科学家发现能分解某些"永久化学物质"(PFAS)的细菌

科学家发现能分解某些"永久化学物质"(PFAS)的细菌伯恩斯工程学院助理教授门玉洁和她的团队发现,这些细菌能够清除特定亚类的全氟和多氟烷基物质,即所谓的全氟辛烷磺酸,尤其是那些在其化学结构中含有一个或多个氯原子的物质。他们的研究结果发表在科学杂志《自然-水》上。由于碳-氟键异常牢固,有害健康的化学物质会在环境中持续存在几十年甚至更长的时间。值得注意的是,加州大学洛杉矶分校的研究小组发现,细菌能裂解污染物的氯碳键,从而引发一系列反应,破坏永久化学结构,使其变得无害。加州大学河滨分校助理教授门玉丽和研究生金乔森。图片来源:UCR张思卓摄"我们发现,细菌可以先进行碳-氯键裂解,产生不稳定的中间产物,"门玉丽说。"然后这些不稳定的中间产物会发生自发的脱氟反应,也就是碳-氟键的裂解。"氯化全氟辛烷磺酸是由数千种化合物组成的永远的化学家族中的一大类。它们包括工业中使用的各种不易燃液压油,以及用于制造化学性质稳定的薄膜的化合物,这些薄膜在各种工业、包装和电子应用中用作防潮层。门氏研究小组发现的两种细菌--嗜氨脱硫弧菌(Desulfovibrioaminophilus)和孢子菌(Sporomusasphaeroides)--是天然存在的,已知它们生活在地下水可能受到全氟辛烷磺酸污染的地下微生物群中。为了加快清理工作,可以向地下水中注入甲醇等廉价营养物质,以促进细菌生长。这将大大增加细菌的存在,从而更有效地破坏污染物,如果细菌尚未存在,可以在受污染的水中接种其中一种细菌。生物净化过程的概念图。图片来源:埃文-菲尔兹(EvanFields)绘制的UCR图像Men是该论文的通讯作者,UCR化学与环境工程研究生BosenJin是论文的第一作者,UCR的其他共同作者包括博士后高金玉、前博士后刘华清、前研究生车顺和于耀春,以及副教授刘金勇。这项研究拓展了早先的研究成果,她在研究中证明微生物可以分解一类顽固的全氟辛烷磺酸,即氟化羧酸。长期以来,微生物一直被用于溢油和其他工业污染物的生物净化,包括她研究的工业溶剂三氯乙烯(TCE)。但是,关于利用微生物净化全氟辛烷磺酸的研究还处于起步阶段,她的发现带来了巨大的希望,因为如果有有效的食污染物微生物,生物处理通常比化学处理成本更低、更环保。吞噬污染物的微生物还可以注入地下难以到达的位置。最新的PFAS研究正值美国环保署颁布新法规,推动清理全国各地受PFAS污染的地下水点之际,因为这些化学物质与一系列不良健康影响有关,包括癌症、肾病和激素紊乱。...PC版:https://www.cnbeta.com.tw/articles/soft/1372659.htm手机版:https://m.cnbeta.com.tw/view/1372659.htm

相关推荐

封面图片

科学家发现细菌能产生比想象中更多的化学物质

科学家发现细菌能产生比想象中更多的化学物质作为缓解气候变化影响和支持向可再生能源过渡的一个可行的解决方案,微生物电合成有可能结合二氧化碳,生产乙醇和其他可用作燃料的有机化合物,并因此储存多余的电力。尽管已经存在了10多年,这项技术还没有在商业化方面取得重大进展。据莱布尼兹-香港工业大学生物试验厂的负责人MiriamRosenbaum说,这主要是因为"迄今为止,这一过程背后的生物学被视为一种黑箱"。这位在耶拿的弗里德里希-席勒大学担任合成生物技术主席的生物化学家,长期以来一直致力于研究在微生物电合成(MES)过程中到底发生了什么。在小型生物反应器中,研究人员可以精确控制微生物电合成的条件。她的团队现在正是在这一领域取得了突破:研究人员能够证明,细菌并不直接吸收电流提供的电子,而是利用氢气来转移电子。这一点长期以来一直被怀疑是一种可能性,但直到现在还没有人提供实验证明。他们还发现,这种方法可以生产出比以前想象的更多有用的化学品,并优化了这一过程,以获得尽可能高的产量。受控条件在MES中,电力被施加到含有微生物的营养水溶液中,并同时加入二氧化碳。微生物利用电力和碳来生产有机化合物,如乙醇或醋酸。为了做到这一点,它们使用了所提供的电子--但以前并不清楚是如何做到的。罗森鲍姆说:"有一项研究认为,微生物直接使用电子。"然而,这一假设并没有被证实。罗森鲍姆认为更有可能的是,这些微生物利用氢气进行生物合成。这是因为当电力和二氧化碳被应用时,所发生的事情与经典的电解是一样的:水被分成了氢气和氧气。ljungdahlii梭状芽孢杆菌“到目前为止,还没有人真正直接测量过系统中的氢气,”该研究的第一作者圣迭戈·博托解释道。因此,他设置了MES反应器,以便他可以精确控制所有参数。为此,他使用了一种纯培养物,其中含有不同浓度的Clostridiumljungdahlii细菌。此外,他还可以控制电流并使用微型传感器测量电极产生的氢气和从液体中逸出的氢气。“通过我们的设计,我们能够收集到一些细菌正在使用氢气的证据,”博托说。当营养培养基中的细菌浓度使得它们在阴极上形成生物膜并且在电极环境中可测量到很少的氢时,细菌的活性显着降低。当电压不足以进行电解时,也会发生这种情况。只有当氢可以自由地供浮游生物(即自由游动的)来自电极的细菌使用时,它们才会表现出高活性。发现新的生物合成途径通过这种方式,研究团队能够优化电压和细菌浓度,以获得尽可能高的醋酸盐产量。“我们的纯细菌培养物达到了迄今为止最高的醋酸盐值,”博托说,作为一个副作用,他还发现形成了细菌通常不会产生的氨基化合物。与莱比锡环境研究中心的FalkHarnisch合作的这项工作还表明,营养介质和阴极之间发生了以前也没有描述过的反应,显然加速了合成过程。实验装置的示意图:细菌培养物在其中一个容器中生长,提供电力和二氧化碳。第二个容器用于电化学逆反应;氧气在这里产生。图片来源:SantiagoBoto/Leibniz-HKI该团队现在希望进一步优化流程,并专门探索以前的发现。“氨基化合物对化学工业非常重要,我们使用的细菌也已经投入工业使用。因此,我们可能已经发现了这种化学品的新生产方法,”博托说。总的来说,结果应该有助于使MES在商业上可行。罗森鲍姆说:“我预计,当我们最终也专注于生物学时,我们将在未来几年看到这项技术的强劲增长。”BioPilotPlant正在就此展开合作,并与工艺工程师合作为MES开发更大的反应器。...PC版:https://www.cnbeta.com.tw/articles/soft/1366455.htm手机版:https://m.cnbeta.com.tw/view/1366455.htm

封面图片

化学家开发出去除水中"永久化学物质"的可持续方法

化学家开发出去除水中"永久化学物质"的可持续方法含二茂铁单元的金属聚合物用于可逆吸收全氟化合物的图示。资料来源:MarkusGallei然而,这种广泛的使用也引起了人们的担忧。由于其性质稳定且缺乏自然降解途径,这些耐久性化学品会在我们的环境中持续累积,给人类健康和周围环境带来严重问题。如今,在全球范围内,从水、空气、土壤到植物和动物,都能发现PFAS的踪迹。它们不可避免地也会进入人体。这些化学物质对健康的危害到底有多大,目前还不清楚。初步的实验室动物研究表明,PFAS可能会损害生殖健康。显而易见的是,这些合成化合物不属于自然环境,当然也不属于生物体。因此,设法降低环境中的PFAS污染水平是合理的。但是,PFAS的修复工作既复杂又具有挑战性,而且所使用的工艺本身也会对环境和气候造成不利影响。在清除之前,必须先检测出PFAS。由于只需要少量的PFAS就能产生很大的影响(例如食品包装中的超薄涂层),因此检测工作并不容易。传统上,PFAS是通过使用特殊膜或成本较低的活性炭吸附剂进行过滤而从水中去除的。然而,要从这些过滤系统中回收PFAS并将其永久销毁,要么需要使用苛刻的化学条件,要么需要进行焚烧。至少到目前为止还是如此。由萨尔州大学高分子化学教授MarkusGallei、伊利诺伊大学香槟分校教授XiaoSu以及他们的博士生FrankHartmann(萨尔州)和PaolaBaldaguez(伊利诺伊州)领导的研究小组开发出了一种新的电化学方法,可以从水中去除全氟辛烷磺酸化学物质,然后再有效地释放出来进行销毁。这种新的PFAS修复平台可以收集、识别和销毁这些含氟污染物,而无需焚烧过滤器。在研究小组开发的方法中,起核心作用的是被称为茂金属的含金属聚合物。1951年,随着含铁分子二茂铁的发现,茂金属首次出现在人们的视野中。此后,又有许多其他茂金属被开发出来。弗兰克-哈特曼(FrankHartmann)、马库斯-加利(MarkusGallei)和他们的国际团队发现,二茂铁功能化电极或弗兰克-哈特曼合成的钴功能化电极(甚至更有效)能够去除水中微量的全氟辛烷磺酸分子。但真正的关键在于,如果在二茂铁或二茂钴金属聚合物上施加电压,它们就能'切换'电状态,释放之前捕获的全氟辛烷磺酸分子。弗兰克-哈特曼(FrankHartmann)说:"钴在这方面的能力明显强于铁。我们已经找到了一种方法,可以有效地将PFAS从水中去除,然后再释放出来,从而有效地使电极再生,以便继续使用。""与活性炭过滤器不同,活性炭一旦被全氟辛烷磺酸分子饱和,我就必须将其销毁,但如果我愿意,我可以无数次地更换茂金属,"马库斯-加莱总结研究工作的意义时说。在奠定了技术基础之后,弗兰克-哈特曼、马库斯-加莱和他们在伊利诺伊大学的同事们现在正在寻求更大规模的开发,以促进从我们的河流和海洋中清除这些高持久性污染物。...PC版:https://www.cnbeta.com.tw/articles/soft/1375833.htm手机版:https://m.cnbeta.com.tw/view/1375833.htm

封面图片

科学家发现常见细菌素食品抗菌剂的意外影响

科学家发现常见细菌素食品抗菌剂的意外影响细菌会产生称为细菌素的化学物质来杀死微生物竞争者。这些化学物质可以杀死食品中具有潜在危险的病原体,从而起到天然防腐剂的作用。Lantibiotics是一类具有特别强抗菌特性的细菌素,被食品工业广泛使用。尽管Lantibiotics被广泛使用,但人们对这些生物素如何影响食用者的肠道微生物群却知之甚少。肠道中的微生物生活在一种微妙的平衡之中,共生菌通过分解营养物质、产生代谢产物以及--重要的是--抵御病原体,为人体提供重要的益处。如果过多的共生菌被抗菌食品防腐剂不加区别地杀死,机会性致病菌可能会取而代之,造成严重破坏--其结果并不比一开始就吃了受污染的食物好多少。芝加哥大学的科学家在《ACS化学生物学》(ACSChemicalBiology)杂志上发表的一项新研究发现,最常见的一类Lantibiotics生物制剂对病原体和维持人体健康的肠道共生菌都有很强的抑制作用。从啤酒和香肠到奶酪和蘸酱,Nisin(乳酸链球菌素)是一种常用的杀菌剂。它是由生活在奶牛乳腺中的细菌产生的,但人类肠道中的微生物也会产生类似的杀菌剂。张振润(Zhenrun"Jerry"Zhang)博士是芝加哥大学唐纳德-F-斯坦纳医学教授兼杜乔索斯家庭研究所所长埃里克-帕默(EricPamer)医学博士实验室的博士后学者,他想研究这种天然产生的生物素对肠道共生菌的影响。张说:"从本质上讲,Nisin是一种抗生素,长期以来一直被添加到我们的食物中,但它如何影响我们的肠道微生物还没有得到很好的研究。尽管它在防止食品污染方面可能非常有效,但它也可能对我们人体的肠道微生物产生更大的影响。"他和他的同事挖掘了人类肠道细菌基因组的公共数据库,发现了产生六种与Nisin非常相似的不同肠道源Lantibiotics的基因,其中四种是新基因。然后,他们与伊利诺伊大学厄巴纳-香槟分校理查德-E.-赫克托化学讲座教授WilfredA.vanderDonk博士合作,生产了这些抗生素的不同版本,以测试它们对病原体和肠道共生菌的作用。研究人员发现,虽然不同的Lantibiotics具有不同的效果,但它们对病原体和普通细菌的杀灭作用是相同的。张说:"这项研究首次表明,肠道共生菌容易受到兰特生物的影响,有时甚至比病原体还敏感。从目前食物中的Lantibiotics含量来看,它们很可能也会影响我们的肠道健康。"张和他的团队还研究了Lantibiotics的结构,以便更好地了解它们的活性,从而了解如何利用它们的抗菌特性做好事。例如,在另一项研究中,帕默实验室发现,由四种微生物(包括一种能产生兰替生物素的微生物)组成的联合体有助于保护小鼠免受耐抗生素肠球菌感染。他们还在研究不同人群中抗兰特生物素基因的流行情况,以便更好地了解这类细菌如何在不同条件和饮食下定植于肠道。张说:"看来,Lantibiotics和其衍生的菌种并不总是对健康有益,因此我们正在寻找方法来抵消潜在的不良影响,同时利用它们更有益的抗菌特性。"...PC版:https://www.cnbeta.com.tw/articles/soft/1416485.htm手机版:https://m.cnbeta.com.tw/view/1416485.htm

封面图片

纸吸管并不那么环保 90%含有有毒化学品PFAS

纸吸管并不那么环保90%含有有毒化学品PFAS人类主要通过食物和饮用水接触到PFAS。此外,许多食品包装材料和塑料袋也可能含有PFAS,这些物质会转移到我们食用的食物中。2021年,美国的一项研究发现植物性吸管中含有全氟辛烷磺酸,比利时安特卫普大学的研究人员对各种材料制成的吸管进行了分析,以了解欧洲是否也存在同样的情况。研究人员测试了39种不同品牌的吸管,材质包括纸、玻璃、竹子、不锈钢和塑料,并分析了其中29种不同的PFAS化合物。大多数受测品牌(69%)都含有全氟辛烷磺酸,共检测出18种不同的全氟辛烷磺酸。纸吸管最有可能含有全氟辛烷磺酸,在90%的受测品牌中都检测到了这种化学物质,尽管浓度差异很大。全氟辛酸(PFOA)是一种与高胆固醇、免疫反应降低、甲状腺疾病以及肾癌和睾丸癌增加有关的化合物,最常被检测到。全氟辛酸已于2020年被全球禁用。同时检测到的还有三氟乙酸(TFA)和三氟甲磺酸(TFMS),这些超短链PFAS具有很强的水溶性,因此可能会从吸管中渗入饮料中。以竹材质打造的吸管的情况只比纸吸管好一点,在80%的受测品牌中都发现了PFAS。在75%的塑料吸管和40%的玻璃吸管中都发现了这种化学物质。在所检测的钢制吸管中均未检出PFAS。该研究的通讯作者ThimoGroffen说:"用纸和竹子等植物材料制成的吸管通常被宣传为比塑料吸管更可持续、更环保。然而,这些吸管中存在的全氟辛烷磺酸意味着事实并不一定如此。"研究人员说,PFAS的浓度很低,对人体健康构成的风险很小。然而,PFAS的问题在于它们具有生物累积性,这意味着它们会随着时间的推移而累积,因为它们会被吸收,但不会被排出体外。格罗芬说:"少量的全氟辛烷磺酸虽然本身并无害处,但会增加体内已有的化学负荷。"研究人员说,虽然这项研究没有确定全氟辛烷磺酸是添加到吸管中的,还是污染的结果--例如,来自种植植物性材料的土壤--但几乎每个品牌的纸吸管中都存在这种化学物质,这意味着在某些情况下,全氟辛烷磺酸很可能被用作防水涂层。这项研究也没有检查PFAS是否从吸管中渗出,进入吸管中的液体。为了安全起见,研究人员建议人们开始使用不锈钢吸管,或者完全弃用吸管。格罗芬说:"纸吸管和竹吸管中存在的PFAS表明,它们不一定是可生物降解的。我们在不锈钢吸管中没有检测到任何PFAS,因此我建议消费者使用这种类型的吸管--或者干脆避免使用吸管。"这项研究发表在《食品添加剂和污染物》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1379463.htm手机版:https://m.cnbeta.com.tw/view/1379463.htm

封面图片

科学家在快餐包装中发现有毒的PFAS永久化学品

科学家在快餐包装中发现有毒的PFAS永久化学品PFAS(全氟和多氟烷基物质)是一组合成化学品,由于其防水和防油的特性而被用于各种产品。它们通常存在于不粘锅、防水服和消防泡沫中。PFAS可以在环境中持续很长时间,并与各种健康问题有关,包括癌症、甲状腺疾病和发育问题。发表在《环境科学与技术通讯》杂志上的这项研究显示,食品包装可以通过污染我们消费的食物,使人们接触到PFAS,这些化学品与严重的健康影响有关,如癌症风险升高和对免疫系统的伤害。此外,在处理时,包装会将PFAS带入环境中,而这些持久性物质永远不会降解。为了应对健康和生态危害,美国11个州已经禁止在大多数食品包装中使用PFAS,两家领先的餐饮连锁店已经承诺在2025年前从他们的业务中消除PFAS。"随着加拿大限制食品服务器皿中的一次性塑料,我们的研究表明,我们认为更好的替代品,如纸包装和可堆肥碗,毕竟不是那么安全和'绿色'。事实上,它们可能会损害我们的健康和环境--从我们的空气到我们的饮用水,因为它们提供了接触PFAS的直接途径,"多伦多大学地球科学系和环境学院的教授、研究报告的共同作者MiriamDiamond说。在这项研究中,研究人员从多伦多的快餐店收集了42个纸质包装纸和碗,并测试了它们的总氟含量,这是PFAS的一个指标。然后他们完成了对其中8个总氟含量高的样品的详细分析。以纤维为基础的模制碗,在市场上被称为"可堆肥",其PFAS含量比甜甜圈和糕点袋高3到10倍,PFAS被添加到这些碗和袋中作为防水和防油剂。PFAS是一个由大约9000种人造化学物质组成的复杂群体,其中很少有人对其毒性进行过研究。一种已知的有毒的PFAS--6:2FTOH(6:2氟代尔醇)--是在这些样品中检测到的最丰富的化合物。在所有测试的加拿大快餐包装中普遍存在的其他PFAS可以转化为这种化合物,从而增加了消费者对它的接触机会。研究人员首次在食品包装中检测到几种PFAS,显示出追踪这一大型化合物家族的存在是多么困难。重要的是,研究人员发现,产品储存两年后,PFAS的浓度下降了85%,这与聚合型PFAS--一种由较大分子组成的类型不会降解并从产品中逸出的说法相矛盾。食品包装中的PFAS释放到室内空气中,为人类接触这些化学品提供了另一个机会。"在食品包装中使用PFAS是用一种有害的选择--一次性塑料--替代另一种有害的选择,这是令人遗憾的。我们需要加强监管,推动使用不含PFAS的纤维食品包装,"Diamond说。...PC版:https://www.cnbeta.com.tw/articles/soft/1355513.htm手机版:https://m.cnbeta.com.tw/view/1355513.htm

封面图片

剥开未知化学物质的面纱:科学家们正在寻找另外99%的化学物质

剥开未知化学物质的面纱:科学家们正在寻找另外99%的化学物质这项工作是一项名为"m/q"或"moverq"的计划的一部分--"moverq"是质量除以电荷的缩写,表示科学家在质谱世界中测量化学性质的方法之一。m/q计划负责人托马斯-梅兹说:"现在,我们可以从土壤中提取样本,根据土壤类型的不同,一茶匙的样本中可能含有数千种化合物。我们不知道其中大多数化合物的化学结构。我们根本不知道里面有什么"。科学家通常依靠包含数千种分子信息的参考文献库来识别物质。研究人员将土壤、人体或其他地方的样本进行分类,然后将他们通过实验测得的结果与资料库中的结果进行比较。虽然这很有帮助,但却限制了科学家们只能对以前见过的分子进行结构鉴定--例如,通过分析从化学品供应商处购买的标准化合物。亚当-霍勒巴赫(AdamHollerbach)与西北太平洋国家实验室制造的SLIM设备。资料来源:AndreaStarr太平洋西北国家实验室m/q的科学家们正在瞄准尚未被识别的另外99%。科学家亚当-霍勒巴赫(AdamHollerbach)领导的研究小组取得了最新进展,他们将两台高分辨率仪器合二为一,对分子进行了前所未有的详细测定。相关成果于6月12日在线发表在《分析化学》(AnalyticalChemistry)杂志上。现在,科学家们可以在一次实验中对化合物进行多项重要测量,比以前更快、更方便、更准确地获得重要信息。霍勒巴赫的技术适用于离子--带有正电荷或负电荷的分子。这使得它们更容易控制,并有可能使用质谱法进行检测。与研究离子的人一样,离子也有许多不同的特征。对于人来说,体重、发色、大小、形状、眼睛颜色以及许多其他特征都能帮助我们分辨出谁是谁。离子的识别特征包括质量、形状、大小、电荷和化学成分。这些不仅是识别特征,也是相关分子行为的指南--例如,它们治疗疾病或吸附污染物的潜力。这种理解应该有助于PNNL数十名科学家的工作,他们专注于理解微生物对气候的影响。微生物在将碳等元素转化为对地球非常重要的其他形式的过程中发挥着关键作用。它们对地球变暖或变冷的影响是巨大的。但科学家们还有很多东西要学。"一克土壤中可能有数百万种微生物,我们不知道它们中的大多数是谁,也不知道它们在做什么。我们还有很多发现要做,"梅兹说。"从挑战科学的角度来看,这要么是最坏的情况,要么是我们最大的机遇之一,这取决于你如何看待它。"m/q科学家们正在抓住这个机会。他们不是在传统质谱测量所能识别的相对较少的化合物范围内提出问题,而是试图跨越目前的限制,创造一种全新的方法来识别当今未知的物质。这有点像新望远镜投入使用后,能看到几颗截然不同的恒星,而以前只能看到一个模糊的天体大杂烩。这项工作既是实验性的,即在实验室中对分子进行测试,也是在计算机上进行的,科学家们在计算机上对他们所看到的东西进行建模,并预测他们可能会看到的东西。在《分析化学》论文中描述的实验中,霍勒巴赫及其同事对肽和脂质进行了灵敏的测量。实验结合了两种名称相似但提供离子不同细节的仪器。这两种仪器都用于质谱分析,而质谱分析的历史与PNNL科学家的发现交织在一起。第一种仪器是质谱仪,用于测量离子的质量、电荷以及离子的分解方式。在这项研究中,研究小组使用了Thermo-FisherScientific公司开发的Orbitrap质谱仪。这种仪器能很好地分拣不同质量的分子,但两个相同质量的分子却很难分离。想想两个人,一个又高又瘦,另一个又矮又胖,每个人都重达180磅。单从体重秤上看,他们是不可能分开的。SLIM方法:离子迁移率光谱仪带来厚重的结果第二台仪器被称为SLIM:无损离子操作结构。由PNNL科学家RichardD.Smith及其同事创建的SLIM是一种离子迁移率光谱仪,可测量离子的大小和电荷。SLIM只有笔记本电脑大小,厚度仅为四分之一英寸,是一个分子活动的温室。数十条蜿蜒曲折的长路把这个小装置变成了一个42英尺长的分子赛道,电场严格控制的离子在椭圆形障碍赛道上飞驰。这些"障碍"是其他已知的分子,如氦或氮分子。当被研究的离子在SLIM设备中飞驰时,它们会绕过或穿过其他分子,翻滚和转弯,就像橄榄球后卫在对方阻挡者面前跑来跑去一样。离子迁移谱"这一术语真正捕捉到了这一动作。通过记录离子完成整个过程所需的时间--它们是如何巧妙地绕过阻挡的离子--科学家们可以借此了解到有关离子形状和大小的各种信息。这些信息是标准质谱仪无法提供的,它们与离子的质量、电荷和碎片模式等数据结合在一起。这些数据可以得出离子的碰撞截面、分子式和碎裂模式,这些属性对于了解分子结构至关重要。"两个不同的分子可能具有相同的原子数、相同的质量和电荷,但它们的结构和活性可能截然不同。这就是SLIM的作用所在。"只要一个微小的变化,就可能意味着一个分子是疾病的征兆,而另一个则不是。霍勒巴赫实验的关键在于让两种不同的仪器完美配合。虽然标准质谱仪和离子迁移谱仪都分析离子,但它们的工作时间尺度不同。离子通过SLIM到达Orbitrap的速度比处理速度更快。因此,霍勒巴赫借鉴了一种古老的技术,采用了"双门控离子注入"技术。他增加了一些门来控制离子进入系统和到达轨道阱的速度,选择将一些离子从SLIM送出,使其消失,从而使离子流保持在一个可控的速度。霍勒巴赫说:"实际上,我们提出的问题非常简单。这是什么,有多少?但我们使用的技术却很复杂。"其他m/q科学家正在研究识别或利用未知分子的其他方法。有些科学家正在创造方法,利用霍勒巴赫实验的数据自动预测离子的结构,这样制药商和其他科学家就能清楚地知道他们正在研究的是什么。还有一些科学家正在研究芬太尼等化合物的数百万种可能形式,从某天可能出现在大街上的化合物中筛选出不可能出现的化合物。然后,他们预测这些化合物在质谱仪中的表现--如果它们真的出现在质谱仪中,就有办法识别它们。...PC版:https://www.cnbeta.com.tw/articles/soft/1379983.htm手机版:https://m.cnbeta.com.tw/view/1379983.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人