揭开纳米级奇迹的面纱:碳基量子技术

揭开纳米级奇迹的面纱:碳基量子技术Empa研究人员及其国际合作者成功地将碳纳米管电极连接到单个原子级精确纳米带上。资料来源:Empa要实现这些优势,我们需要所谓的量子材料,它们能显示出显著的量子物理效应。石墨烯就是这样一种材料。这种碳的二维结构形式具有不同寻常的物理特性,例如超高的拉伸强度、导热性和导电性,以及某些量子效应。进一步限制这种已经是二维的材料,例如使其具有带状形状,就会产生一系列可控的量子效应。这正是MickaelPerrin团队在工作中所利用的:几年来,在MichelCalame的领导下,Empa纳米界面传输实验室的科学家们一直在开展石墨烯纳米带的研究。Perrin解释说:"石墨烯纳米带甚至比石墨烯本身更令人着迷。通过改变石墨烯纳米带的长度和宽度、边缘形状以及添加其他原子,可以赋予它们各种电学、磁学和光学特性"。纳米带的特性因其宽度和边缘形状而异。资料来源:Empa极致精确--精确到单个原子研究前景广阔的纳米带并非易事。纳米带越窄,其量子特性就越明显,但同时也更难同时获得单个纳米带。要了解这种量子材料的独特特性和可能的应用,并将它们与集体效应区分开来,就必须这样做。在最近发表在《自然-电子学》(NatureElectronics)杂志上的一项新研究中,Perrin和Empa研究员张健以及一个国际团队首次成功地接触到了单个长的、原子精度高的石墨烯纳米带。张建说:"仅有9个碳原子宽的石墨烯纳米带宽度仅为1纳米。为了确保只接触到一条纳米带,研究人员采用了类似尺寸的电极:他们使用的碳纳米管直径也只有1纳米。"对于如此精细的实验来说,精度是关键。首先是源材料。研究人员通过与RomanFasel领导的Empa'snanotech@Surfaces实验室的长期紧密合作,获得了石墨烯纳米带。"RomanFasel和他的团队长期从事石墨烯纳米带的研究工作,可以从单个前驱体分子中以原子精度合成多种不同类型的石墨烯纳米带,"Perrin解释说。前驱体分子来自位于美因茨的马克斯-普朗克聚合物研究所。正如推动技术进步通常所要求的那样,跨学科是关键,不同的国际研究小组都参与其中,各自发挥专长:碳纳米管是由北京大学的一个研究小组培育出来的,为了解释研究结果,Empa的研究人员与华威大学的计算科学家进行了合作。具有原子级精确边缘的极窄带表现出强烈的量子效应,令研究人员特别感兴趣。资料来源:Empa用纳米管接触单个碳带给研究人员带来了巨大的挑战。张解释说:"碳纳米管和石墨烯纳米带分别生长在不同的基底上。首先,纳米管需要转移到设备基底上,并与金属电极接触。然后,我们用高分辨率电子束光刻技术对其进行切割,将其分成两个电极。最后,我们将纳米带转移到同一基板上。精度是关键:即使是基板最轻微的旋转也会大大降低成功接触的概率。能够使用位于吕施里孔的IBM研究院宾尼格和罗赫尔纳米技术中心的高质量基础设施,对于测试和实施这项技术至关重要。"从计算机到能量转换器科学家们通过电荷传输测量确认了实验的成功。由于量子效应通常在低温下更为明显,因此我们在接近绝对零度的高真空环境下进行了测量。但他很快又补充了石墨烯纳米带的另一个特别有前景的特性:"由于这些纳米带的尺寸极小,我们预计它们的量子效应将非常强大,甚至在室温下也能观察到。"这位研究人员说,这将使我们能够设计和运行主动利用量子效应的芯片,而无需复杂的冷却基础设施。参与该项目的华威大学教授HatefSadeghi补充说:"这个项目能够实现单个纳米带器件,不仅可以研究基本量子效应,如电子和声子在纳米尺度上的行为方式,还可以利用这种效应在量子开关、量子传感和量子能量转换等方面进行应用。"石墨烯纳米带尚未准备好投入商业应用,仍有许多研究工作要做。在后续研究中,张和Perrin的目标是在单个纳米带上操纵不同的量子态。此外,他们还计划在串联的两条纳米带的基础上创建设备,形成所谓的双量子点。这样的电路可以作为量子计算机中最小的信息单位--量子比特。此外,Perrin最近还获得了欧洲研究理事会(ERC)的启动资助(StartingGrant)和瑞士国家科学基金会(SNSF)的教授奖学金(SccellenzaProfessorialFellowship),他计划将纳米带用作高效能源转换器。在苏黎世联邦理工学院的就职演讲中,他描绘了这样一个世界:我们可以利用温差发电,同时几乎不会损失任何热能--这将是一个真正的质的飞跃。国际合作多个研究小组为该项目做出了重要贡献。石墨烯纳米带是由RomanFasel领导的Empa纳米技术@表面实验室根据美因茨马克斯-普朗克聚合物研究所的KlausMüllen团队提供的前体分子生长出来的。这些纳米带由MichelCalame领导的Empa纳米级界面传输实验室的成员集成到纳米加工设备中,MickaelPerrin的研究小组也在其中。这项特殊研究所需的精确排列的高质量碳纳米管由北京大学张进研究小组提供。最后,为了解释研究结果,Empa的研究人员在HatefSadeghi的指导下,与华威大学的计算科学家进行了合作。...PC版:https://www.cnbeta.com.tw/articles/soft/1386665.htm手机版:https://m.cnbeta.com.tw/view/1386665.htm

相关推荐

封面图片

纳米级光学技术的突破开启量子世界的更多可能性

纳米级光学技术的突破开启量子世界的更多可能性传统上,超越常规衍射极限的光定位主要依靠两种方法:介质约束和等离子体约束。然而,精密制造和光学损耗等挑战阻碍了将光场限制在10纳米以下甚至1纳米的水平。现在,7月7日《先进光子学》(AdvancedPhotonics)杂志详细介绍了一种新型波导方案,它将利用亚纳米级光场的潜力。以纳米狭缝模式产生亚纳米封闭光场的波导方案。(a)CNP波导方案示意图。(b)纳米狭缝模式横截面场强分布的三维图。资料来源:Yang、Zhou等人,doi10.1117/1.AP.5.4.046003请看这样一个场景:来自标准光纤的光进行了一次转换之旅。它穿过光纤锥,到达耦合纳米线对(CNP)中的最终目的地。在这里,光线转变为一种独特的纳米狭缝模式,形成一个微小到几分之一纳米(约0.3纳米)的封闭光场。令人惊叹的是,这种创新方法的效率高达95%,峰值与背景的比率也很高,从而带来了一系列机遇。突破性的波导方案将其范围扩大到了中红外光谱范围,进一步拓展了纳米宇宙的极限。光学约束现在可以达到约0.2纳米(λ/20000)的非凡尺度,这为探索和发现开辟了更多途径。浙江大学纳米光子学研究组的童利民教授指出:"与以往的方法不同,波导方案呈现为线性光学系统,带来了一系列优势。它可以实现宽带和超快脉冲操作,并允许多个亚纳米级光场的组合。在单个输出中设计空间、光谱和时间序列的能力带来了无限的可能性"。这些突破的潜在应用确实令人叹为观止。光场如此局部化,以至于可以与单个分子或原子相互作用,为光-物质相互作用、超分辨率纳米镜、原子/分子操纵和超灵敏检测等领域的发展提供了可能。我们即将迎来一个新的发现时代,存在的最微小的领域现在已经触手可及。...PC版:https://www.cnbeta.com.tw/articles/soft/1371747.htm手机版:https://m.cnbeta.com.tw/view/1371747.htm

封面图片

揭开新兴领域"扭曲物理"的神秘面纱:石墨烯带材推动了材料潜能的开发

揭开新兴领域"扭曲物理"的神秘面纱:石墨烯带材推动了材料潜能的开发图中灰色的石墨烯弯曲带平铺在另一片石墨烯薄片上。上面的石墨烯带和下面的石墨烯片之间的扭转角度在不断变化。在某些地方,两片石墨烯的原子晶格以0°角对齐,而在另一些地方,两片石墨烯的原子晶格相对扭曲了5°之多。资料来源:哥伦比亚大学CoryDean认为自己对某种材料了如指掌?试着给它来个扭转--字面上的扭转。这就是凝聚态物理新兴领域"扭曲物理"的主要理念。这一领域的研究人员通过微妙的变化--小到叠层之间的角度从1.1°变为1.2°--极大地改变了石墨烯等二维材料的特性。例如,扭曲的石墨烯层已被证明具有单层石墨烯所没有的特性,包括磁体、超导体或绝缘体,而这一切都源于层间扭曲角度的微小变化。从理论上讲,可以通过旋转旋钮来改变扭转角,从而调配出任何特性。然而,哥伦比亚大学物理学家科里-迪恩(CoryDean)认为,现实并非如此简单。两层扭曲的石墨烯可以变得像一种新材料,但人们还不太清楚这些不同特性的确切原因,也无法完全控制它们。迪恩和他的实验室开发出一种简单的新制造技术,可以帮助物理学家更系统、更可重现地探究石墨烯和其他二维材料扭曲层的基本特性。他们在《科学》(Science)杂志上撰文指出,他们使用石墨烯的长"带",而不是方形薄片,制造出的器件在扭转角度和应变方面的可预测性和可控性都达到了新的水平。石墨烯器件通常由原子般薄的石墨烯薄片组装而成,薄片只有几平方毫米。片状石墨烯之间的扭曲角度是固定的,而且片状石墨烯很难平滑地层叠在一起。该论文的共同作者、博士后比亚克-杰森(BjarkeJessen)说:"把石墨烯想象成'纱布'--当你把两片石墨烯放在一起时,就会出现随机的小褶皱和气泡。这些气泡和褶皱类似于薄片之间扭曲角度的变化,以及薄片之间产生的物理应变,可导致材料随意弯曲和挤压。所有这些变化都会产生新的行为,但在设备内部和设备之间却很难控制。"带状材料可以使一切变得平滑。实验室的新研究表明,只需用原子力显微镜的尖端轻轻一推,就能将石墨烯带弯曲成稳定的弧形,然后将其平放在第二层未弯曲的石墨烯层上。这样,两层石墨烯之间的扭转角就会在整个装置的长度范围内产生从0°到5°的连续变化,应变均匀分布,再也不会出现随机气泡或皱褶。"我们不必再用10个不同的角度制作10个独立的装置来观察会发生什么,"博士后兼合著者MaëlleKapfer说。"而且,我们现在可以控制应变,这在以前的扭曲装置中是完全没有的。"研究小组使用特殊的高分辨率显微镜来确认他们的设备有多均匀。有了这些空间信息,他们开发出了一种机械模型,可以根据弯曲带的形状预测扭转角度和应变值。第一篇论文的重点是表征石墨烯带以及其他可减薄至单层并堆叠在一起的材料的行为和特性。迪恩指出:"迄今为止,我们尝试过的每一种二维材料都能做到这一点。从这里开始,实验室计划利用他们的新技术来探索量子材料的基本特性如何随着扭曲角度和应变的变化而变化。例如,先前的研究表明,当扭曲角为1.1时,两层扭曲的石墨烯会像超导体一样工作。"然而,目前有各种不同的模型来解释这个所谓的"魔力角"超导现象的起源,并预测了迄今为止难以稳定的其他魔力角。利用包含0°至5°之间所有角度的带状材料制成的设备,研究小组可以更精确地探索这种现象和其他现象的起源。"我们正在做的事情就像量子炼金术:把一种材料变成另一种材料。杰森说:"我们现在有了一个平台,可以系统地探索这种现象是如何发生的。"...PC版:https://www.cnbeta.com.tw/articles/soft/1376707.htm手机版:https://m.cnbeta.com.tw/view/1376707.htm

封面图片

天然双层石墨烯内发现新奇量子效应

天然双层石墨烯内发现新奇量子效应由德国哥廷根大学领导的一个国际研究团队在最新一期《自然》杂志上发表论文称,他们在对天然双层石墨烯开展的高精度研究中,发现了新奇的量子效应,并从理论上对其进行了解释。这一系统制备简单,为载荷子和不同相之间的相互作用提供了新见解,有助于理解所涉及的过程,促进量子计算机的发展。2004年,两位英国科学家用一种非常简单的实验方法从石墨中剥离出石墨片,并借助特殊胶带得到仅由一层碳原子构成的石墨烯。石墨烯是强度最高的材料之一,具有很好的韧性、超强导热性与导电性,应用前景十分广阔。如果将两层石墨烯彼此以特定的角度偏转,所得到的系统甚至会表现出超导性和其他激发量子效应,如磁性。但迄今为止,很难制备出这种偏转的双层石墨烯。在最新研究中,科学家们使用了天然形成的双层石墨烯。他们首先使用简单的胶带从一块石墨中分离出石墨烯样品。为观察量子力学效应,施加了垂直于样品的高电场。他们发现,所得到系统的电子结构发生了变化,且拥有类似能量的电荷载流子出现强烈的累积效应。研究进一步发现,在略高于绝对零度(-273.15℃)下,石墨烯中的电子可相互作用,出现了各种意想不到且复杂的量子相。如相互作用导致电子自旋对齐,使材料在没有施加外部影响的情况下具有磁性。通过改变电场,研究人员也能不断改变双层石墨烯中载流子相互作用的强度。此外,电子运动的自由度在特定条件下会受限,形成电子晶格,且由于相互排斥作用,不再有助于传输电荷,导致系统对电绝缘。哥廷根大学物理系托马斯·韦茨教授表示,新系统的主要优势之一在于材料制备非常简单,研究人员不需要像以前那样在高温下才能获得所需结果,可用于进一步研究各种量子态及量子计算机等。PC版:https://www.cnbeta.com/articles/soft/1305337.htm手机版:https://m.cnbeta.com/view/1305337.htm

封面图片

纳米波纹石墨烯成为强大的催化剂

纳米波纹石墨烯成为强大的催化剂科学家们发现,石墨烯中的纳米波纹使它成为一种强大的催化剂,尽管它被认为是化学惰性的。他们发表在PNAS上的研究表明,石墨烯表面的纳米级波纹可以加速氢气的分裂,就像最好的金属基催化剂一样,而且这种效应可能存在于所有二维材料中。本周发表在《美国国家科学院院刊》(PNAS)上的研究表明,表面有纳米级波纹的石墨烯可以加速氢气的分裂,就像最好的金属基催化剂一样。这种意想不到的效果可能存在于所有二维材料中,这些材料本身都是不平坦的。曼彻斯特团队与来自中国和美国的研究人员合作进行了一系列的实验,以证明石墨烯的非平坦性使其成为一种强大的催化剂。首先,利用超灵敏的气流测量和拉曼光谱,他们证明了石墨烯的纳米级波纹与它与分子氢(H2)的化学反应性有关,并且它解离成原子氢(H)的活化能相对较小。顶部有离解氢原子的波纹石墨烯。资料来源:曼彻斯特大学研究小组评估了这种反应性是否足以使该材料成为高效的催化剂。为此,研究人员使用了氢气和氘气(D2)的混合气体,发现石墨烯确实表现为一种强大的催化剂,将氢气和D2转化为HD。这与石墨和其他碳基材料在相同条件下的行为形成了鲜明的对比。气体分析显示,单层石墨烯产生的HD量与已知的氢气催化剂(如氧化锆、氧化镁和铜)大致相同,但石墨烯只需要极少量,不到后者催化剂的100倍。"我们的论文表明,独立的石墨烯与化学性质极其惰性的石墨和原子平坦的石墨烯都有很大不同。"论文第一作者孙鹏展博士说:"我们还证明了与石墨烯表面的空位、边缘和其他缺陷等'通常嫌疑人'相比,纳米级的波纹对催化作用更为重要。"论文的第一作者Geim教授补充说:"由于热波动和不可避免的局部机械应变,所有原子级薄的晶体都会自然发生纳米波纹,其他二维材料也可能显示出类似的增强反应性。至于石墨烯,我们当然可以期待它在其他反应中具有催化和化学活性,而不仅仅是涉及氢气的反应。""二维材料最常被认为是原子级的平板,由不可避免的纳米级波纹造成的影响至今被忽视。我们的工作表明,这些影响可能是戏剧性的,这对二维材料的使用有重要影响。例如,块状硫化钼和其他茂金属经常被用作三维催化剂。现在我们应该想一想,它们在二维形式下是否会更加活跃"。...PC版:https://www.cnbeta.com.tw/articles/soft/1349743.htm手机版:https://m.cnbeta.com.tw/view/1349743.htm

封面图片

研究人员实现用飞秒激光进行石墨烯纳米加工

研究人员实现用飞秒激光进行石墨烯纳米加工石墨烯于2004年被发现,它已经彻底改变了各种科学领域。它拥有高电子迁移率、机械强度和热导率等显著特性。人们投入了大量的时间和精力来探索它作为下一代半导体材料的潜力,催生了基于石墨烯的晶体管、透明电极和传感器等一系列有用部件。但是,为了使这些设备进入实际应用,关键是要有高效的加工技术,可以在微米和纳米尺度上构造石墨烯薄膜。通常,微/纳米尺度的材料加工和设备制造采用纳米光刻技术和聚焦离子束方法。然而,由于需要大规模的设备、冗长的制造时间和复杂的操作,这些都给实验室研究人员带来了长期的挑战。早在一月份,东北大学的研究人员创造了一种技术,可以对厚度为5至50纳米的氮化硅薄片进行微/纳米制造。该方法采用了飞秒激光,它发射出极短的快速光脉冲。事实证明,它能够在没有真空环境的情况下快速、方便地加工薄型材料。(a)激光加工系统的示意图。(b)石墨烯薄膜上32个激光点的形成。(c)经过多点钻孔的石墨烯薄膜的图像。通过将这种方法应用于石墨烯的超薄原子层,同一小组现在已经成功地进行了多点钻孔而不损坏石墨烯薄膜。他们的突破性细节于2023年5月16日在《纳米通讯》杂志上报道。东北大学先进材料多学科研究所的助理教授、该论文的共同作者YuukiUesugi说:"通过对输入能量和激光射击次数的适当控制,我们能够执行精确的加工并创造出直径从70纳米--远小于520纳米的激光波长--到超过1毫米的孔。"通过扫描透射电子显微镜观察到的激光加工的石墨烯薄膜的图像。黑色区域表示打孔。白色物体表示表面污染物。资料来源:YuukiUesugi等人。在通过高性能电子显微镜仔细检查用低能量激光脉冲照射的区域时,上杉和他的同事发现,石墨烯上的污染物也已被清除。进一步的放大观察发现了直径小于10纳米的纳米孔和原子级缺陷,在石墨烯的晶体结构中缺少几个碳原子。石墨烯中的原子缺陷既是有害的也是有利的,这取决于应用。虽然缺陷有时会降低某些特性,但它们也会引入新的功能或增强特定的特性。通过高倍率透射电子显微镜获得的图像。红色区域表示纳米孔。蓝色区域表示污染物。箭头所指的位置存在原子缺陷。"观察到纳米孔和缺陷的密度随着激光射击的能量和数量成比例增加的趋势,使我们得出结论,纳米孔和缺陷的形成可以通过使用飞秒激光照射来操纵,"Uesugi补充说。"通过在石墨烯中形成纳米孔和原子级缺陷,不仅可以控制导电性,还可以控制量子级特性,如自旋和谷值。此外,这项研究中发现的通过飞秒激光照射去除污染物的方法可以开发出一种非破坏性和清洁地清洗高纯度石墨烯的新方法。"展望未来,该团队旨在建立一种使用激光的清洗技术,并对如何进行原子缺陷的形成进行详细调查。进一步的突破将对从量子材料研究到生物传感器开发等领域产生巨大影响。...PC版:https://www.cnbeta.com.tw/articles/soft/1363301.htm手机版:https://m.cnbeta.com.tw/view/1363301.htm

封面图片

量子电路的革命:石墨烯的精密工程

量子电路的革命:石墨烯的精密工程圣地亚哥-德-坎波斯特拉大学生物化学和分子材料研究中心(CiQUS-USC)的DiegoPeña教授,ICN2团队的前成员、目前在坎塔布里亚大学担任研究员的CesarMoreno博士,以及多诺斯蒂亚国际物理中心(DIPC)和Ikerbasque基金会的AranGarcia-Lekue博士已经做了类似的事情,但在单原子尺度上,目的是合成具有可调整特性的新型碳基材料。正如刚刚发表在《美国化学学会杂志》(JACS)上的一篇论文所解释的那样,这项研究是原子薄型材料精确工程的一个重大突破--由于其尺寸减少而被称为"二维材料"。所提出的制造技术为材料科学开辟了令人兴奋的新的可能性,特别是在先进的电子产品和未来可持续能源的解决方案中的应用。该研究被刊登在《美国化学会杂志》(JACS)的封面上。资料来源:MariaTenorio博士和DámasoTorres-ICN2这项研究的作者通过连接被称为"纳米带"的超窄石墨烯条,通过由苯基分子(是大分子的一部分)组成的灵活"桥梁",合成了一种新的纳米多孔石墨烯结构。通过连续修改这些桥的结构和角度,科学家们可以控制纳米带通道之间的量子连通性,并最终对石墨烯纳米结构的电子特性进行微调。这种可调性也可以由外部刺激控制,如应变或电场,为不同的应用提供机会。这些突破性的发现来自于西班牙顶级机构(CiQUS、ICN2、坎塔布里亚大学、DIPC)和丹麦技术大学(DTU)之间的合作,表明所提出的分子桥策略可以对具有定制属性的新材料的合成产生巨大影响,是实现量子电路的有力工具。这些电路执行的操作与传统电路类似,尽管与后者不同,量子电路利用了量子效应和现象。这些系统的设计和实现与量子计算机的发展极为相关。但本研究提出的方法的潜在应用超越了未来的电子设备和计算机。事实上,它还可以导致热电纳米材料的发展,这在可再生能源发电和废热回收方面可以产生重要影响,因此解决了另一个关键的社会挑战。...PC版:https://www.cnbeta.com.tw/articles/soft/1357837.htm手机版:https://m.cnbeta.com.tw/view/1357837.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人