科学家发现存在一种2017年首次预测的难以捉摸的超导态

科学家发现存在一种2017年首次预测的难以捉摸的超导态这是荷兰格罗宁根大学复杂材料设备物理学组组长、《自然》杂志有关FFLO超导态论文的第一作者叶毅教授、博士。图片来源:SylviaGermes该论文的第一作者是格罗宁根大学复杂材料设备物理学组组长叶毅教授。叶教授和他的团队一直在研究伊辛超导态。这是一种特殊的状态,可以抵抗通常会破坏超导性的磁场,该团队在2015年对其进行了描述。2019年,他们创造了一种由双层二硫化钼组成的装置,可以将驻留在两层中的伊辛超导态耦合在一起。有趣的是,Ye和他的团队创造的装置可以利用电场打开或关闭这种保护,从而形成一个超导晶体管。耦合伊辛超导体装置揭示了超导领域一个长期存在的难题。1964年,四位科学家(富尔德、费雷尔、拉尔金和奥夫钦尼科夫)预言了一种在低温和强磁场条件下可能存在的特殊超导状态,即FFLO状态。在标准超导电性中,电子作为库珀对以相反的方向运动。由于它们以相同的速度运动,这些电子的总动量为零。然而,在FFLO状态中,库珀对中的电子之间存在微小的速度差,这意味着存在净动量。叶毅教授介绍说:"这种状态非常难以捉摸,只有少数文章声称它存在于普通超导体中。"然而,这些文章都不是结论性的。这个相图描述了六折各向异性轨道FFLO状态的存在,它占据了相图的很大一部分。右上角的示意图展示了超导阶参数的空间调制。资料来源:P.Wan/格罗宁根大学要在传统超导体中产生FFLO状态,需要一个强磁场。但磁场的作用需要仔细调整。简单地说,要让磁场发挥两种作用,我们需要利用泽曼效应。这可以根据自旋方向(磁矩)来分离库珀对中的电子,而不是轨道效应--通常会破坏超导性的另一种作用。"这就像超导性与外部磁场之间的微妙谈判。"第一作者PuhuaWan制作的样品满足了证明库珀对中确实存在有限动量的所有要求。资料来源:P.Wan/格罗宁根大学叶和他的合作者于2015年在《科学》(Science)杂志上介绍并发表的伊辛超导抑制了泽曼效应。他说:"通过过滤掉使传统FFLO成为可能的关键成分,我们为磁场发挥其另一个作用(即轨道效应)提供了充足的空间。我们在论文中展示的是轨道效应驱动的FFLO状态在我们的伊辛超导体中的清晰指纹,这是一种非常规的FFLO态,2017年首次在理论上被描述。"传统超导体中的FFLO态需要极低的温度和极强的磁场,因此很难产生。然而,在叶教授的伊辛超导体中,只需较弱的磁场和较高的温度就能达到这种状态。事实上,2019年,研究人员首次在他的二硫化钼超导装置中观察到FFLO状态的迹象:"当时我们无法证明这一点,因为样品不够好。不过,他的博士生万普华后来成功制作出了符合所有要求的材料样品,证明库珀对中确实存在有限动量。实际实验花了半年时间,但对实验结果的分析又花了一年时间。"这种新的超导状态还需要进一步研究。还有很多东西需要了解。例如,动量如何影响物理参数?研究这种状态将为超导提供新的见解。这或许能让我们在晶体管等设备中控制这种状态。这是物理学家们的下一个挑战。...PC版:https://www.cnbeta.com.tw/articles/soft/1372531.htm手机版:https://m.cnbeta.com.tw/view/1372531.htm

相关推荐

封面图片

超导突破:科学家发现量子物质的新状态

超导突破:科学家发现量子物质的新状态这种"自旋三重电子对晶体"是一种以前未知的拓扑量子物质状态。这一发现最近发表在《自然》杂志上。顾强强是在文理学院詹姆斯-吉尔伯特-怀特杰出荣誉教授、物理学家J.C.SéamusDavis实验室工作的博士后研究员,他与科克大学学院的乔-卡罗尔和牛津大学的王树秋共同领导了这项研究。当配对电势呈现奇奇偶性时,超导体就是拓扑超导体,这会导致每个电子对采用自旋三重态,两个电子自旋的方向相同。顾强强介绍说,拓扑超导体是物理学家们热衷研究的对象,因为从理论上讲,它们可以构成超稳定量子计算机的材料平台。然而,即使对拓扑超导进行了长达十年的深入研究,除了同样在康奈尔大学发现的超流体3He之外,还没有任何块体材料被明确认定为自旋三奇偶超导体。最近,一种奇特的新材料--二碲化铀(UTe2)成为这种分类的极有希望的候选者。然而,它的超导阶参数仍然难以捉摸。2021年,理论物理学家开始提出,UTe2实际上处于拓扑对密度波(PDW)状态。此前从未探测到过这种形式的量子物质。简单地说,拓扑对密度波就像超导体中的成对电子的静态舞蹈,但这些成对电子在空间中形成周期性的晶体图案。"我们康奈尔大学的团队在2016年利用我们为此发明的超导尖端扫描约瑟夫森隧穿显微镜发现了有史以来观测到的第一个PDW,"顾说。"从那时起,我们开创了在毫开尔文温度和微伏能量分辨率下的SJTM研究。在UTe2项目中,我们直接观察到了超导配对势在原子尺度上的空间调制,并发现它们的调制完全符合PDW状态下电子对密度在空间周期性调制的预测。我们探测到的是一种新的量子物质态--由自旋-三重库珀对组成的拓扑对密度波"。库珀对密度波是电子量子物质的一种形式,其中电子对凝固成超导PDW态,而不是形成传统的"超导"流体,在这种流体中,所有电子对都处于相同的自由运动状态。顾强强说:"在自旋三重超导体中首次发现PDW令人兴奋。铀基重费米子超导化合物是一类新颖奇特的材料,为实现拓扑超导提供了一个前景广阔的平台。......我们的科学发现还指出了这种有趣的量子态在s波、d波和p波超导体中无处不在的性质,并为在广泛的材料中识别这种状态提供了新的途径。"...PC版:https://www.cnbeta.com.tw/articles/soft/1380305.htm手机版:https://m.cnbeta.com.tw/view/1380305.htm

封面图片

韩国超导低温学会:LK-99不是常温超导体 没有表现出迈斯纳效应

韩国超导低温学会:LK-99不是常温超导体没有表现出迈斯纳效应然而,事件又出现了翻转。据财联社援引韩联社的报道,韩国超导低温学会应询表示,韩国量子能源研究中心研究团队所合成的“LK-99”并非常温超导体,因为它并没有表现出超导体的特征。8月2日,国超导低温学会宣布组成专家验证委员会对该物质进行科学研判。报道称,该委员会解释称,超导现象意味着特定物质会消除电阻,并产生挤出内部磁场的“负效应”,但在与LK-99相关的视频和论文中,并没有出现这种迈斯纳效应。快科技了解到,迈斯纳效应是超导体从一般状态相变至超导态的过程中对磁场的排斥现象,于1933年时被瓦尔特·迈斯纳与罗伯特·奥克森菲尔德发现。1933年德国物理学家迈斯纳(W.Meissner)和奥森菲尔德(R.Ochsenfeld)对锡单晶球超导体做磁场分布测量时发现,在小磁场中把金属冷却进入超导态时,体内的磁力线一下被排出,磁力线不能穿过它的体内,也就是说超导体处于超导态时,体内的磁场恒等于零。超导体一旦进入超导状态,体内的磁通量将全部被排出体外,磁感应强度恒为零,且不论对导体是先降温后加磁场,还是先加磁场后降温,只要进入超导状态,超导体就把全部磁通量排出体外。此外,超导体还是完全的抗磁体,外加磁场无法进入或(严格说是)无法大范围地存在于超导体内部,这是超导体的另一个基本特性。按照传统的定义,超导指的是在特定的温度、压力条件下呈现出电阻等于零的特性以及具备完全抗磁性的材料。就相当于电子在没有电阻的情况过材料。打个比方:就好像一个人可以高速行驶穿过拥挤的市中心,永远不会撞到红绿灯。所以,超导也也被称为“当代科学的明珠”。想象一下,在电阻几乎消失、能源传递耗损几乎为0的条件下,人类整体能源传输效率,将达到史无前例的高度。...PC版:https://www.cnbeta.com.tw/articles/soft/1374815.htm手机版:https://m.cnbeta.com.tw/view/1374815.htm

封面图片

科学家发现第一种存在于自然界的非常规超导体:密硫铑矿

科学家发现第一种存在于自然界的非常规超导体:密硫铑矿保罗-坎菲尔德(PaulCanfield)培育的密硫铑矿晶体图片。资料来源:美国能源部埃姆斯国家实验室研究小组对密硫铑矿的研究发现,它是一种非常规超导体,具有与高温超导体类似的特性。他们的发现进一步加深了科学家们对这种超导性的理解,这可能会在未来带来更可持续、更经济的基于超导体的技术。超导电性是指材料能够导电而不损失能量。超导体的应用领域包括医疗核磁共振成像仪、电力电缆和量子计算机。传统的超导体很好理解,但临界温度较低。临界温度是一种材料成为超导体的最高温度。20世纪80年代,科学家发现了非常规超导体,其中许多的临界温度要高得多。据艾姆斯实验室的科学家鲁斯兰-普罗佐罗夫(RuslanProzorov)称,所有这些材料都是在实验室中培育出来的。这一事实使人们普遍认为,非常规超导并非自然现象。普罗佐罗夫解释说,很难在自然界中找到超导体,因为大多数超导元素和化合物都是金属,容易与氧气等其他元素发生反应。密硫铑矿(Rh17S15)是一种有趣的矿物,原因有几个,其中之一就是它复杂的化学式。直觉上,我们会认为这是在集中搜索过程中刻意制造出来的东西,不可能存在于自然界中。爱荷华州立大学物理和天文学特聘教授、艾姆斯实验室科学家保罗-坎菲尔德(PaulCanfield)在新型晶体材料的设计、发现、生长和表征方面拥有丰富的专业知识。他为这个项目合成了高质量的密硫铑矿晶体。坎菲尔德说:"虽然密硫铑矿是在俄罗斯车里雅宾斯克州米亚斯河附近发现的一种矿物,但它是一种罕见的矿物,一般不会生长出形态良好的晶体。"密硫铑矿晶体是发现结合了高熔点元素(如Rh)和挥发性元素(如S)的化合物的更大努力的一部分。坎菲尔德说:"与纯元素的性质相反,我们一直在掌握这些元素混合物的使用方法,使晶体能够在蒸汽压最小的情况下低温生长。这就像发现了一个隐藏的钓鱼洞,里面有很多大鱼。在Rh-S系统中,我们发现了三种新的超导体。而且,通过鲁斯兰的详细测量,我们发现密硫铑矿是一种非常规超导体。"研究小组专门研究低温超导体的先进技术。材料需要低至50毫开尔文,也就是约华氏零下460度。普罗佐罗夫的团队使用了三种不同的测试来确定密硫铑矿的超导性质。主要测试称为"伦敦穿透深度"。它确定了弱磁场从表面穿透超导体体的距离。在传统超导体中,这一长度在低温下基本保持不变。然而,在非常规超导体中,它随温度呈线性变化。这项测试表明,密硫铑矿具有非常规超导体的特性。研究小组进行的另一项测试是在材料中引入缺陷。这项测试是他的团队在过去十年中采用的一项标志性技术。它包括用高能电子轰击材料。在这个过程中,离子会被击离它们的位置,从而在晶体结构中产生缺陷。这种无序会导致材料临界温度的变化。传统超导体对非磁性无序并不敏感,因此这种测试将显示临界温度没有变化或变化很小。非常规超导体对无序非常敏感,引入缺陷会改变或抑制临界温度。它还会影响材料的临界磁场。研究小组发现,在密硫铑矿中,临界温度和临界磁场的表现与非常规超导体的预测一致。对非常规超导体的研究提高了科学家对其工作原理的理解。普罗佐罗夫解释说,这一点非常重要,因为"揭示非常规超导背后的机制是超导体经济合理应用的关键"。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423812.htm手机版:https://m.cnbeta.com.tw/view/1423812.htm

封面图片

超导研究的新时代 - 科学家们发现"Goldilocks"材料

超导研究的新时代-科学家们发现"Goldilocks"材料这些超导体的基础在于镍,促使许多科学家将这一时期的超导研究称为"镍时代"。在许多方面,镍酸盐与铜酸盐相似,后者是在20世纪80年代发现的,以铜为基础。但是现在,一类新的材料正在发挥作用:在维也纳大学和日本的大学之间的合作中,有可能在计算机上比以前更精确地模拟各种材料的行为。科学家发现了"Goldilocks区",在这个区里,超导性工作得特别好。而这个区域既不是用镍也不是用铜,而是用钯来达到。这可能为超导研究带来一个新的"钯金时代"。这些结果现在已经发表在科学杂志《物理评论快报》上。寻找更高的过渡温度在高温下,超导体的行为与其他导电材料非常相似。但是当它们被冷却到某个"临界温度"以下时,它们就会发生巨大的变化:它们的电阻完全消失,突然间它们可以毫无损失地导电。材料在超导和正常导电状态之间变化的这一极限,被称为"临界温度"。"我们现在已经能够计算出整个系列材料的这个"临界温度"。通过我们在高性能计算机上的建模,我们能够高度准确地预测镍酸盐超导的相图,正如后来的实验所显示的那样,"来自维也纳大学固体物理研究所的KarstenHeld教授说。许多材料只有在绝对零度以上(-273.15°C)才会成为超导体,而其他材料即使在更高的温度下也能保持其超导特性。一种在正常室温和正常大气压力下仍然保持超导性的超导体将从根本上改变我们产生、运输和使用电力的方式。然而,这样一种材料还没有被发现。尽管如此,高温超导体,包括那些杯状物类的超导体,在技术方面发挥着重要作用--例如,在传输大电流或产生极强的磁场方面。铜?镍?还是钯?寻找最佳的超导材料是很困难的:有许多不同的化学元素会出现问题。可以把它们放在不同的结构中,可以添加其他元素的微小痕迹来优化超导性。KarstenHeld教授说:"为了找到合适的候选材料,你必须在量子物理学层面上了解电子在材料中如何相互作用。"这表明,电子的相互作用强度有一个最佳值。相互作用必须是强的,但也不能太强。在这两者之间有一个"黄金地带",使其有可能达到最高的过渡温度。钯酸盐是最佳解决方案这个中等相互作用的黄金区域既不能用铜酸盐也不能用镍酸盐来达到--但人们可以用一种新型的材料来击中靶心:所谓的钯酸盐。"钯在周期表中直接比镍低一行。属性相似,但那里的电子平均离原子核和彼此更远一些,所以电子相互作用更弱,"卡斯滕-海德说。该模型计算显示了如何实现钯数据的最佳过渡温度。"计算结果是非常有希望的,"卡斯滕-赫尔德说。"我们希望,我们现在可以利用它们来启动实验研究。如果我们有一个全新的、额外的钯类材料可用来更好地理解超导性,并创造出更好的超导体,这可能会使整个研究领域向前发展。"...PC版:https://www.cnbeta.com.tw/articles/soft/1356697.htm手机版:https://m.cnbeta.com.tw/view/1356697.htm

封面图片

中国科学家发现液氮温区镍氧化物超导体 有望破解高温超导机理

中国科学家发现液氮温区镍氧化物超导体有望破解高温超导机理《自然》杂志7月12日刊登中山大学王猛教授团队与其他单位合作的成果:首次发现液氮温区镍氧化物超导体。这是由中国科学家首次率先独立发现的全新高温超导体系,是人类目前发现的第二种液氮温区非常规超导材料,是基础研究领域“从0到1”的重要突破,将有望推动破解高温超导机理,使设计和预测高温超导材料成为可能,在信息技术、工业加工技术、超导电力、生物医学和交通运输等领域,实现更广泛的应用。——

封面图片

自然杂志:科学家迄今为止未能证明韩国团队的 LK-99 材料是室温超导体

自然杂志:科学家迄今为止未能证明韩国团队的LK-99材料是室温超导体一个韩国团队声称发现了一种在室温和环境压力下工作的超导体,这一消息引起了广泛关注,并促使科学家和业余爱好者进行了大量的复现工作。但最初在实验和理论上重现这一值得关注的结果的努力却未能成功,研究人员仍然深感怀疑。由首尔初创公司量子能源研究中心的SukbaeLee和Ji-HoonKim领导的研究小组在7月1日25日发表的预印本中表示,一种由铜、铅、磷和氧组成的化合物,被称为LK-99,在环境压力和温度高于127°C(400开尔文)时是超导体。研究小组声称,样品显示出超导性的两个关键迹象:零电阻和迈斯纳效应,其中材料排出磁场,导致样品悬浮在磁铁上方。以前的努力仅在极低的温度或极高的压力下在某些材料中实现了超导。尚未证实任何材料在环境条件下是超导体。首次复现LK-99的尝试在最近几天的报道中并没有改善该材料的前景。这些研究都没有直接证据表明该材料具有超导性。(韩国团队未回应《自然》杂志的置评请求。)印度新德里国家物理实验室和北京北航大学的两个独立实验团队分别报告说,他们成功合成了LK-99,但没有观察到超导性的迹象。中国南京东南大学的研究人员进行的第三个实验在LK-99中没有发现迈斯纳效应,但在-163°C(110开尔文)时测得LK-99的电阻接近零——这远低于常温,但对于超导体来说却很高。理论学家也加入了争论。几个理论研究使用了一种名为密度泛函理论(DFT)的计算技术来计算LK-99的电子结构。DFT计算表明LK-99可能具有有趣的电子特性,在其他材料中,这些特性与铁磁性和超导性等行为有关。但是没有一项研究发现LK-99在常规条件下是超导体。复现尝试的有限成功并没有平息网上的猜测。尽管许多材料(包括石墨烯、青蛙和钳子)都可以表现出类似的磁性行为,但未经证实的样本视频(据称是由于超导性而悬浮)已作为“证据”流传开来。——(nature)

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人