弯曲的空间结构 - 科学家们开发出一种新的量子材料

弯曲的空间结构-科学家们开发出一种新的量子材料由于铝酸镧(LaAlO3)和钛酸锶(SrTiO3)界面的自旋和轨道状态的叠加,导致空间结构的曲率。资料来源:XavierRavinet-UNIGE由日内瓦大学(UNIGE)领导的一项全球合作,包括来自萨勒诺大学、乌特勒支大学和代尔夫特大学的研究人员已经开发出一种材料,可以通过弯曲它们演变的空间结构来控制电子的动态。这一进展为未来的电子设备带来了希望,特别是在光电子领域。该研究结果发表在《自然材料》杂志上。未来的电信产业将需要新的、极其强大的电子装置。这些设备必须能够以前所未有的速度处理电磁信号,在皮秒范围内,即十亿分之一秒的速度。这在目前的半导体材料中是无法想象的,例如硅,它被广泛用于我们的电话、电脑和游戏机的电子元件中。为了实现这一目标,科学家和工业界正专注于新的量子材料的设计。由于其独特的属性--特别是组成它们的电子的集体反应--这些量子材料可用于在新的电子设备中捕获、操纵和传输携带信息的信号(例如,在量子通信的情况下,光子)。此外,它们可以在尚未探索的电磁频率范围内工作,因此将为非常高速的通信系统开辟道路。曲速驱动器量子物质最迷人的特性之一是电子可以在一个弯曲的空间中演化。由于电子所处空间的这种扭曲,力场产生了传统材料中完全没有的动力学。这是量子叠加原理的一个杰出应用,"UNIGE理学院量子物质物理系全职教授AndreaCaviglia解释说,他是这项研究的最后一名作者。在最初的理论研究之后,来自日内瓦大学、萨勒诺大学、乌特勒支大学和代尔夫特大学的国际研究小组设计了一种材料,其中空间结构的曲率是可控的。''我们设计了一个承载极薄的自由电子层的界面。它被夹在钛酸锶和铝酸镧之间,这是两种绝缘的氧化物,''萨勒诺大学教授和理论研究的协调人CarmineOrtix说。这种组合使我们能够获得可以按需控制的特殊电子几何构型。一次一个原子为了实现这一目标,研究小组使用了一个先进的系统,在原子尺度上制造材料。使用激光脉冲,每层原子被一个接一个地堆叠起来。''这种方法使我们能够在空间中创造特殊的原子组合,从而影响材料的行为,''研究人员详细说明。虽然技术使用的前景还很遥远,但这种新材料在探索极高速电磁信号操纵方面开辟了新的途径。这些结果也可用于开发新的传感器。研究小组的下一步将是进一步观察这种材料对高电磁频率的反应,以更精确地确定其潜在的应用。...PC版:https://www.cnbeta.com.tw/articles/soft/1354017.htm手机版:https://m.cnbeta.com.tw/view/1354017.htm

相关推荐

封面图片

量子突破:科学家开发出操纵奇异材料的新方法

量子突破:科学家开发出操纵奇异材料的新方法上图展示了一种控制材料中量子态的新方法。电场诱导铁电基底发生极化转换,从而产生不同的磁性和拓扑状态。图片来源:MinaYoon、FernandoReboredo、JacquelynDeMink/ORNL、美国能源部拓扑材料发现于20世纪80年代,是一种新的材料阶段,其发现者于2016年获得诺贝尔奖。仅利用电场,ORNL的研究人员就能将普通绝缘体转化为磁性拓扑绝缘体。这种奇特的材料允许电流流过其表面和边缘,而没有能量耗散。电场会引起物质状态的改变。领导这项研究的ORNL的MinaYoon说:"这项研究可以带来许多实际应用,如下一代电子学、自旋电子学和量子计算。"这些物质可能会带来高速、低功耗的电子产品,与目前的硅基电子产品相比,它们能耗更低、运行更快。ORNL的科学家们在《二维材料》(2DMaterials)上发表了他们的研究成果。...PC版:https://www.cnbeta.com.tw/articles/soft/1383317.htm手机版:https://m.cnbeta.com.tw/view/1383317.htm

封面图片

科学家发现新型二维量子材料 质量增加100倍

科学家发现新型二维量子材料质量增加100倍"CeSiI中的电子比普通材料中的电子质量大100倍。这就是它们被称为重费米子的原因。"这项研究背后的乌普萨拉大学研究人员之一Chin-ShenOng说:"CeSiI的特别之处在于,这种有效质量是各向异性的,它取决于电子在原子层中移动的方向。"瑞典乌普萨拉大学物理与天文学系研究员Chin-ShenOng。资料来源:乌普萨拉大学这项研究是乌普萨拉大学材料理论研究人员与美国哥伦比亚大学研究人员的合作成果。对于乌普萨拉大学的材料研究人员来说,主要问题是从理论上研究材料中电子的量子特性。重费米子的背景和意义重费米子化合物是一类电子相互作用异常强烈的材料。在此过程中,它们在所谓的量子波动中协调运动。这种相互作用使电子的质量比普通材料中的电子大100或1000倍。这些量子波动被认为在许多至今无法解释的量子现象中发挥了重要作用,如非常规超导现象(电流可以通过材料而不损失能量)和磁性。这种新型量子材料是在哥伦比亚大学实验室合成的,其独特之处在于它具有类似二维的晶体结构,各层之间有明显的分离,原子厚度很薄。这些层由铈、硅和碘(CeSiI)组成,是首例具有重费米子的二维材料。有关重费米子材料的研究已经进行了几十年,但直到现在,研究重点仍是原子紧密排列成三维结构的材料。早在20世纪70年代,乌普萨拉大学的研究人员就开始重点研究铈基材料,并取得了巨大成功。然而,由哥伦比亚大学实验室合成的这种新材料却独一无二,因为它具有类似二维的晶体结构,各层之间有明显的分离,原子厚度很薄。这些层由铈层、硅层和碘层(CeSiI)组成,是首例具有重费米子的二维材料。"有了这一发现,我们现在有了一个大大改进的材料平台,可以用来研究相关电子结构。二维材料就像乐高积木。我们的合作伙伴已经在着手添加其他二维材料的层,以创造出一种具有定制量子特性的新材料,"Chin-ShenOng说。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1417027.htm手机版:https://m.cnbeta.com.tw/view/1417027.htm

封面图片

科学家运用太赫兹技术开启量子传感之门

科学家运用太赫兹技术开启量子传感之门图为莱斯大学新兴量子和超快材料实验室研究生徐睿制作的三个超快太赫兹场聚光器样品。底层(白色正方形可见)由钛酸锶制成,其表面图案为聚光器结构--可集中太赫兹频率红外光的微观同心圆阵列。这些阵列在显微镜下清晰可见(插图),但用肉眼观察时,就像细粒度的点状图案。图片来源:GustavoRaskosky拍摄/RuiXu/莱斯大学添加插图识别光谱中的差距莱斯大学三年级博士生、最近发表在《先进材料》(AdvancedMaterials)杂志上的一篇文章的第一作者徐睿说:"中红外光和远红外光存在明显的差距,大约在5-15太赫兹的频率和20-60微米的波长范围内,与较高的光学频率和较低的无线电频率相比,目前还没有很好的商业产品。"这项研究是在威廉-马什-莱斯讲座教授、材料科学与纳米工程助理教授朱涵宇(HanyuZhu)的新兴量子与超快材料实验室进行的。量子准电透镜(截面图),可聚焦频率为5-15太赫兹的光脉冲。传入的太赫兹光脉冲(红色,左上角)通过钛酸锶(蓝色)基底上的环形聚合物光栅和圆盘谐振器(灰色)转换成表面声子-极化子(黄色三角形)。黄色三角形的宽度表示声子-极化子在到达用于聚焦和增强出射光的圆盘谐振器(右上角红色)之前,通过每个光栅间隔传播时电场的增加。左下方的钛酸锶分子原子结构模型描述了声子-极化子振荡模式中钛(蓝色)、氧(红色)和锶(绿色)原子的运动。图片来源:Zhu实验室/莱斯大学提供太赫兹间隙的重要性和挑战Zhu说:"这一频率区域的光学技术--有时被称为'新太赫兹间隙',因为它远比0.3-30太赫兹'间隙'中的其他频率区域更难以接近--对于研究和开发用于接近室温的量子电子学的量子材料,以及感知生物分子中的功能基团以进行医学诊断,可能非常有用。"研究人员面临的挑战一直是找到合适的材料来承载和处理"新太赫兹间隙"中的光。这种光会与大多数材料的原子结构产生强烈的相互作用,并很快被它们吸收。莱斯大学材料科学与纳米工程系学生RuiXu是一项研究的第一作者,该研究表明钛酸锶有可能在3-19太赫兹频率下实现高效光子设备。图片来源:GustavoRaskosky拍摄/莱斯大学钛酸锶和量子顺电性Zhu的研究小组利用钛酸锶(一种锶和钛的氧化物)将强相互作用转化为优势。Xu说:"它的原子与太赫兹光的耦合如此强烈,以至于形成了被称为声子-极化子的新粒子,这些粒子被限制在材料表面,不会在材料内部消失。"其他材料支持更高频率的声子-极化子,而且通常支持的范围很窄,而钛酸锶则不同,它支持整个5-15太赫兹间隙的声子-极化子,这是因为钛酸锶具有一种称为量子顺电性的特性。钛酸锶的原子表现出巨大的量子波动和随机振动,因此能有效捕捉光线,而不会被捕捉到的光线自我捕获,即使在零开尔文温度下也是如此。"我们通过设计和制造超快场聚光器,证明了钛酸锶声子-极化子器件在7-13太赫兹频率范围内的概念,"Xu说。"这种器件能将光脉冲挤压到小于光波长的体积内,并保持较短的持续时间。因此,我们实现了每米近千兆伏的强瞬态电场。HanyuZhu是莱斯大学威廉-马什-莱斯讲座教授兼材料科学与纳米工程助理教授。图片来源:JeffFitlow摄影/莱斯大学未来影响与应用电场是如此之强,以至于它可以用来改变材料的结构,从而产生新的电子特性,或者从微量的特定分子中产生新的非线性光学响应,这种响应可以用普通的光学显微镜检测到。Zhu说,他的研究小组开发的设计和制造方法适用于许多市售材料,可以实现3-19太赫兹范围内的光子设备。...PC版:https://www.cnbeta.com.tw/articles/soft/1378127.htm手机版:https://m.cnbeta.com.tw/view/1378127.htm

封面图片

科学家们已经开发了一种新的方法证明量子漩涡同样存在

科学家们已经开发了一种新的方法证明量子漩涡同样存在根据论文中的模拟数据,旋转的双极玻色-爱因斯坦-冷凝物(dBEC)的密度分布图,显示出量化的涡流。由于原子之间的各向异性和长程相互作用的特点,通过dBEC中的密度倾角可以看到涡流,呈条纹状排列。资料来源:EllaMaru工作室来自因斯布鲁克大学实验物理系和奥地利科学院量子光学和量子信息研究所的弗朗西斯卡-费拉伊诺说:"这很有趣,因为这种旋涡清楚地表明了量子气体的无摩擦流动--所谓的超流性"。费拉诺和她的团队正在研究由强磁性元素构成的量子气体。对于这种双极性的量子气体,其中的原子彼此高度相连,迄今无法证明量子涡旋。但科学家们已经开发了一种新的方法。FrancescaFerlaino团队的ManfredMark解释说:"我们利用我们的镝量子气体的方向性,其原子的行为就像许多小磁铁来搅拌气体。"为了做到这一点,科学家们对他们的量子气体施加了一个磁场,使这种最初是圆形的、煎饼状的气体由于磁致伸缩而变得椭圆形变形。这个想法既简单又强大,源于几年前由尼克-帕克领导的纽卡斯尔大学理论团队提出的理论建议,该论文的第二作者托马斯-布兰德是该团队的成员。"通过旋转磁场,我们可以旋转量子气体,"目前论文的第一作者劳里茨-克劳斯解释说。"如果它的旋转速度足够快,那么在量子气体中就会形成小漩涡。这就是气体试图平衡角动量的方式。"在足够高的旋转速度下,沿着磁场形成奇特的旋涡条纹。这些是双极量子气体的一个特殊特征,现在已经在奥地利因斯布鲁克大学首次被观察到。现在发表在《自然-物理学》上的这种新方法将被用来研究超固态中的超流性,在这种状态下,量子物质同时是固体和液体。"在新发现的超固态中,超流性的程度确实仍然是一个重大的开放性问题,而且这个问题今天仍然很少被研究。"...PC版:https://www.cnbeta.com.tw/articles/soft/1331427.htm手机版:https://m.cnbeta.com.tw/view/1331427.htm

封面图片

超导突破:科学家发现量子物质的新状态

超导突破:科学家发现量子物质的新状态这种"自旋三重电子对晶体"是一种以前未知的拓扑量子物质状态。这一发现最近发表在《自然》杂志上。顾强强是在文理学院詹姆斯-吉尔伯特-怀特杰出荣誉教授、物理学家J.C.SéamusDavis实验室工作的博士后研究员,他与科克大学学院的乔-卡罗尔和牛津大学的王树秋共同领导了这项研究。当配对电势呈现奇奇偶性时,超导体就是拓扑超导体,这会导致每个电子对采用自旋三重态,两个电子自旋的方向相同。顾强强介绍说,拓扑超导体是物理学家们热衷研究的对象,因为从理论上讲,它们可以构成超稳定量子计算机的材料平台。然而,即使对拓扑超导进行了长达十年的深入研究,除了同样在康奈尔大学发现的超流体3He之外,还没有任何块体材料被明确认定为自旋三奇偶超导体。最近,一种奇特的新材料--二碲化铀(UTe2)成为这种分类的极有希望的候选者。然而,它的超导阶参数仍然难以捉摸。2021年,理论物理学家开始提出,UTe2实际上处于拓扑对密度波(PDW)状态。此前从未探测到过这种形式的量子物质。简单地说,拓扑对密度波就像超导体中的成对电子的静态舞蹈,但这些成对电子在空间中形成周期性的晶体图案。"我们康奈尔大学的团队在2016年利用我们为此发明的超导尖端扫描约瑟夫森隧穿显微镜发现了有史以来观测到的第一个PDW,"顾说。"从那时起,我们开创了在毫开尔文温度和微伏能量分辨率下的SJTM研究。在UTe2项目中,我们直接观察到了超导配对势在原子尺度上的空间调制,并发现它们的调制完全符合PDW状态下电子对密度在空间周期性调制的预测。我们探测到的是一种新的量子物质态--由自旋-三重库珀对组成的拓扑对密度波"。库珀对密度波是电子量子物质的一种形式,其中电子对凝固成超导PDW态,而不是形成传统的"超导"流体,在这种流体中,所有电子对都处于相同的自由运动状态。顾强强说:"在自旋三重超导体中首次发现PDW令人兴奋。铀基重费米子超导化合物是一类新颖奇特的材料,为实现拓扑超导提供了一个前景广阔的平台。......我们的科学发现还指出了这种有趣的量子态在s波、d波和p波超导体中无处不在的性质,并为在广泛的材料中识别这种状态提供了新的途径。"...PC版:https://www.cnbeta.com.tw/articles/soft/1380305.htm手机版:https://m.cnbeta.com.tw/view/1380305.htm

封面图片

科学家开发出一种新型材料 兼顾高强度、轻质与吸震能力

科学家开发出一种新型材料兼顾高强度、轻质与吸震能力材料需要善于消散振动,同时保持足够的刚度以防止在巨大压力下坍塌。UvA物理研究所的一组研究人员现在已经找到了一种设计材料的方法,可以同时做到这两点。通常,材料的两种特性是相互排斥的:某种材料要么坚硬,要么可以很好地吸收振动——但很少两者兼而有之。然而,如果我们能够制造出既坚硬又善于吸收振动的材料,那么就会有很多潜在的应用,从纳米尺度的设计到航空航天工程。阿姆斯特丹大学的一组研究人员现已找到一种方法来制造坚硬但仍能很好吸收振动的材料——同样重要的是,这种材料可以保持非常轻的重量。该出版物的主要作者DavidDykstra解释说:“我们发现诀窍是使用会弯曲的材料,例如薄金属板。当以一种巧妙的方式组合在一起时,由这种弯曲的板材制成的结构会成为很好的振动吸收器——但与此同时,它们还保留了它们所用材料的很多刚度。此外,板材不需要很厚,因此材料可以保持相对轻便。”该材料使用这种金属板的屈曲来组合所有这些所需的特性。研究人员彻底研究了这些弯曲材料的特性,发现它们都显示出刚度和消振能力的神奇组合。由于已知材料不具有这种所需的特性组合,因此新的实验室制造材料(或超材料)具有非常广泛的潜在应用,并且具有非常广泛的规模。这种材料可能的用途范围从米级(航空航天、汽车应用和许多其他民用设计)到微型(显微镜或纳米光刻等应用)。...PC版:https://www.cnbeta.com.tw/articles/soft/1363565.htm手机版:https://m.cnbeta.com.tw/view/1363565.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人