峰值,而北大西洋寒冷间歇与突如其来的重大气候变化有关。"这些海因里希事件确实非同寻常,"这项研究的共同作者、美国俄亥俄州立大学副教授克里斯托-布伊泽特(ChristoBuizert)说。"我们认为它们是由北美冰盖的剧烈崩塌引起的。这引发了一连串的连锁反应,包括热带季风、南半球西风以及从海洋中排出的大量二氧化碳。"现有的气候数据预测,随着地球变暖,这些西风可能会变得更强、更频繁,如果是这样的话,就会降低至关重要的南大洋吸收和容纳人类产生的二氧化碳的能力。可以说,随着地球持续变暖,这并不是科学家们希望看到的正反馈循环。温特补充说:"我们依靠南大洋吸收我们排放的部分二氧化碳,但迅速增强的南风削弱了南大洋吸收二氧化碳的能力。研究人员总结说:"本研究解析的大气二氧化碳上升速度和幅度为气候突变期间的碳循环变异性提供了重要的制约因素,并敦促人们警惕现代南大洋碳汇有可能因南大洋西风的持续极向增强而减弱。"这项研究发表在《美国国家科学院院刊》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1430851.htm手机版:https://m.cnbeta.com.tw/view/1430851.htm

封面图片

上海实现国内首例集装箱轮排放的二氧化碳回收利用

上海实现国内首例集装箱轮排放的二氧化碳回收利用据上海洋山出入境边防检查站消息,5月1日12时,巴拿马籍“长顶”号集装箱货轮完成作业后驶离上海洋山深水港一期码头。与以往不同,除了集装箱作业任务外,本次在装卸集装箱的同时还卸下了一罐液态二氧化碳。这罐液态二氧化碳源自船舶加装的碳捕捉系统,该系统将货轮引擎工作时排放的二氧化碳进行回收液化。国内首罐液态二氧化碳的卸船标志着远洋航行船舶从燃油消耗到二氧化碳回收利用形成闭环。

封面图片

中国首个海上二氧化碳封存示范工程项目投用

中国首个海上二氧化碳封存示范工程项目投用中国首个海上二氧化碳封存(CCS)示范工程项目在南中国海东部海域正式投用,开始规模化向海底地层注入二氧化碳。据财新网报道,中国海油集团星期四(6月1日)宣布上述信息。CCS是碳捕集、利用与封存(CCUS)技术中的一种,即把二氧化碳从发电、化工、炼钢等过程中分离出来,直接注入咸水层、枯竭油气层、煤床、盐床等地质体中,从而封存二氧化碳的过程。上述项目是为了封存伴随恩平15-1海上原油生产平台开采石油产生的二氧化碳。报道称,恩平15-1平台是亚洲最大的海上原油生产平台,所在油田群高峰日产原油超过7000吨,油田伴生气的二氧化碳含量达95%,若二氧化碳随原油一起被开采,不仅将增加二氧化碳排放量,还会腐蚀海上平台设施和海底管线。该项目目标是实现“岸碳入海”,即捕集陆上排放的二氧化碳,通过罐车、管道、船舶等方式输送到海洋中利用或封存。中国海油介绍,中国南部及沿海地区二氧化碳排放量高,但这些地区陆域沉积盆地面积小、分布零散,不适宜封存;而海洋碳封存具有不占用土地、远离蓄水层、海水层阻隔等优势。

封面图片

中国将首次开启海上二氧化碳封存

中国将首次开启海上二氧化碳封存中海油表示,这口井将建立起二氧化碳回注地层的“绿色通道”,预计每年可封存二氧化碳30万吨,累计封存二氧化碳150万吨以上,相当于植树近1400万棵,或停开近100万辆轿车。中国海油深圳分公司副总经理兼总工程师郭永宾表示,这口海上二氧化碳封存回注井完全由中国自主设计实施,标志着中国初步形成海上二氧化碳注入、封存和监测的全套钻完井技术和装备体系,填补了海上二氧化碳封存技术的空白。恩平15-1油田位于深圳西南约200公里的南海东部海域,平均水深约90米,是中国南海首个高含二氧化碳油田。经过一系列关键技术研究,中海油最终确定将二氧化碳封存在距离恩平15-1平台约3公里处的“穹顶”式地质构造中。该种地质构造类似一个倒扣在地底下的“巨碗”,具有自然封闭性,能够长期稳定地罩住二氧化碳。据悉,二氧化碳捕集、利用与封存技术(CCUS),是世界公认的具有巨大商业化应用潜力的碳减排技术之一。而在此之前,中国二氧化碳封存项目多为陆地封存。...PC版:https://www.cnbeta.com.tw/articles/soft/1350349.htm手机版:https://m.cnbeta.com.tw/view/1350349.htm

封面图片

剑桥科学家发明太阳能反应堆 可将塑料垃圾和二氧化碳转化为有用化学品

剑桥科学家发明太阳能反应堆可将塑料垃圾和二氧化碳转化为有用化学品就在六个月前,剑桥团队公布了他们的太阳能反应堆的一个版本。它由两个腔室组成,一个处理二氧化碳,另一个处理塑料垃圾,整个装置由钙钛矿太阳能电池供电。然而,该版本仅适用于来自钢瓶的浓缩二氧化碳,这可用作概念证明,但不一定适用于现实世界的设置。因此,对于新版本,该团队对其进行了调整,以处理烟气中的二氧化碳,甚至是环境空气中的二氧化碳。首先,空气被泵送通过碱性溶液,该溶液仅捕获二氧化碳,同时允许氧气和氮气等其他气体以气泡形式逸出。然后可以在另一个腔室的帮助下处理提纯的二氧化碳。“塑料成分是这个系统的一个重要技巧,”该研究的共同第一作者MotiarRahaman博士说。“从空气中捕获和使用二氧化碳会使化学反应变得更加困难。但是,如果我们将塑料废物添加到系统中,塑料就会向CO2提供电子。塑料分解为广泛用于化妆品行业的乙醇酸,二氧化碳转化为合成气,这是一种简单的燃料。”该团队表示,这项技术可以大大有助于解决这两种主要的环境危害,并最终有助于为实现无化石燃料的未来铺平道路。“我们不仅对脱碳感兴趣,而且对去化石化感兴趣——我们需要完全消除化石燃料,以创造真正的循环经济,”该研究的第一作者ErwinReisner教授说。“从中期来看,这项技术可以通过从工业中捕获碳并将其转化为有用的东西来帮助减少碳排放,但最终,我们需要将化石燃料完全排除在外,并从空气中捕获二氧化碳。”该研究发表在《焦耳》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1366585.htm手机版:https://m.cnbeta.com.tw/view/1366585.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人