认识Q-硅 - 一种用于自旋电子量子计算机的新型磁性材料

认识Q-硅-一种用于自旋电子量子计算机的新型磁性材料北卡罗来纳州立大学团队通过使用持续时间仅为纳秒的激光脉冲撞击非晶硅,使其熔化后又迅速冷却以再次硬化从而获得了这一发现。这创造了一种新的硅形式,该团队将其称为Q-硅,类似于他们之前创建Q-碳的工作。Q-硅拥有一些普通旧硅所缺乏的新特性,其中最重要的是室温下的铁磁性。这种磁性对于某些数据存储方法至关重要,并且可以帮助解锁一个称为自旋电子学的新兴领域,顾名思义,该领域通过电子的“自旋”而不是电荷来传输和存储数据,就像当前的电子产品一样。这有可能使设备更小、更快、更节能。这也可能使其成为量子计算机的绝佳材料,量子计算机不仅可以存储1和0的信息,还可以同时存储两者的叠加信息。这使得它们能够执行比任何传统计算机更先进的计算。不仅仅是铁磁性,与普通材料相比,Q-硅还表现出更高的硬度和超导性,这两种特性也有助于自旋电子学和量子计算。该研究的通讯作者杰伊·纳拉扬(JayNarayan)表示:“Q-硅的这一发现将通过增加自旋电子学或基于自旋的量子计算等新功能来彻底改变现代微电子学。简而言之,Q-silicon为自旋电子学与芯片上微电子学的集成提供了一个理想的平台。”该研究发表在《材料研究快报》杂志上。阅读文献:https://www.tandfonline.com/doi/full/10.1080/21663831.2023.2224396...PC版:https://www.cnbeta.com.tw/articles/soft/1368931.htm手机版:https://m.cnbeta.com.tw/view/1368931.htm

相关推荐

封面图片

IBM计算机“基准”实验显示量子计算机将在两年内超越传统计算机

IBM计算机“基准”实验显示量子计算机将在两年内超越传统计算机这项新研究的成果发表在上周的《自然》杂志上。科学家们使用IBM量子计算机Eagle来模拟真实材料的磁性,处理速度比传统计算机更快。IBM量子计算机之所以能超越传统计算机,是因为其使用了一种特殊的误差缓解过程来补偿噪声带来的影响。而噪声正是量子计算机的一个基本弱点。基于硅芯片的传统计算机依赖于“比特(bit)”进行运算,但其只能取0或1这两个值。相比之下,量子计算机使用的量子比特可以同时呈现多种状态。量子比特依赖于量子叠加和量子纠缠等量子现象。理论上这使得量子比特的计算速度更快,而且可以真正实现并行计算。相比之下,传统计算机基于比特的计算速度很慢,而且需要按顺序依次进行。但从历史上看,量子计算机有一个致命的弱点:量子比特的量子态非常脆弱,来自外部环境的微小破坏也会永远扰乱它们的状态,从而干扰所携带的信息。这使得量子计算机非常容易出错或“出现噪声”。在这一新的原理验证实验中,127量子比特的Eagle超级计算机用建立在超导电路上的量子比特计算了二维固体的完整磁性状态。然后,研究人员仔细测量每个量子比特所产生的噪声。事实证明,诸如超级计算材料中的缺陷等因素可以可靠预测每个量子比特所产生的噪声。据报道,研究小组随后利用这些预测值来模拟生成没有噪音的结果。量子霸权的说法之前就出现过。2019年,谷歌的科学家们声称,公司开发的量子计算机Sycamore在200秒内解决了一个普通计算机需要1万年才能破解的问题。但谷歌量子计算机所解决的问题本质上就是生成一长串随机数,然后检查它们的准确性,并没有什么实际用途。相比之下,用IBM量子计算机完成的新实验是一个高度简化但有真实应用价值的物理问题。2019年谷歌量子霸权研究成果参与者之一、加州大学圣巴巴拉分校物理学家约翰·马丁尼斯(JohnMartinis)表示,“这能让人们乐观认为,它将在其他系统和更复杂的算法中发挥作用。”(辰辰)...PC版:https://www.cnbeta.com.tw/articles/soft/1366285.htm手机版:https://m.cnbeta.com.tw/view/1366285.htm

封面图片

【专家:量子计算机要破解基于RSA的密码还需要多年时间】

【专家:量子计算机要破解基于RSA的密码还需要多年时间】3月31日消息,凝聚态理论物理学家和量子信息专家SankarDasSarma在《麻省理工技术评论》上指出,量子计算机要破解基于RSA的密码,还有很长的路要走。RSA-密码学利用算法、代码和密钥来安全地加密私人数据,而不受第三方或黑客等恶意行为者的干扰。此加密方法的一个例子是创建一个新的钱包,生成一个公共地址和私钥。Sarma强调,破解密码学目前已经远远超出了现有计算能力的掌握范围。Sarma提到了“量子位(qubits)”,它是像电子或光子这样的量子物体,可以增强量子计算机的能力:“当今最先进的量子计算机有几十个解码器(或“noisy”)物理量子位。要建造一台量子计算机,从这些组件中破解RSA密码,将需要数百万甚至数十亿的量子位。”尽管Sarma对于这是否会在未来威胁密码学持怀疑态度,但他确实指出,真正的量子计算机将“具有今天无法想象的应用”。

封面图片

超级量子计算机“MOSS”离我们还有多远?

超级量子计算机“MOSS”离我们还有多远?其中,量子计算机550系列的戏份之多,甚至足以媲美电影中的主角,在几乎所有的关键场所、情节中都有出场,在电影中更是将其称为流浪地球计划得以成功实施的关键。图源:流浪地球2如果你有看完片尾阶段的彩蛋,你还会发现代号550W量子计算机,或许就是整个流浪地球系列电影中的最大反派,从人类逃亡计划的基石到幕后最大反派(可能),量子计算机真的如电影中描述的那般强大吗?现实中的量子计算机到底又发展到什么程度了呢?量子计算机到底是什么?什么是量子计算机?简单来说,量子计算机就是以量子逻辑进行通用计算的设备,其与传统的计算机有着本质上的区别。目前传统的计算机基本遵循二进制(在早期的电子管时期也有十进制等设备,后期则基本为二进制),其状态只有0与1,而量子计算机则不同,简略来说它有着0、1、2三个状态。图源:VEER略懂计算机发展历史的朋友此时或许就开始吐槽了,0、1、2不就是三进制计算机吗?要注意的是,三进制的0、1、2,只是表示其逢三进一的一种计算方式,而非状态。或者这么说会更好理解,在二进制系统中,0是关,1是开,只有开与关两种状态。而在量子计算机的系统中,0是关,1是开,2则是不确定(参考薛定谔的猫),在量子力学中一般将“2”的状态称之为叠加态,“2”并不代表某一个状态,而是n个状态的叠加。图源:维基百科所以,在量子计算机的运行过程中,“2”的存在使得量子计算机可以在同一时间处于n种状态中。举个例子,我们假设存在一台有四个比特的传统计算机,这台计算机每一秒只能得到一个状态,也就是0000或0101,那么想要获得所有状态就需要16秒。此时我们还有一台具有四个量子比特的量子计算机,它可以同时计算从0000到1111的所有排列组合,这意味着量子计算机只需要1秒钟就可以输出16种状态,相当于16台传统计算机同时运行的效率。16倍,好像并不多?那么如果将比特数增加到5呢?答案是32倍,6个比特呢?64,倍。随着比特数的增加,量子计算机与传统计算机之间的性能差距是呈指数级增长的,略懂数学的朋友应该能够意识到其中的恐怖,所以实际的量子计算机速度可以达到传统计算机望尘莫及的高度。而且,量子计算机还有一个神奇的特性——量子纠缠态,量子纠缠态可以无视时间、空间使得距离无数远的两颗量子瞬间完成同步。简单来说,如果有两颗处于纠缠态中的量子,一颗在中国,一颗在月球,在中国的人将手上的量子转了个圈(比喻)同时打开激光灯照向月球,在激光到达月球前,月球上的量子就已经同步转了一圈。量子纠缠态超越时间与空间的特性,使其成为科幻作品中时空穿梭等概念的可行性猜想之一。而在量子计算机中,科学家则可以利用这个特性,让量子计算机在同一时间里进行多组不同的运算,最后通过观察使其坍塌向概率最大的结果,也就是“正确答案”。可以说,在量子计算机面前,人类目前所使用的加密系统形同虚设,拥有一台强量子计算机的人理论上可以随意进出各国的在线金融系统,并且任意修改账户上的金额。当然,这是最无聊的应用,如果现实中可以造出550W,我们甚至可以从原子层面模拟整个世界。我们离“MOSS”还有多远?在《流浪地球2》中,MOSS是搭载于最新型量子计算机550W上的人工智能,550W的强大在电影中有着多处表现。比如同时控制全球各地的数万台行星发动机,还有余力进行行星发动机的建设与维护,甚至还可以模拟数字生命,使其寿命延长到70年(在550C中为2分钟)。量子计算机的性能,取决于其内置的量子比特数量,具体的性能指标则是“量子体积”,由IBM所提出的一个专用单位。电影中的550W量子体积为8192,目前IBM新闻中公开的最强量子计算机,量子体积为128,两者相差64倍。不过,编剧似乎在这里摆了一个小乌龙,八千多量子体积的量子计算机其实我们有了,理论上在离子阱量子计算机中,只需要13个量子比特就可以得到相同量子体积的计算机。有研究相关领域的网友表示,想要实现片中550W的算力,需要8000个以上的完美逻辑量子比特,那么我们现在的量子计算机最高是多少呢?433量子比特,由IBM制造,距离影片中的550W还有20倍以上的差距。图源:IBM而且,量子比特的数量增加,研发难度也会随之飙升,想要达到550W的同等算力,我们还有很长很长的一段路要走。而算力只是制造550W的第一步,想要在现实中复刻“MOSS”,目前还看不到希望。为何?不知道大家是否还记得电影中的一个桥段,太空电梯的无人机操控系统失控,最终的解决方案是将550C接入控制中心的主电脑,直接生成新的操作系统覆盖旧系统。该剧情桥段发生的时间点中,量子计算机仍是战略设备,仅用于少数极重要的项目中,所以无人控制中心所使用的其实是传统计算机。不需要额外的操作,550C就自主完成了两个计算机系统之间的编译转码,同时还在极短的时间里自编译了一个新的系统底层。而且550系列量子计算机几乎可以被用在所有需要算力的场景,这意味着550系列是通用量子计算机,在现实的量子计算机研发中,通用量子计算机还是如同空中楼阁般的存在,可望而不可即。我们目前的量子计算机,其本身有着很大的局限性,只有在特殊的运算中才能发挥出远超传统计算机的性能,比如并行运算等场景。而且,想要让量子计算机按照预定的形式运行,也需要技术人员提前进行设置。简单来说,我们目前的量子计算机是特异化的设备,只在特定领域可以正常运行,如果让其在非特定领域工作,性能甚至还不如传统计算机。可以说,量子计算机研发的最终梦想,就是打造一台通用量子计算机,届时一切需要用到计算机的事物,都将得到前所未有的加强。在一些研究者的设想中,成熟的通用量子计算机可以在原子层面模拟一个人乃至一颗星球,并且利用量子特性计算出这个人的未来,也就是科幻作品中的“预知未来”。听起来或许异想天开,但是在量子力学中这并非不可能实现的,在电影中也有所表达,比如数字生命图丫丫,还有片尾彩蛋中,MOSS预告了数十年后才会发生的木星危机。图源:流浪地球2我们与电影中的量子计算机距离,可以借用某个网友的一个比喻:“大概等同于钻木取火到i9处理器的差别”,除非出现新的科学大爆炸,否则我们这一代人是没有可能见到的。不过,或许也不需要悲观,在目前各国的量子计算机计划中,上千比特的量子计算机将在2023—2025年左右推出市场,随着量子计算机的普及,计算中心等基础设施将会得到可观的性能提升,随之而来的变革或许将会彻底颠覆我们的社会。...PC版:https://www.cnbeta.com.tw/articles/soft/1341845.htm手机版:https://m.cnbeta.com.tw/view/1341845.htm

封面图片

日本首台国产量子计算机投入使用

日本首台国产量子计算机投入使用64量子比特集成电路芯片与谷歌和IBM采用的技术一样,日本首台量子计算机同样使用在极低温下电阻为零的超导回路,制备用于计算的信息基本单位——量子比特,设备具有“2D集成电路”和“垂直布线封装”功能。垂直布线封装该量子计算机的量子比特数为64个,超过IBM2021年在日本推出的27个量子比特的量子计算机。开发负责人、量子计算机研究中心主任中村泰信强调:“精度已经相当接近于世界水平。将不断提高技术,传播相关技术知识”。用户访问超导量子计算机示意图据了解,富士通接受理研提供的技术和知识,计划2023年度内开发试制机,简而言之,日本企业将全面发起反攻,中美日量子计算主导权之争将更加激烈。值得一提的是,今年1月,合肥本源量子已研发出多台中国量子计算机,并成功交付一台量子计算机给用户使用。该量子计算机的成功交付,使我国成为世界上第三个具备量子计算机整机交付能力的国家。这是我国继实现“量子优越性”之后,又一次确立了在国际量子计算研究领域的领先地位。...PC版:https://www.cnbeta.com.tw/articles/soft/1351377.htm手机版:https://m.cnbeta.com.tw/view/1351377.htm

封面图片

新研究揭示重新配置的经典计算机有能力超越量子计算机

新研究揭示重新配置的经典计算机有能力超越量子计算机量子计算被誉为一种在速度和内存使用方面都能超越经典计算的技术,有可能为预测以前不可能预测的物理现象开辟道路。许多人认为,量子计算的出现标志着经典或传统计算模式的转变。传统计算机以数字比特(0和1)的形式处理信息,而量子计算机则采用量子比特(量子位),以0和1之间的数值存储量子信息。在某些条件下,这种以量子位处理和存储信息的能力可用于设计量子算法,从而大大超越经典算法。值得注意的是,量子以0和1之间的数值存储信息的能力使得经典计算机很难完美地模拟量子计算机。然而,量子计算机很不稳定,容易丢失信息。此外,即使可以避免信息丢失,也很难将其转化为经典信息,而经典信息是进行有用计算的必要条件。经典计算机不存在这两个问题。此外,巧妙设计的经典算法可以进一步利用信息丢失和翻译这两个难题,以比以前想象的要少得多的资源模拟量子计算机--正如最近发表在《PRXQuantum》杂志上的一篇研究论文所报告的那样。科学家们的研究结果表明,与最先进的量子计算机相比,经典计算可以通过重新配置来执行更快、更精确的计算。这一突破是通过一种算法实现的,这种算法只保留了量子态中存储的部分信息--只够精确计算最终结果。纽约大学物理系助理教授、论文作者之一德里斯-塞尔斯(DriesSels)解释说:"这项工作表明,改进计算的潜在途径有很多,包括经典方法和量子方法。此外,我们的工作还凸显了利用容易出错的量子计算机实现量子优势有多么困难。"为了寻求优化经典计算的方法,塞尔斯和他在西蒙斯基金会的同事们把重点放在了一种能忠实呈现量子比特之间相互作用的张量网络上。这些类型的网络出了名的难处理,但该领域的最新进展使得这些网络可以借用统计推理的工具进行优化。作者将该算法的工作与将图像压缩成JPEG文件进行了比较,JPEG文件可以通过消除信息,在几乎感觉不到图像质量损失的情况下,使用更少的空间来存储大型图像。"为张量网络选择不同的结构,就相当于选择不同的压缩形式,就像为图像选择不同的格式,"领导该项目的Flatiron研究所约瑟夫-廷德尔(JosephTindall)说。"我们正在成功开发用于处理各种不同张量网络的工具。这项工作反映了这一点,我们相信,我们很快就会进一步提高量子计算的标准。"编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1426054.htm手机版:https://m.cnbeta.com.tw/view/1426054.htm

封面图片

科学家发现一种前所未见的新型磁性Altermagnetism

科学家发现一种前所未见的新型磁性Altermagnetism一名PSI科学家与用于确认发现地磁的仪器说到磁铁,人们通常会想到容易粘在冰箱上的东西,科学上称之为铁磁体。但在大约一个世纪前,人类发现了另一种磁性材料家族,它们不具有这种特性,并将其称为反铁磁体。材料行为的差异可归结为这些材料中磁矩(也称为电子自旋)的自发排列。电子自旋与铁磁体的方向相同,因此在靠近金属表面时会产生磁性。在反铁磁体中,电子自旋方向相反,产生的磁性被抵消。这导致它们无法粘在冰箱上。在变磁性中,电子自旋是交替的,不会产生净宏观磁性。但是,电子能带结构具有很强的自旋极化,可以在材料的能带中翻转。这就是这种材料被称为"变磁体"的原因。2019年,中国科学院物理研究所研究员托马斯-荣格沃思(TomasJungwirth)发现了一类磁性材料,其电子自旋与铁磁体或反铁磁体的电子自旋不一致。2022年,Jungwirth与美因茨大学的研究人员一起,提出了存在一类新磁体的理论。在研究过程中,研究小组发现了200多种材料,从绝缘体到半导体,甚至超导体,都可能是改变磁体的候选材料。为了证实这些材料中存在独特的自旋对称性,研究人员与瑞士的SLS公司合作。他们使用自旋和角度分辨光发射光谱来观察材料中的电子结构。瑞士SLS的表面/界面光谱(SIS)光束线仪器他们对碲化锰进行了测试,这种双元素材料通常被归类为反铁磁体。然而,这种材料显示出电子带分裂成两种不同的状态,很像铁磁体。这证实了这种材料确实是一种改变磁体。第三种磁性材料的发现有助于利用自旋电子学提供下一代磁性存储器。在传统电子学中,人们利用电子的电荷。然而,在自旋电子学中,电子的自旋状态也被用来存储信息。新兴的计算领域一直在使用铁磁体来开发此类设备。然而,这些材料所显示的宏观磁性令人担忧,因为它可能会促进比特之间的串扰。由于改磁体不显示净磁性,但具有很强的自旋效应,因此可以作为自旋电子学的理想候选材料。"超电磁实际上并不是什么非常复杂的东西。它是一种完全基本的东西,几十年来就在我们眼前,而我们却没有注意到它,"荣格沃思在一份新闻稿中说。"它存在于人们抽屉里的许多晶体中。从这个意义上说,现在我们将它公之于众,世界各地的许多人将能够研究它,从而产生广泛的影响。研究成果发表在今天的《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1418703.htm手机版:https://m.cnbeta.com.tw/view/1418703.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人