纳米级光学技术的突破开启量子世界的更多可能性

纳米级光学技术的突破开启量子世界的更多可能性传统上,超越常规衍射极限的光定位主要依靠两种方法:介质约束和等离子体约束。然而,精密制造和光学损耗等挑战阻碍了将光场限制在10纳米以下甚至1纳米的水平。现在,7月7日《先进光子学》(AdvancedPhotonics)杂志详细介绍了一种新型波导方案,它将利用亚纳米级光场的潜力。以纳米狭缝模式产生亚纳米封闭光场的波导方案。(a)CNP波导方案示意图。(b)纳米狭缝模式横截面场强分布的三维图。资料来源:Yang、Zhou等人,doi10.1117/1.AP.5.4.046003请看这样一个场景:来自标准光纤的光进行了一次转换之旅。它穿过光纤锥,到达耦合纳米线对(CNP)中的最终目的地。在这里,光线转变为一种独特的纳米狭缝模式,形成一个微小到几分之一纳米(约0.3纳米)的封闭光场。令人惊叹的是,这种创新方法的效率高达95%,峰值与背景的比率也很高,从而带来了一系列机遇。突破性的波导方案将其范围扩大到了中红外光谱范围,进一步拓展了纳米宇宙的极限。光学约束现在可以达到约0.2纳米(λ/20000)的非凡尺度,这为探索和发现开辟了更多途径。浙江大学纳米光子学研究组的童利民教授指出:"与以往的方法不同,波导方案呈现为线性光学系统,带来了一系列优势。它可以实现宽带和超快脉冲操作,并允许多个亚纳米级光场的组合。在单个输出中设计空间、光谱和时间序列的能力带来了无限的可能性"。这些突破的潜在应用确实令人叹为观止。光场如此局部化,以至于可以与单个分子或原子相互作用,为光-物质相互作用、超分辨率纳米镜、原子/分子操纵和超灵敏检测等领域的发展提供了可能。我们即将迎来一个新的发现时代,存在的最微小的领域现在已经触手可及。...PC版:https://www.cnbeta.com.tw/articles/soft/1371747.htm手机版:https://m.cnbeta.com.tw/view/1371747.htm

相关推荐

封面图片

纳米光机械腔体有望开启量子计算与通信技术的新领域

纳米光机械腔体有望开启量子计算与通信技术的新领域通过光域和机械域之间的相互作用,光在空腔内直接散射到波导的过程示意图。资料来源:AndréGarciaPrimo/UNICAMP巴西坎皮纳斯州立大学(UNICAMP)的研究人员与瑞士苏黎世联邦理工学院(ETHZurich)和荷兰代尔夫特理工大学(TUDelft)的同事合作开展了一项研究,重点研究了纳米光机械腔体在这方面的应用。这些纳米级谐振器可促进高频机械振动与电信业所用波长的红外光之间的相互作用。有关这项研究的文章最近发表在《自然-通讯》(NatureCommunications)杂志上。架起超导电路与光纤之间的桥梁"纳米机械谐振器是超导电路和光纤之间的桥梁。超导电路是目前最有前途的量子计算技术之一,而光纤则通常被用作信息的长距离传输器,噪音小且无信号损失,"格列布-瓦塔金物理研究所(IFGW-UNICAMP)教授、文章最后一位作者蒂亚戈-阿莱格雷(ThiagoAlegre)说。阿莱格雷说,这项研究的关键创新之一是引入了耗散光机械学。传统的光机械装置依赖于纯粹的色散相互作用,在这种情况下,只有局限在腔体内的光子才能被有效地色散。在耗散光机械学中,光子可以直接从波导散射到谐振器。在这项研究之前,耗散光机械相互作用仅在低机械频率下得到证实,这就排除了光子(光学)和声子(机械)领域之间量子态转移等重要应用。这项研究首次证明了耗散光机械系统在机械频率超过光学线宽的情况下运行。"我们成功地将机械频率提高了两个数量级,并将光机耦合率提高了十倍。这为开发更有效的设备提供了非常广阔的前景,"阿莱格雷说。这些装置是与代尔夫特理工大学合作制造的,其设计采用了半导体行业的成熟技术。纳米硅梁悬浮在空中,可以自由振动,这样红外光和机械振动就同时被限制住了。横向放置的波导允许光纤与空腔耦合,从而产生耗散耦合,这正是研究人员所展示成果的关键要素。这项研究为量子网络的构建提供了新的可能性。除了这一直接应用外,它还为未来的基础研究奠定了基础。阿莱格雷说:"我们希望能够单独操纵机械模式,缓解光机械装置中的光学非线性问题。"参考文献AndréG.Primo、PedroV.Pinho、RodrigoBenevides、SimonGröblacher、GustavoS.Wiederhecker和ThiagoP.MayerAlegre的"高频纳米机械谐振器中的耗散光机械学",2023年9月18日,《自然-通讯》。DOI:10.1038/s41467-023-41127-7编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403959.htm手机版:https://m.cnbeta.com.tw/view/1403959.htm

封面图片

华为专利披露三纳米级工艺技术规划

华为专利披露三纳米级工艺技术规划今年早些时候,当华为和中芯国际为生产先进微芯片而申请自对准四重图案化(SAQP)光刻方法专利时,大多数人都认为这两家公司正在使用其5纳米级制造工艺制造芯片。显然,这并不是他们计划的极限,因为华为现在也期待将四重图案化用于3纳米级制造技术。与华为合作的中国芯片制造设备开发商深圳新凯来公司(SiCarrier)也获得了SAQP专利,这证实了中芯国际计划将该技术用于未来的芯片制造。SAQP指的是在硅片上反复雕刻线条,以提高晶体管的密度,降低功耗,从而提高性能。——

封面图片

基于芯片的全光学泵纳米光束仪可更快地移动更多数据

基于芯片的全光学泵纳米光束仪可更快地移动更多数据研究小组负责人、韩国大学的Myung-KiKim说:"开发配备高密度纳米激光器的光互连将改善在互联网上移动信息的数据中心的信息处理。这可以实现超高清电影的流式传输,实现更大规模的互动式在线聚会和游戏,加速物联网的扩展,并提供大数据分析所需的快速连接。"在今天(12月15日)发表在Optica(Optica出版集团的高影响力研究期刊)上的一篇论文中,研究人员证明了密集集成的纳米激光器阵列--其中激光器之间仅有18微米的距离--可以完全用一根光纤的光来驱动和编程。Kim说:"集成在芯片上的光学设备是电子集成设备的一个有前途的替代方案,电子集成设备正在努力跟上当今的数据处理需求。通过消除通常用于驱动激光器阵列的大型复杂电极,我们减少了激光器阵列的整体尺寸,同时也消除了基于电极的驱动器所带来的发热和处理延迟。"用光代替电极新的纳米激光器可用于光学集成电路系统,该系统通过光在微芯片上检测、生成、传输和处理信息。光电路使用光波导,而不是电子芯片中使用的细铜线,它允许更高的带宽,同时产生更少的热量。然而,由于光学集成电路的尺寸正迅速达到纳米级,因此需要新的方法来有效地驱动和控制其纳米级光源。为了发光,激光器需要在一个称为泵浦的过程中提供能量。对于纳米激光器阵列来说,这通常是通过为阵列中的每个激光器提供一对电极来完成的,这需要大量的片上空间和能源消耗,同时也会造成处理延迟。为了克服这一关键限制,研究人员用一个独特的光学驱动器取代了这些电极,该驱动器通过干涉产生可编程的光模式。这种泵浦光穿过一根光纤,纳米激光器被印在光纤上。为了证明这种方法,研究人员使用了一种高分辨率的转移打印技术来制造多个相隔18微米的光子晶体纳秒器。这些阵列被应用于直径为2微米的光学微纤维的表面。这必须以一种使纳米激光器阵列与干涉图案精确对齐的方式来完成。干涉图案也可以通过调整驱动光束的偏振和脉冲宽度进行修改。用单根光纤驱动激光实验表明,该设计允许使用通过单根光纤的光来驱动多个纳米激光器阵列。结果与数值计算相吻合,并表明印刷的纳米激光器阵列可以完全由泵浦光束干扰模式控制。"我们的全光激光器驱动和编程技术也可以应用于基于芯片的硅光子学系统,它可以在开发芯片到芯片或芯片上的光互连方面发挥关键作用,"Kim说。"然而,有必要证明硅波导的模式可以如何独立地被控制。如果能够做到这一点,这将是片上光互连和光集成电路进步的一个巨大飞跃。"...PC版:https://www.cnbeta.com.tw/articles/soft/1335377.htm手机版:https://m.cnbeta.com.tw/view/1335377.htm

封面图片

华泰证券:关注纳米压印设备精度及效率提升

华泰证券:关注纳米压印设备精度及效率提升华泰证券研报表示,AR采用OST方式将数据直接叠加于现实世界,交互及融合感更自然。AR眼镜的微显示屏与光学方案是当前产业链发展的关键。光学方案中,光波导为当前主流,表面浮雕光栅衍射光波导依靠微纳制造,我们认为光栅设计/光栅母版加工/纳米压印三大技术决定波导性能,关注纳米压印设备精度及效率提升。显示方案中,MicroLED具有低功耗、高亮度等优势适配光波导方案,有望成为AR眼镜微显示器的最优选择。MicroLED当前需克服巨量转移和全彩显示两大难题,后续关注激光巨量转移设备在MicroLED芯片巨量转移的应用及光学透镜合成设计实现全彩显示的商业化进展。

封面图片

科学家运用纳米级二氧化硅3D打印技术制作出世界上最小的酒杯

科学家运用纳米级二氧化硅3D打印技术制作出世界上最小的酒杯这种3D打印酒杯只能够在扫描电子显微镜下才能看到,只有几十微米高。而且,在这个小小的舞台上,它并不孤单--该团队还创造了螺旋、悬臂、针阵列、光学谐振器和项目背后的大学KTH皇家理工学院的标志等迷你模型。过去也有类似的微小艺术品被3D打印出来,包括一艘船和一系列令人难以置信的详细的纳米雕塑,它们都小到可以放人的头发上。但是这批新作品全部由二氧化硅玻璃制成,这是对微小玻璃结构的新打印技术的展示。这个过程从一小群被称为氢硅氧烷(HSQ)的材料开始,其中含有形成硅玻璃(二氧化硅)所需的成分。为此,该液体被激光脉冲击中,每个脉冲仅持续万亿分之一秒,这使得HSQ在激光的焦点处交联成硅玻璃。这个过程能够创建小至65x260纳米的体素(3D像素),使系统能够在HSQ中直接打印物体。该团队表示,这种技术比现有的玻璃3D打印方法要有效得多,后者通常需要长时间的高温,不仅如此,以这种方式制造的物体在使用过程中仍能承受高温。然而,这并不只是一种令人印象深刻的新艺术形式的曙光。研究人员说,它可以用来为光学系统制造更小、更精确的玻璃部件,如镜片或谐振器。事实上,这些部件可以直接在光缆的顶端进行3D打印。该研究的共同作者KristinnGylfason说:"互联网的主干是基于玻璃制成的光纤。在这些系统中,需要各种过滤器和耦合器,现在可以通过我们的技术进行3D打印。这开启了许多新的可能性"。这项研究发表在《自然通讯》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1366649.htm手机版:https://m.cnbeta.com.tw/view/1366649.htm

封面图片

揭开纳米级奇迹的面纱:碳基量子技术

揭开纳米级奇迹的面纱:碳基量子技术Empa研究人员及其国际合作者成功地将碳纳米管电极连接到单个原子级精确纳米带上。资料来源:Empa要实现这些优势,我们需要所谓的量子材料,它们能显示出显著的量子物理效应。石墨烯就是这样一种材料。这种碳的二维结构形式具有不同寻常的物理特性,例如超高的拉伸强度、导热性和导电性,以及某些量子效应。进一步限制这种已经是二维的材料,例如使其具有带状形状,就会产生一系列可控的量子效应。这正是MickaelPerrin团队在工作中所利用的:几年来,在MichelCalame的领导下,Empa纳米界面传输实验室的科学家们一直在开展石墨烯纳米带的研究。Perrin解释说:"石墨烯纳米带甚至比石墨烯本身更令人着迷。通过改变石墨烯纳米带的长度和宽度、边缘形状以及添加其他原子,可以赋予它们各种电学、磁学和光学特性"。纳米带的特性因其宽度和边缘形状而异。资料来源:Empa极致精确--精确到单个原子研究前景广阔的纳米带并非易事。纳米带越窄,其量子特性就越明显,但同时也更难同时获得单个纳米带。要了解这种量子材料的独特特性和可能的应用,并将它们与集体效应区分开来,就必须这样做。在最近发表在《自然-电子学》(NatureElectronics)杂志上的一项新研究中,Perrin和Empa研究员张健以及一个国际团队首次成功地接触到了单个长的、原子精度高的石墨烯纳米带。张建说:"仅有9个碳原子宽的石墨烯纳米带宽度仅为1纳米。为了确保只接触到一条纳米带,研究人员采用了类似尺寸的电极:他们使用的碳纳米管直径也只有1纳米。"对于如此精细的实验来说,精度是关键。首先是源材料。研究人员通过与RomanFasel领导的Empa'snanotech@Surfaces实验室的长期紧密合作,获得了石墨烯纳米带。"RomanFasel和他的团队长期从事石墨烯纳米带的研究工作,可以从单个前驱体分子中以原子精度合成多种不同类型的石墨烯纳米带,"Perrin解释说。前驱体分子来自位于美因茨的马克斯-普朗克聚合物研究所。正如推动技术进步通常所要求的那样,跨学科是关键,不同的国际研究小组都参与其中,各自发挥专长:碳纳米管是由北京大学的一个研究小组培育出来的,为了解释研究结果,Empa的研究人员与华威大学的计算科学家进行了合作。具有原子级精确边缘的极窄带表现出强烈的量子效应,令研究人员特别感兴趣。资料来源:Empa用纳米管接触单个碳带给研究人员带来了巨大的挑战。张解释说:"碳纳米管和石墨烯纳米带分别生长在不同的基底上。首先,纳米管需要转移到设备基底上,并与金属电极接触。然后,我们用高分辨率电子束光刻技术对其进行切割,将其分成两个电极。最后,我们将纳米带转移到同一基板上。精度是关键:即使是基板最轻微的旋转也会大大降低成功接触的概率。能够使用位于吕施里孔的IBM研究院宾尼格和罗赫尔纳米技术中心的高质量基础设施,对于测试和实施这项技术至关重要。"从计算机到能量转换器科学家们通过电荷传输测量确认了实验的成功。由于量子效应通常在低温下更为明显,因此我们在接近绝对零度的高真空环境下进行了测量。但他很快又补充了石墨烯纳米带的另一个特别有前景的特性:"由于这些纳米带的尺寸极小,我们预计它们的量子效应将非常强大,甚至在室温下也能观察到。"这位研究人员说,这将使我们能够设计和运行主动利用量子效应的芯片,而无需复杂的冷却基础设施。参与该项目的华威大学教授HatefSadeghi补充说:"这个项目能够实现单个纳米带器件,不仅可以研究基本量子效应,如电子和声子在纳米尺度上的行为方式,还可以利用这种效应在量子开关、量子传感和量子能量转换等方面进行应用。"石墨烯纳米带尚未准备好投入商业应用,仍有许多研究工作要做。在后续研究中,张和Perrin的目标是在单个纳米带上操纵不同的量子态。此外,他们还计划在串联的两条纳米带的基础上创建设备,形成所谓的双量子点。这样的电路可以作为量子计算机中最小的信息单位--量子比特。此外,Perrin最近还获得了欧洲研究理事会(ERC)的启动资助(StartingGrant)和瑞士国家科学基金会(SNSF)的教授奖学金(SccellenzaProfessorialFellowship),他计划将纳米带用作高效能源转换器。在苏黎世联邦理工学院的就职演讲中,他描绘了这样一个世界:我们可以利用温差发电,同时几乎不会损失任何热能--这将是一个真正的质的飞跃。国际合作多个研究小组为该项目做出了重要贡献。石墨烯纳米带是由RomanFasel领导的Empa纳米技术@表面实验室根据美因茨马克斯-普朗克聚合物研究所的KlausMüllen团队提供的前体分子生长出来的。这些纳米带由MichelCalame领导的Empa纳米级界面传输实验室的成员集成到纳米加工设备中,MickaelPerrin的研究小组也在其中。这项特殊研究所需的精确排列的高质量碳纳米管由北京大学张进研究小组提供。最后,为了解释研究结果,Empa的研究人员在HatefSadeghi的指导下,与华威大学的计算科学家进行了合作。...PC版:https://www.cnbeta.com.tw/articles/soft/1386665.htm手机版:https://m.cnbeta.com.tw/view/1386665.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人