科学家运用太赫兹技术开启量子传感之门

科学家运用太赫兹技术开启量子传感之门图为莱斯大学新兴量子和超快材料实验室研究生徐睿制作的三个超快太赫兹场聚光器样品。底层(白色正方形可见)由钛酸锶制成,其表面图案为聚光器结构--可集中太赫兹频率红外光的微观同心圆阵列。这些阵列在显微镜下清晰可见(插图),但用肉眼观察时,就像细粒度的点状图案。图片来源:GustavoRaskosky拍摄/RuiXu/莱斯大学添加插图识别光谱中的差距莱斯大学三年级博士生、最近发表在《先进材料》(AdvancedMaterials)杂志上的一篇文章的第一作者徐睿说:"中红外光和远红外光存在明显的差距,大约在5-15太赫兹的频率和20-60微米的波长范围内,与较高的光学频率和较低的无线电频率相比,目前还没有很好的商业产品。"这项研究是在威廉-马什-莱斯讲座教授、材料科学与纳米工程助理教授朱涵宇(HanyuZhu)的新兴量子与超快材料实验室进行的。量子准电透镜(截面图),可聚焦频率为5-15太赫兹的光脉冲。传入的太赫兹光脉冲(红色,左上角)通过钛酸锶(蓝色)基底上的环形聚合物光栅和圆盘谐振器(灰色)转换成表面声子-极化子(黄色三角形)。黄色三角形的宽度表示声子-极化子在到达用于聚焦和增强出射光的圆盘谐振器(右上角红色)之前,通过每个光栅间隔传播时电场的增加。左下方的钛酸锶分子原子结构模型描述了声子-极化子振荡模式中钛(蓝色)、氧(红色)和锶(绿色)原子的运动。图片来源:Zhu实验室/莱斯大学提供太赫兹间隙的重要性和挑战Zhu说:"这一频率区域的光学技术--有时被称为'新太赫兹间隙',因为它远比0.3-30太赫兹'间隙'中的其他频率区域更难以接近--对于研究和开发用于接近室温的量子电子学的量子材料,以及感知生物分子中的功能基团以进行医学诊断,可能非常有用。"研究人员面临的挑战一直是找到合适的材料来承载和处理"新太赫兹间隙"中的光。这种光会与大多数材料的原子结构产生强烈的相互作用,并很快被它们吸收。莱斯大学材料科学与纳米工程系学生RuiXu是一项研究的第一作者,该研究表明钛酸锶有可能在3-19太赫兹频率下实现高效光子设备。图片来源:GustavoRaskosky拍摄/莱斯大学钛酸锶和量子顺电性Zhu的研究小组利用钛酸锶(一种锶和钛的氧化物)将强相互作用转化为优势。Xu说:"它的原子与太赫兹光的耦合如此强烈,以至于形成了被称为声子-极化子的新粒子,这些粒子被限制在材料表面,不会在材料内部消失。"其他材料支持更高频率的声子-极化子,而且通常支持的范围很窄,而钛酸锶则不同,它支持整个5-15太赫兹间隙的声子-极化子,这是因为钛酸锶具有一种称为量子顺电性的特性。钛酸锶的原子表现出巨大的量子波动和随机振动,因此能有效捕捉光线,而不会被捕捉到的光线自我捕获,即使在零开尔文温度下也是如此。"我们通过设计和制造超快场聚光器,证明了钛酸锶声子-极化子器件在7-13太赫兹频率范围内的概念,"Xu说。"这种器件能将光脉冲挤压到小于光波长的体积内,并保持较短的持续时间。因此,我们实现了每米近千兆伏的强瞬态电场。HanyuZhu是莱斯大学威廉-马什-莱斯讲座教授兼材料科学与纳米工程助理教授。图片来源:JeffFitlow摄影/莱斯大学未来影响与应用电场是如此之强,以至于它可以用来改变材料的结构,从而产生新的电子特性,或者从微量的特定分子中产生新的非线性光学响应,这种响应可以用普通的光学显微镜检测到。Zhu说,他的研究小组开发的设计和制造方法适用于许多市售材料,可以实现3-19太赫兹范围内的光子设备。...PC版:https://www.cnbeta.com.tw/articles/soft/1378127.htm手机版:https://m.cnbeta.com.tw/view/1378127.htm

相关推荐

封面图片

弯曲的空间结构 - 科学家们开发出一种新的量子材料

弯曲的空间结构-科学家们开发出一种新的量子材料由于铝酸镧(LaAlO3)和钛酸锶(SrTiO3)界面的自旋和轨道状态的叠加,导致空间结构的曲率。资料来源:XavierRavinet-UNIGE由日内瓦大学(UNIGE)领导的一项全球合作,包括来自萨勒诺大学、乌特勒支大学和代尔夫特大学的研究人员已经开发出一种材料,可以通过弯曲它们演变的空间结构来控制电子的动态。这一进展为未来的电子设备带来了希望,特别是在光电子领域。该研究结果发表在《自然材料》杂志上。未来的电信产业将需要新的、极其强大的电子装置。这些设备必须能够以前所未有的速度处理电磁信号,在皮秒范围内,即十亿分之一秒的速度。这在目前的半导体材料中是无法想象的,例如硅,它被广泛用于我们的电话、电脑和游戏机的电子元件中。为了实现这一目标,科学家和工业界正专注于新的量子材料的设计。由于其独特的属性--特别是组成它们的电子的集体反应--这些量子材料可用于在新的电子设备中捕获、操纵和传输携带信息的信号(例如,在量子通信的情况下,光子)。此外,它们可以在尚未探索的电磁频率范围内工作,因此将为非常高速的通信系统开辟道路。曲速驱动器量子物质最迷人的特性之一是电子可以在一个弯曲的空间中演化。由于电子所处空间的这种扭曲,力场产生了传统材料中完全没有的动力学。这是量子叠加原理的一个杰出应用,"UNIGE理学院量子物质物理系全职教授AndreaCaviglia解释说,他是这项研究的最后一名作者。在最初的理论研究之后,来自日内瓦大学、萨勒诺大学、乌特勒支大学和代尔夫特大学的国际研究小组设计了一种材料,其中空间结构的曲率是可控的。''我们设计了一个承载极薄的自由电子层的界面。它被夹在钛酸锶和铝酸镧之间,这是两种绝缘的氧化物,''萨勒诺大学教授和理论研究的协调人CarmineOrtix说。这种组合使我们能够获得可以按需控制的特殊电子几何构型。一次一个原子为了实现这一目标,研究小组使用了一个先进的系统,在原子尺度上制造材料。使用激光脉冲,每层原子被一个接一个地堆叠起来。''这种方法使我们能够在空间中创造特殊的原子组合,从而影响材料的行为,''研究人员详细说明。虽然技术使用的前景还很遥远,但这种新材料在探索极高速电磁信号操纵方面开辟了新的途径。这些结果也可用于开发新的传感器。研究小组的下一步将是进一步观察这种材料对高电磁频率的反应,以更精确地确定其潜在的应用。...PC版:https://www.cnbeta.com.tw/articles/soft/1354017.htm手机版:https://m.cnbeta.com.tw/view/1354017.htm

封面图片

太赫兹通信技术迎来新突破 为开启6G的未来奠定基础

太赫兹通信技术迎来新突破为开启6G的未来奠定基础太赫兹频率电磁波为通信、扫描和成像技术的进步带来了巨大的希望。然而,利用它们的潜力却障碍重重。东北大学的一个研究小组取得了突破性进展,专门针对太赫兹频谱创建了一种新型可调滤波器。他们的研究成果发表在《光学快报》(OpticsLetters)杂志上。太赫兹波属于电磁波谱中介于微波和红外线频率之间的一个区域。太赫兹波比无线电波频率高(波长短),但比可见光频率低。日益拥挤的无线电波频谱承载着WiFi、蓝牙和当前移动电话(手机)通信系统传输的大量数据。所开发的可调滤波器的概念示意图。(a)滤波器的横截面图;(b)周期与折射率之间的关系;(c)折射率变化引起的频率偏移。资料来源:YingHuang等人电磁频谱低频部分的信号拥塞是探索太赫兹区域的一个诱因。另一个原因是太赫兹具有支持超高数据传输速率的能力。不过,将太赫兹信号用于常规应用的一个关键挑战是,必须能够在特定频率上调整和过滤信号。需要进行滤波,以避免受到所需频段以外信号的干扰。太赫兹滤波技术的突破东北研究小组的YoshiakiKanamori说:"我们构建并演示了太赫兹波频率可调滤波器,与传统系统相比,它实现了更高的传输速率和更好的信号质量,揭示了太赫兹无线通信的潜力。他补充说,这项工作还可以在太赫兹频段之外得到更广泛的应用。"机械折射率可变超材料。资料来源:YingHuangetal.这种新型太赫兹滤波器基于一种名为法布里-珀罗干涉仪的装置,与所有干涉仪一样,它依赖于不同电磁辐射波在镜面间反弹时相互影响而产生的干涉图案。研究人员的版本使用结构精细的光栅作为镜面之间的材料,其间隙小于相互作用波的波长。光栅的可变拉伸允许对其折射率进行必要的精细控制,以调整干涉仪的滤波效果。这样就只能传输所需的频率。使用不同的光栅可以控制不同的选定频率范围。该团队已经展示了他们的系统在适用于下一代(6G)移动电话信号的频率上的应用。通过控制周期来调节折射率和频率。资料来源:YingHuangetal.Kanamori说:"除了我们的方法在通信系统中的应用外,我们还设想在医学和工业领域的扫描和成像技术中使用我们的方法。"太赫兹波在扫描和成像方面的一个优势是,它可以轻易穿透阻挡光线通过的材料,包括生物组织。除医疗应用外,这也为材料分析、安全系统和制造过程中的质量控制提供了机会。Kanamori总结说:"总之,我们的工作提供了一种简单而经济有效的方法来过滤和主动控制太赫兹波,这将推动其在许多应用中的使用。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1427263.htm手机版:https://m.cnbeta.com.tw/view/1427263.htm

封面图片

科学家发明新型半导体激发技术

科学家发明新型半导体激发技术横滨国立大学的科学家和加州理工学院的同事利用高强度、宽频带的超快太赫兹脉冲,在一种二维半导体材料中实现了原子激发,推动了电子设备的发展。他们的论文于3月19日发表在《应用物理通讯》(AppliedPhysicsLetters)杂志上,并作为编辑推荐文章。二维(2D)材料或片状纳米材料因其独特的电子特性而成为未来半导体应用的理想平台。过渡金属二掺杂物(TMDs)是二维材料中的一个重要类别,由夹在掺杂物原子层之间的过渡金属原子层组成。这些原子以晶格结构排列,可以围绕其平衡位置振动或振荡--这种集体激发被称为相干声子,在决定和控制材料特性方面起着至关重要的作用。声波诱导技术的创新传统上,相干声子由可见光和近红外区域的超短脉冲激光器诱导。使用其他光源的方法仍然有限。横滨国立大学工程科学研究生院助理教授、该研究的第一作者SatoshiKusaba说:"我们的研究解决了超快太赫兹频率激光器(或低能光子)如何在TMD材料中诱导相干声子这一基本问题。"WSe2中声子的超快宽带太赫兹激发和偏振旋转探测示意图。获得的结果(右下)包括通过和频过程激发的相干声子振荡信号(右上)。资料来源:SatoshiKusaba/横滨国立大学太赫兹辐射是指频率在太赫兹范围内的电磁波,介于微波和红外频率之间。研究小组制备了超快宽带太赫兹脉冲,以诱导一种名为WSe2的TMD薄膜中的相干声子动力学。为检测光学各向异性(换句话说,即光在穿过材料时的表现),研究人员安排了一套精确而灵敏的装置。研究人员研究了超短激光脉冲与材料相互作用时电场方向的变化;这些变化被称为偏振旋转。通过仔细观察微小的诱导光学各向异性,研究小组成功地探测到了太赫兹脉冲诱导的声子信号。"我们的研究最重要的发现是,太赫兹激发可以通过一个独特的和频激发过程在TMD中诱导相干声子,"研究时的加州理工学院博士生、本研究的共同第一作者Haw-WeiLin说。"这种机制与共振和线性吸收过程有着本质区别,它涉及两个太赫兹光子的能量总和与声子模式的能量总和相匹配"。由于通过这种和频过程可以激发的声子模式的对称性完全不同于更典型的共振线性过程,因此本研究中成功使用的激发过程对于完全控制材料中的原子运动非常重要。这项研究成果的意义超出了基础研究的范畴,有望在现实世界中得到广泛应用。"通过和频激发过程,我们可以利用太赫兹激发相干地控制二维原子位置,"Kusaba说。"这可能为控制TMD的电子状态打开大门,这对于开发谷电技术和使用TMD的电子设备,实现低功耗、高速计算和专用光源,是大有可为的"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1430619.htm手机版:https://m.cnbeta.com.tw/view/1430619.htm

封面图片

未来太赫兹技术的意外之钥:气凝胶

未来太赫兹技术的意外之钥:气凝胶气凝胶是用水溶液制造的,不需要复杂的制造程序,因此很有希望以低成本实现大规模可持续生产。太赫兹波段的波长介于电磁波谱中的微波和红外线之间。它的频率非常高。因此,许多研究人员认为,太赫兹波段在太空探索、安全技术和通信系统等方面具有巨大的应用潜力。在医学成像方面,太赫兹还可以替代X射线检查,因为太赫兹波可以穿过大多数非导电材料,而不会损坏任何组织。气凝胶可通过简单的化学修饰获得高疏水性。资料来源:ThorBalkhed然而,在太赫兹信号得到广泛应用之前,还有一些技术障碍需要克服。例如,难以有效地产生太赫兹辐射,需要能够接收和调节太赫兹波传输的材料。太赫兹波调制技术取得突破林雪平大学(LinköpingUniversity)的研究人员现已开发出一种材料,其对太赫兹信号的吸收可通过氧化还原反应开启或关闭。这种材料是一种气凝胶,是世界上最轻的固体材料之一。"它就像是太赫兹光的可调滤波器。在一种状态下,电磁信号不会被吸收,而在另一种状态下,则可以被吸收。"林雪平大学有机电子实验室(LOE)的博士后陈尚志说:"这种特性对于来自太空的远距离信号或雷达信号非常有用。"有机电子学实验室研究员林雪平的研究人员使用导电聚合物PEDOT:PSS和纤维素来制造气凝胶。他们在设计气凝胶时还考虑到了户外应用。它既能防水(疏水),又能通过阳光加热自然解冻。与其他用于制造可调材料的材料相比,导电聚合物具有许多优势。除其他优点外,导电聚合物还具有生物相容性、耐用性和极强的可调谐性。可调谐性来自于改变材料中电荷密度的能力。与其他类似材料相比,纤维素的最大优点是生产成本相对较低,而且是一种可再生材料,这对于可持续应用至关重要。LOE博士后匡朝阳说:"太赫兹波在较宽频率范围内的传输可在约13%到91%之间调节,这是一个非常大的调制范围。"...PC版:https://www.cnbeta.com.tw/articles/soft/1415755.htm手机版:https://m.cnbeta.com.tw/view/1415755.htm

封面图片

理化学研究所的手持式太赫兹设备可透视材料内部 且无有害辐射

理化学研究所的手持式太赫兹设备可透视材料内部且无有害辐射但太赫兹技术迄今为止一直处于停滞状态,因为很难将微波或可见光技术以有用的尺寸和功率输出应用于太赫兹范围。由HiroakiMinamide和他的团队创建的设备,可有效地将红外辐射转换为太赫兹波。它可以在太赫兹波段的整个范围内产生太赫兹辐射。图片来源:©2023RIKEN例如,产生太赫兹波的一种方法是开发产生更高频率、超短波长微波的电气设备。但这在一定程度上是困难的,因为这些设备需要高度优化的参数来产生更好的电气性能,这已被证明具有挑战性。另一种策略是使用非线性晶体材料,通过转换更短、更高频率的红外光波来产生太赫兹波。理化学研究所先进光子学中心正在探索第二种策略——通过转换红外激光器的输出来产生太赫兹波。传统上,这种方法需要巨大的激光器来产生足够强大的太赫兹波,以满足大多数实际应用的需要。但这限制了太赫兹技术在实际应用中的应用——在这些应用中,用于原位分析的便携式设备将更有价值。最近,它们在实现这一目标方面取得了巨大进展,并正在进行多项行业合作。铌酸锂是一种非线性晶体,在受到近红外激光照射时会产生太赫兹波束,但尽管经过多年的工作,仍无法使用这种方法产生足够强大的太赫兹波。研究人员发现了1993年的一篇论文,其中描述了激光脉冲持续时间对非线性晶体的影响。这项分析可见光的研究表明,使用较短的脉冲可以减少称为布里渊散射的光散射效应。通过减少激光脉冲持续时间,有可能可以最大限度地减少铌酸锂晶体的布里渊散射,这可能使我们能够将更多的激光转换为太赫兹波并增加功率输出。注意间隙:太赫兹间隙夹在电磁频谱上的微波和红外辐射之间,迄今为止在技术中尚未得到充分利用。与X射线一样,太赫兹波具有穿透材料的能力。但由于太赫兹波的频率(以及能量)比X射线低得多,因此它们不会像电离辐射那样对健康造成同样的风险。最终研究人员证实使用亚纳秒激光脉冲,可以摆脱布里渊散射,将太赫兹波功率输出提高六个数量级——从200毫瓦到100千瓦,从一个只有一平方米的设备中获得了强大的发射功率,比以前充满整个房间的太赫兹设备小得多,但这对于实际应用来说仍然太大。为了进一步小型化我们的太赫兹波源,理化学研究所用具有人工偏振调制微结构的薄铌酸锂晶体取代了之前使用的大块铌酸锂晶体锭,这种晶体被称为周期性极化铌酸锂(PPLN)晶体。PPLN晶体通常用于可见光区域,由于其更高的光转换效率,能够用来开发手持设备。在PPLN研究之初,还没有已知的方法可以使用PPLN晶体有效地产生太赫兹波,研究人员最初对PPLN晶体的行为感到非常困惑。我们没有看到太赫兹波,只是从晶体中产生了意想不到的光束。在仔细分析这种光的特性后,他们最终意识到太赫兹波正在产生,但方向却出乎意料。光与PPLN偏振调制结构之间的相互作用导致晶体后部产生太赫兹波。当将探测器移到它后面时,我们发现了太赫兹波,这意味着终于可以做出一个巴掌大小的原型机,转换效率高,功率充足。只需旋转晶体就可以调整产生的太赫兹波的频率,新的扫描设备可以完全覆盖光谱的关键亚太赫兹区域,这对于无损成像应用尤其重要。研究基于成熟的光子和激光技术,通过非线性光学效应实现光波和太赫兹波之间的光子转换。我们通过光注入降低阈值并稳定输出功率,实现了后向太赫兹波参量振荡的级联振荡,在0.3太赫兹频率下实现了200瓦的峰值太赫兹输出功率;在向后光学量子转换过程中将太赫兹波转换为光波;并成功探测到约50阿托焦耳的超弱太赫兹波,其灵敏度比4开尔文测辐射热计灵敏1000倍。这些结果提供了基于太赫兹到光量子光子转换的新量子研究。最新的结果基于将量子理论纳入我们的工作,未来的工作将探索量子纠缠——一个量子粒子神秘地镜像另一个遥远的粒子——以提高太赫兹探测器的灵敏度。高度小型化、高功率太赫兹波系统得到了紧凑、强大光子激光器最新发展的补充,新研发的扫描设备使用新型微芯片激光器,能够以亚纳秒速度和高功率产生远红外激光脉冲,产生强烈的亚太赫兹发射,非常适合成像和分析工作。理化学研究所正在与专门从事电子、光学和光子学的日本公司(例如理光、拓普康、三菱电机和滨松光子学)进行联合研究,以开发无损检测应用和太赫兹波光谱设备。研究人员组装了一个太赫兹成像设备原型:一把可以发射塑料子弹的塑料枪,当隐藏在散射大量光线的凹凸不平的玻璃后面时,可以被清楚地检测到,还可以清楚地看到一把藏在厚皮包里的剪刀。由于特征性的“指纹”吸收模式,太赫兹波还可以揭示物质的化学成分。例如,用肉眼看起来相同的不同无色液体(例如煤油和丙酮)可以通过这种方法轻松识别。因此,太赫兹波的应用范围从机场安全扫描仪到历史艺术品的分析。与现有方法不同,还可以对工业油漆和外涂层进行分析,包括新车和药片等各种物质,而且是非破坏性的。未来还可以将设备安装在机器人上,沿着工业管道爬行以检查腐蚀情况,或者安装在无人机上以检查输电塔上的油漆。这些和其他用途可以让我们更好地了解材料如何相互作用和原位降解。例如,如果能够使用非破坏性技术更好地理解这些问题,就可以更轻松地实时调整生产流程,以提高效率并进行修补以延长结构的使用寿命。经济效益和环境效益应该是指数级的。...PC版:https://www.cnbeta.com.tw/articles/soft/1369733.htm手机版:https://m.cnbeta.com.tw/view/1369733.htm

封面图片

麻省理工学院工程师利用量子点技术开发出低成本的太赫兹相机

麻省理工学院工程师利用量子点技术开发出低成本的太赫兹相机插图显示太赫兹照明(右上角的黄色曲线)进入新的相机系统,它刺激纳米级孔内的量子点(显示为照明环)发出可见光,然后使用基于CMOS的芯片(左下角)检测,就像数码相机中的那些。然而,设计检测和制作太赫兹波图像的设备一直是个挑战。因此,大多数现有的太赫兹设备是昂贵的,缓慢的,笨重的,并需要真空系统和极低的温度。现在,麻省理工学院、明尼苏达大学和三星公司的研究人员已经开发出一种新的相机,它可以快速检测太赫兹脉冲,具有高灵敏度,并且在室温和压力下。更重要的是,它可以同时实时捕捉到关于波的方向,或"偏振"的信息,而现有的设备无法做到。这种信息可以用来描述具有不对称分子的材料,或确定材料的表面细节。这个新系统使用被称为量子点的粒子。这些粒子最近被发现在受到太赫兹波的刺激时有能力发射出可见光。然后,这些可见光可以被一个类似于标准电子相机探测器的装置记录下来,甚至可以用肉眼看到。11月3日发表在《自然-纳米技术》杂志上的一篇论文描述了这一装置,作者是麻省理工学院的博士生史娇健、化学教授KeithNelson和其他12人。该团队制造了两种不同的装置,可以在室温下运行。一个是利用量子点将太赫兹脉冲转换为可见光的能力,使该装置能够产生材料的图像;另一个是产生显示太赫兹波偏振状态的图像。新的"照相机"由几层组成,采用像用于微芯片的标准制造技术制成。基板上有一排纳米级的平行金线,用窄缝隔开;上面是一层发光的量子点材料;上面是一个用于形成图像的CMOS芯片。偏振检测器使用类似的结构,但有纳米级的环形狭缝,这使得它能够检测到进入的光束的偏振。太赫兹辐射的光子具有极低的能量,这使得它们很难被检测到。因此,这个设备正在做的是将那小小的光子能量转化为易于用普通相机检测的可见物。在该团队的实验中,该设备能够在低强度水平上检测太赫兹脉冲,超过了今天大型和昂贵系统的能力。研究人员通过拍摄他们设备中使用的一些结构的太赫兹照明照片来证明该探测器的能力,例如纳米间隔的金线和用于偏振探测器的环形狭缝,证明了该系统的灵敏度和分辨率。一个CMOS相机被用来捕捉太赫兹光束的旋转。资料来源:研究人员提供开发一个实用的太赫兹相机需要一个产生太赫兹波以照亮一个物体的部件,以及另一个检测它们的部件。在后一点上,目前的太赫兹探测器要么非常慢,因为它们依赖于检测波冲击材料所产生的热量,而热量传播缓慢,要么它们使用相对较快的光电探测器,但灵敏度非常低。此外,直到现在,大多数方法都需要整个太赫兹探测器阵列,每个探测器产生一个像素的图像。问题在于每一个都相当昂贵,一旦他们开始被用来制造相机,探测器的成本就会开始迅速扩大。虽然研究人员说他们已经通过新的工作破解了太赫兹脉冲检测问题,但缺乏良好的源的问题仍然存在--而且世界各地的许多研究小组正在努力解决。尼尔森说,新研究中使用的太赫兹源是一个庞大而繁琐的激光器和光学设备阵列,不容易被扩展到实际应用中,但基于微电子技术的新源正在顺利开发中。论文的共同作者、明尼苏达大学电气和计算机工程系麦克奈特教授Sang-HyunOh补充说,虽然目前的太赫兹相机版本要花费数万美元,但该系统使用的CMOS相机的廉价特性使其"向建立实用的太赫兹相机迈进了一大步"。商业化的潜力促使制造CMOS相机芯片和量子点设备的三星公司合作开展这项研究。尼尔森说,这种波长的传统探测器在液氦温度(-452华氏度)下工作,这对于从背景噪声中挑出能量极低的太赫兹光子是必要的。这种新设备能够在室温下用传统的可见光相机检测并产生这些波长的图像,这一点出乎了从事太赫兹领域工作的人的意料。研究人员说,有许多途径可以进一步提高这种新相机的灵敏度,包括组件的进一步小型化和保护量子点的方法。他们说,即使在目前的检测水平上,该设备也可以有一些潜在的应用。在新设备的商业化潜力方面,Nelson说,量子点现在价格低廉,而且容易获得,目前被用于消费产品,如电视屏幕。相机设备的实际制造更加复杂,但也是基于现有的微电子技术。事实上,与现有的太赫兹探测器不同,整个太赫兹照相机芯片可以用今天的标准微芯片生产系统来制造,这意味着最终大规模生产这些设备应该是可能的,而且价格相对便宜。目前,尽管该相机系统离商业化还很远,但麻省理工学院的研究人员在需要快速检测太赫兹辐射时已经在使用这种新的实验室设备。"我们没有那些昂贵的相机,"纳尔逊说,"但是我们有很多这样的小设备。人们只需将其中一个插入光束中,用眼睛看一下可见光的发射,这样他们就知道太赫兹光束何时开启,这真的很方便。"虽然太赫兹波原则上可以用来探测一些天体物理现象,但这些来源将是极其微弱的,而且新设备无法捕捉这种微弱的信号,该团队正在努力提高其灵敏度。下一代的研究工作在于把所有东西都做得更小,它的灵敏度也会更高。...PC版:https://www.cnbeta.com.tw/articles/soft/1332689.htm手机版:https://m.cnbeta.com.tw/view/1332689.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人