催化剂技术的进步可能带来更清洁的氢能源

催化剂技术的进步可能带来更清洁的氢能源他们的研究结果最近发表在《美国国家科学院院刊》上。氢能是一种新兴的清洁和可持续能源,在绿色未来方面具有巨大潜力。作为宇宙中最丰富的元素,氢可以从可再生资源中生产出来,并用作发电、运输和工业应用的多功能燃料。它的燃烧仅产生水蒸气作为副产品,这使其成为减少温室气体排放和减缓气候变化的有前途的解决方案。“了解氢等清洁燃料的化学反应是如何发挥作用的非常具有挑战性——这篇论文代表了我在堪萨斯大学第一年开始的一个项目的高潮,”合著者、化学副教授詹姆斯·布莱克莫尔(JamesBlakemore)说。劳伦斯的研究构成了这一发现的基础。“我们的论文提供了通过专门技术来之不易的数据,以了解某种制氢催化剂如何发挥作用,”他说。“堪萨斯大学和布鲁克海文所使用的技术非常专业。实施这些使我们能够全面了解如何从氢的组成部分、质子和电子中制造氢。”布莱克莫尔在堪萨斯大学的研究是这一突破的基础。他将他的工作带到布鲁克海文,在他们的能源研究加速器中心使用脉冲辐射分解以及其他技术进行研究。布鲁克海文是美国仅有的两个拥有可进行脉冲放射分解实验的设备的地方之一。该论文的合著者、布鲁克海文化学家德米特里·波利安斯基(DmitryPolyansky)表示:“能够完全了解整个催化循环是非常罕见的。这些反应要经历许多步骤,其中一些步骤非常快且不易观察到。”Blakemore和他的合作者通过研究一种基于五甲基环戊二烯基铑络合物(简称为[Cp*Rh])的催化剂而获得了这一发现。他们专注于与稀有金属铑配对的Cp*(发音为C-P-“Star”)配体,因为之前的工作表明这种组合适合这项工作。“铑系统被证明是脉冲放射分解的一个很好的目标,”布莱克莫尔说。“Cp*配体,正如它们的名字一样,是大多数有机金属化学家以及真正的各种化学家所熟悉的。它们用于支撑许多催化剂,并可以稳定催化循环中涉及的各种物质。本文的一项重要发现为Cp*配体如何密切参与析氢化学提供了新的见解。”但布莱克莫尔强调,除了生产清洁氢气之外,这些发现还可能导致其他化学工艺的改进。“在我们的工作中,我们希望化学家能够看到一项关于常见配体Cp*如何实现不寻常反应性的研究,”KU研究人员说。“这种不寻常的反应性与氢有关,但实际上比这更重要,因为Cp*存在于许多不同的催化剂中。化学家通常认为催化剂是基于金属的。按照这种思维方式,如果打算制造一个新分子,金属是将各个组成部分结合在一起的关键角色。我们的论文表明情况并非总是如此。Cp*可以参与将各个部分缝合在一起形成产品。”Blakemore表示,他希望这篇论文能够成为改进其他依赖Cp*配体的催化剂和系统的一个契机。这一突破得到了国家科学基金会和能源部科学办公室的支持,可以更广泛地应用于工业化学。布莱克莫尔目前正致力于应用本研究中使用的技术来开发核燃料回收和锕系元素处理的新方法。堪萨斯大学的研究生和本科生也参与了支持这一突破的研究。“这个项目对学生来说是一个非常重要的培训工具,”布莱克莫尔说。“第一作者、研究生WadeHenke目前在阿贡国家实验室担任博士后。研究生彭云为第二作者,并启动了与Brookhaven的联合工作;两人现在都已完成博士学位。多年来,本科生也为这个项目做出了贡献,提供了新的综合体和见解,我们用它们来构建本文中出现的故事。“总而言之,我认为这是一个成功的项目,也是多年来团队真正努力的成果。”...PC版:https://www.cnbeta.com.tw/articles/soft/1370173.htm手机版:https://m.cnbeta.com.tw/view/1370173.htm

相关推荐

封面图片

催化剂将氢电解器中的铱用量减少了95%

催化剂将氢电解器中的铱用量减少了95%访问:Saily-使用eSIM实现手机全球数据漫游安全可靠源自NordVPN日本理化学研究所可持续资源科学中心(CSRS)的中村隆平(RyuheiNakamura)领导的研究人员在今天(5月9日)发表在《科学》杂志上的一项研究中报告了一种新方法,该方法将反应所需的铱量减少了95%,而且不会改变氢的生产率。这一突破将彻底改变我们生产生态友好型氢气的能力,并有助于实现碳中和的氢经济。合成氧化铱的扫描电子显微镜图像(D)和分散在电沉积在耐腐蚀铂涂层钛网上的氧化锰上的铱(亮点)的扫描透射电子显微镜图像(E、F、G)。资料来源:理化学研究所制氢挑战世界上70%的面积被水覆盖,氢气是真正的可再生能源。然而,从水中提取氢气的规模还无法与化石燃料能源生产相媲美。目前,全球能源产量接近18兆瓦,这意味着在任何特定时刻,全球平均生产约18万亿瓦特的电力。替代性绿色能源生产方式要想取代化石燃料,就必须能够达到相同的能源生产率。从水中提取氢气的绿色方法是一种需要催化剂的电化学反应。这种反应的最佳催化剂--产氢率最高、最稳定的催化剂--是稀有金属,其中铱是最好的催化剂。但铱的稀缺是个大问题。共同第一作者孔爽说:"铱是如此稀有,以至于将全球氢气生产规模扩大到太瓦级估计需要40年的铱。"催化剂开发的创新理化学研究所CSRS的生物功能催化剂研究小组正试图绕过铱的瓶颈,寻找其他方法来长时间高速生产氢气。从长远来看,他们希望开发出基于普通土金属的新型催化剂,这种催化剂将具有高度的可持续性。事实上,该团队最近使用一种氧化锰作为催化剂,成功地将绿色制氢稳定在一个相对较高的水平。不过,以这种方式实现工业水平的生产还需要数年时间。中村隆平说:"我们需要一种方法来弥合稀有金属电解槽与普通金属电解槽之间的差距,这样我们就能在多年内逐步过渡到完全可持续的绿色氢气。"目前的研究正是通过将锰与铱相结合来实现这一目标。研究人员发现,当他们把铱原子分散在一块氧化锰上,使它们不会相互接触或凝结在一起时,质子交换膜(PEM)电解槽中的氢气产生速度与单独使用铱时相同,但铱含量减少了95%。潜力和未来方向使用这种新型催化剂,可以连续生产氢气超过3000小时(约4个月),效率高达82%,且无降解。合著者李爱龙说:"氧化锰和铱之间意想不到的相互作用是我们取得成功的关键。这是因为这种相互作用产生的铱处于罕见的高活性+6氧化态"。中村隆平认为,新催化剂达到的制氢水平极有可能立即派上用场。他说:"我们希望我们的催化剂能够很容易地转移到现实世界的应用中,这将立即提高目前PEM电解器的容量。"研究小组已经开始与工业界的合作伙伴合作,他们已经能够改进最初的铱锰催化剂。今后,理化学研究所CSRS研究人员计划继续研究铱和氧化锰之间的特定化学作用,希望能进一步减少必要的铱含量。同时,他们将继续与工业合作伙伴合作,并计划在不久的将来在工业规模上部署和测试这种新型催化剂。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1430304.htm手机版:https://m.cnbeta.com.tw/view/1430304.htm

封面图片

科学家开发出活性提高7.9倍的催化剂用于制氢

科学家开发出活性提高7.9倍的催化剂用于制氢要使氢能更容易被车辆使用,并被公认为一种可靠的替代能源,就必须降低氢气的生产成本,确保其经济可行性。这一目标的核心是优化电解-氢进化过程的效率,该过程从水中制取氢气。最近,由浦项科技大学(POSTECH)化学系的InSuLee教授、SoumenDutta研究教授和ByeongSuGu组成的研究小组通过开发铂纳米催化剂,显著提高了氢这种绿色能源的生产效率。用于氢气进化的三金属杂化纳米催化剂的机理图解。资料来源:POSTECH他们通过逐步沉积两种不同金属的方式完成了这一创举。他们的研究成果发表在《AngewandteChemie》上,这是一份备受推崇的专注于化学领域的期刊。在催化剂表面的特定位置选择性地沉积不同的材料(其尺寸在纳米范围内)带来了巨大的挑战。意外沉积可能会阻塞催化剂的活性位点或干扰彼此的功能。这种困境阻碍了在单一材料上同时沉积镍和钯。镍负责激活水的分裂,而钯则促进氢离子向氢分子的转化。三金属杂化催化剂的合成和氢演化示意图。资料来源:POSTECH研究小组开发了一种新型纳米反应器,可精细控制沉积在二维平面纳米晶体上的金属位置。此外,他们还设计了一种纳米级精细沉积工艺,使不同的材料能够覆盖二维铂纳米晶体的不同面。这种新方法开发出了一种"铂-镍-钯"三金属混合催化剂材料,通过连续沉积,钯和镍纳米薄膜分别选择性地覆盖了二维铂纳米晶体的平面和边缘。混合催化剂具有独特的镍/铂和钯/铂界面,分别用于促进水分离和氢分子生成过程。因此,这两个不同过程的协同作用大大提高了电解-氢演化的效率。研究结果表明,与传统的铂碳催化剂相比,三金属混合纳米催化剂的催化活性提高了7.9倍。此外,这种新型催化剂还具有显著的稳定性,即使在反应时间长达50小时后仍能保持较高的催化活性。这就解决了异质界面之间的功能干扰或碰撞问题。领导这项研究的InSuLee教授乐观地表示:"我们成功地开发出了在混合材料上形成的和谐异质界面,克服了工艺上的挑战。我希望研究成果能广泛应用于氢反应催化材料的开发。"...PC版:https://www.cnbeta.com.tw/articles/soft/1390121.htm手机版:https://m.cnbeta.com.tw/view/1390121.htm

封面图片

以光为动力的纳米材料催化剂可能是发展氢能经济的关键

以光为动力的纳米材料催化剂可能是发展氢能经济的关键这项研究于11月24日发表在《科学》杂志上,由莱斯大学纳米光子学实验室、SyzygyPlasmonics公司和普林斯顿大学Andlinger能源与环境中心的一个团队进行。最近政府和工业界为创建无碳液态氨燃料的基础设施和市场而进行持续投资,它不会造成温室效应,这与这项研究有很好的协同作用。由于液氨易于运输,而且蕴含大量的能量,每个分子中有一个氮原子和三个氢原子,因此液氨是一种有希望的未来清洁燃料。新的催化剂将这些氨分子(NH3)分解成氢气(H2),一种清洁燃烧的燃料,和氮气(N2),地球大气中最大的组成部分。而且与传统的催化剂不同,它不需要加热。相反,它从光中获取能量,无论是太阳光还是节能的LED。化学反应的速度通常会随着温度的升高而增加,一个多世纪以来,化学品生产商已经通过在工业规模上应用热量来利用这一优势。燃烧化石燃料,将大型反应容器的温度提高数百或数千度,造成了巨大的碳足迹。化工生产商每年还在热催化剂上花费数十亿美元--这些材料不会发生反应,但在强烈的加热下会进一步加速反应。"像铁这样的过渡金属通常是可怜的热催化剂,"研究报告的共同作者、莱斯大学的NaomiHalas说。"这项工作表明它们可以成为高效的等离子体光催化剂。它还表明,光催化可以用廉价的LED光子源有效地进行。"用于测试铜铁等离子体光催化剂的光催化平台,用于从氨气中生产氢气。资料来源:布兰登-马丁/莱斯大学的照片最好的热催化剂是由铂和相关贵金属如钯、铑和钌制成的。Halas和Nordlander花了数年时间开发光激活的,或称质子的金属纳米粒子。其中最好的通常也是用银和金等贵金属制成。继他们在2011年发现了能放出被称为"热载流子"的短寿命高能电子的质子粒子之后,他们在2016年发现,热载流子发生器可以与催化粒子联姻,产生混合的"天线-反应器",其中一部分从光中获取能量,另一部分则用能量来驱动具有超高精度的化学反应。Halas、Nordlander、他们的学生和合作者多年来一直致力于为天线反应器的能量收集和反应加速两部分寻找非贵金属替代品。这项新的研究是这项工作的一个高潮。在该研究中,Halas、Nordlander、莱斯大学校友HosseinRobatjazi、普林斯顿大学工程师和物理化学家EmilyCarter等人表明,由铜和铁制成的天线反应器颗粒在转化氨方面非常有效。颗粒中的铜、能量收集片从可见光中捕捉能量。休斯敦SyzygyPlasmonics公司的铜铁质子光催化剂测试中使用的反应池(左)和光催化平台(右),用于从氨生产氢气。催化作用的所有反应能量都来自LED,其产生的光的波长为470纳米。Halas研究小组的博士校友Robatjazi说:"在没有光的情况下,铜-铁催化剂表现出比铜-钌催化剂低约300倍的反应性,鉴于钌是这种反应的更好的热催化剂,这并不奇怪。在充足照明下,铜-铁显示出与铜-钌相似的效率和反应能力,并与之相媲美。"Syzygy公司已经许可了莱斯大学的天线反应器技术,这项研究包括在该公司的商用LED驱动的反应器中对催化剂进行放大测试。在莱斯大学的实验室测试中,铜-铁催化剂被激光照射。Syzygy公司的测试表明,在LED照明下,催化剂保持了其效率,而且规模比实验室设置大500倍。这表明用LED的光催化作用可以从氨气中产生克级数量的氢气。为在等离子体光催化中完全取代贵金属打开了大门。"鉴于它们在大幅减少化工行业碳排放方面的潜力,质子天线-反应器光催化剂值得进一步研究,"卡特补充说。"这些结果是一个很大的推动力。他们表明,其他丰富的金属组合有可能被用作广泛的化学反应的成本效益催化剂"。...PC版:https://www.cnbeta.com.tw/articles/soft/1333849.htm手机版:https://m.cnbeta.com.tw/view/1333849.htm

封面图片

空气清洁技术的突破:新型催化剂可在室温下净化废气

空气清洁技术的突破:新型催化剂可在室温下净化废气埃米尔-亨森(EmielHensen)领导的科学家们在一篇新的《科学》文章中指出,通过改变催化剂的载体材料,即使在室温下,也能将有毒的一氧化碳几乎完全转化为二氧化碳气体。汽车催化剂是将铂、钯、铑等贵金属沉积在氧化铈(又称铈)材料的基底上制成的。然而,贵金属既稀有又昂贵。因此,世界各地的研究人员正在研究如何通过减少使用这些材料来达到相同甚至更好的催化活性。例如,德国电子科技大学的亨森研究小组在之前的一篇论文中证明,通过以单个原子的形式分散贵金属,不仅可以减少材料的使用,而且在某些条件下,催化剂还能更有效地发挥作用。在第一作者瓦列里-穆拉维夫(ValeryMuravev)的博士研究项目中,研究人员将注意力从贵金属转移到下面的载体材料(本例中为铈)上,以进一步改进催化剂。他们生产出不同晶体尺寸的铈,并在同一步骤中将贵金属沉积为单个原子。随后,他们研究了这些材料组合在一氧化碳中结合额外氧原子的能力。结果表明,在过量一氧化碳存在的冷启动条件下,4纳米大小的小铈晶体明显改善了贵金属钯的性能。这种性能的提高可以解释为在较小尺寸的铈晶体中氧原子的反应活性更高。在更常规的条件下,8纳米的铈晶体是在低于100摄氏度的温度下达到高催化活性所需的最佳尺寸。这项研究首次表明,在开发催化剂时,不仅要考虑必须发挥作用的贵金属。在这种情况下,改变作为活性材料载体的颗粒的大小,为进一步改进催化剂提供了一种有趣的新可能性,从而提高化学反应的效率和特异性。这对于开发将环境空气中的二氧化碳与绿色氢气结合起来生产燃料或生产可持续塑料的化合物的工艺也具有重要意义。现在,研究人员将与为汽车工业生产催化剂的英国公司庄信万丰(JohnsonMatthey)一起,进一步探索如何将这一发现转化为新产品。...PC版:https://www.cnbeta.com.tw/articles/soft/1381871.htm手机版:https://m.cnbeta.com.tw/view/1381871.htm

封面图片

廉价高效的新型催化剂可改变可再生能源的储存方式

廉价高效的新型催化剂可改变可再生能源的储存方式由香港城市大学开发、伦敦帝国理工学院测试的一种利用单个铂原子的新型催化剂,有望更方便、更经济地利用可再生能源储存氢气。这项创新将铂原子分散在硫化钼上,减少了铂的用量,提高了电解效率。共同作者、帝国理工学院化学系的AnthonyKucernak教授说:"《英国氢战略》提出了到2030年低碳氢生产能力达到10GW的宏伟目标。为了实现这一目标,我们需要提高廉价、易于生产和高效储氢的产量。新型电催化剂可以为此做出重大贡献,最终帮助英国实现到2050年净零排放的目标。"风能和太阳能等可再生能源发电量正在迅速增长。然而,所产生的部分能源需要储存起来,以便在天气条件不利于风能和太阳能时使用。一个很有前景的方法就是以氢气的形式储存能源,氢气可以储存和运输,以供日后使用。新型催化剂材料资料来源:香港城市大学为此,可再生能源被用来将水分子分裂成氢和氧,能量储存在氢原子中。这需要使用铂催化剂来刺激水分子的分裂反应,也就是所谓的电解。然而,虽然铂是这种反应的极佳催化剂,但它既昂贵又稀有,因此尽量减少铂的使用对于降低系统成本和限制铂的提取非常重要。现在,在最近发表于《自然》(Nature)的一项研究中,研究小组设计并测试了一种催化剂,这种催化剂使用尽可能少的铂,从而产生了一种高效但成本效益高的水分离平台。首席研究员、香港城市大学张华教授说:"电催化水分裂产生的氢被认为是在不久的将来最有希望取代化石燃料的清洁能源之一,可减少环境污染和温室效应。"测试工具该团队的创新涉及在硫化钼(MoS2)薄片中分散单原子铂。这比现有催化剂使用的铂要少得多,甚至还能提高性能,因为铂与钼相互作用,提高了反应的效率。在纳米片支撑物上生长薄催化剂,使城大团队能够制造出高纯度的材料。随后,帝国理工大学的库切纳克教授实验室对这些材料进行了表征,并开发了确定催化剂如何工作的方法和模型。帝国理工大学的团队拥有进行严格测试的工具,因为他们已经开发出了几种专门用于使用这种催化剂的技术。库切纳克教授及其同事已经在这些技术的基础上成立了几家公司,其中包括专门从事氢流电池研发的RFCPower公司。使用氢气一旦可再生能源以氢的形式储存起来,要想再次将其用作电力,就需要使用燃料电池进行转换,因为燃料电池在氧分裂反应中会产生水蒸气作为副产品。最近,库切纳克教授及其同事发现了一种用于该反应的单原子催化剂,这种催化剂以铁而不是铂为基础,这也将降低这项技术的成本。库切纳克教授领导的另一家分拆公司布兰布尔能源公司(BrambleEnergy)将在其燃料电池中测试这项技术。因此,这两种单原子催化剂--一种帮助将可再生能源转化为氢储存起来,另一种帮助将这些能量在以后以电力形式释放出来--都有能力让氢经济更接近现实。...PC版:https://www.cnbeta.com.tw/articles/soft/1385599.htm手机版:https://m.cnbeta.com.tw/view/1385599.htm

封面图片

超耐久金催化剂有望为工业带来变革

超耐久金催化剂有望为工业带来变革每个人都喜欢黄金:运动员、海盗、银行家--每个人。从历史上看,黄金就是一种极具吸引力的金属,可以用来制作奖牌、珠宝、硬币等。黄金之所以如此闪亮诱人,是因为它的化学性质能够抵御其他材料可能褪色的物理条件,例如高温、高压、氧化和其他有害物质。然而,矛盾的是,在纳米尺度上,微小的金颗粒却逆转了这一趋势,变得非常活跃,以至于长期以来,它们一直是实现各种催化剂的关键,这些催化剂是加速或以某种方式使化学反应发生的中间物质。换句话说,它们是将一种物质转化为另一种物质的有用或必要物质,因此在合成和制造中得到广泛应用。硫醇和有机聚合物保护是增加金纳米粒子韧性的两种现有方法。右图是研究人员使用聚氧化金属盐的新方法。图片来源:©2024Suzukietal.增强型金催化剂背后的创新东京大学应用化学系副教授KosukeSuzuki说:"金是一种神奇的金属,在社会上,尤其是在科学领域,受到人们的赞誉是理所当然的。金是催化剂的理想材料,可以帮助我们合成包括药物在内的各种物质。原因在于金对吸收分子的亲和力较低,而且对与之结合的物质具有高度选择性,因此可以非常精确地控制化学合成过程。与传统催化剂相比,金催化剂通常在较低的温度和压力下工作,需要的能源更少,对环境的影响也更小"。研究人员利用环形暗场扫描透射电子显微镜技术制作的新型纳米粒子的原子分辨率图像。图片来源:©2024Suzukietal.尽管金很好,但它也有一些缺点。金的颗粒越小,它的反应性就越强,而且在一定程度上,用金制造的催化剂会开始受到热、压力、腐蚀、氧化和其他条件的负面影响。铃木和他的团队认为他们可以改善这种情况,并设计出一种新型保护剂,可以让金催化剂在更大范围的物理条件下保持其有用功能,而这些物理条件通常会阻碍或破坏典型的金催化剂。"目前催化剂中使用的金纳米粒子具有一定程度的保护作用,这要归功于十二硫醇和有机聚合物等制剂。但我们的新技术是基于一种被称为聚氧化金属盐的金属氧化物簇,它的效果要好得多,尤其是在氧化应激方面,"Suzuki说。"我们目前正在研究聚氧化金属酸盐的新型结构和应用。这次我们将聚氧化金属酸盐应用于金纳米粒子,并确定聚氧化金属酸盐提高了纳米粒子的耐久性。真正的挑战在于应用各种分析技术来测试和验证这一切"。研究小组使用了多种统称为光谱学的技术。他们使用了不下六种光谱学方法,这些方法所揭示的有关物质及其行为的信息种类各不相同。但一般来说,它们的工作原理都是将某种光线投射到物质上,然后用专门的传感器测量光线如何发生某种变化。铃木和他的团队花了几个月的时间,对他们的实验材料进行了各种测试和不同的配置,直到他们找到了他们想要的东西。铃木说:"我们的目标不仅仅是改进某些化学合成方法。我们的增强型金纳米粒子有很多应用,可以造福社会,分解污染的催化剂(许多汽油车已经配备了我们熟悉的催化转换器)、影响较小的杀虫剂、可再生能源的绿色化学、医疗干预措施、食源性病原体传感器,等等,不胜枚举。但我们还想走得更远。下一步的工作将是改进物理条件的范围,使金纳米粒子更能适应物理条件,同时研究如何为其他有用的催化金属(如钌、铑、铼,当然还有比金更受人们推崇的东西:铂)增加一些耐久性"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1416533.htm手机版:https://m.cnbeta.com.tw/view/1416533.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人