源自电子游戏的算法催生出令人兴奋的"神经科学新前沿"

源自电子游戏的算法催生出令人兴奋的"神经科学新前沿"沃利斯博士说:"战斗电子游戏使用一种非常快速的算法来追踪子弹的轨迹,以确保在正确的时间击中战场上的正确目标。这项技术经过优化,精确度很高,因此体验感尽可能逼真。我们认为可以使用类似的算法来分析脑细胞内移动的跟踪分子。"到目前为止,技术上只能探测和分析空间中的分子,而不能分析它们在空间和时间中的行为。沃利斯博士说:"科学家利用超分辨率显微镜观察活体脑细胞,记录其中的微小分子如何聚集在一起执行特定功能。单个蛋白质在看似混乱的环境中跳动和移动,但当你从空间和时间上观察这些分子时,你就会开始看到混乱中的秩序。这是一个令人兴奋的想法,而且它成功了。"质膜中Syntaxin1A的超分辨成像。图片来源:作者沃利斯博士使用编码工具建立了一种算法,现在已有多个实验室使用这种算法来收集有关脑细胞活动的丰富数据。他介绍说:"我们应用这种算法来观察分子聚集在一起的情况--哪些分子、何时、何地、多长时间以及多频繁地聚集在一起。这为我们提供了新的信息,让我们了解分子如何在脑细胞内发挥关键功能,以及这些功能如何在衰老和疾病过程中被破坏。"穆尼耶教授说,这种方法的潜在影响是指数级的:"我们的团队已经在利用这项技术收集有关Syntaxin-1A等蛋白质的宝贵证据,这些蛋白质对脑细胞内的交流至关重要。其他研究人员也在将该技术应用于不同的研究问题。我们正在与昆士兰大学的数学家和统计学家合作,拓展我们利用这项技术加速科学发现的途径。穆尼耶穆尼耶教授说,看到一个简单的想法产生的效果令人欣慰。他说:"我们利用自己的创造力,将电子游戏和超分辨率显微镜这两个毫不相关的高科技世界融合在一起,从而解决了研究难题。它将我们带入了神经科学的新前沿"。...PC版:https://www.cnbeta.com.tw/articles/soft/1378425.htm手机版:https://m.cnbeta.com.tw/view/1378425.htm

相关推荐

封面图片

神经科学研究暗示能够治愈自闭症的药物正在出现

神经科学研究暗示能够治愈自闭症的药物正在出现来自自闭症谱系的疾病(ASD,自闭症谱系障碍)不仅表现为社会交往、沟通、兴趣形成方面的障碍,还表现为刻板的行为模式。这往往还伴随着其他异常情况,如癫痫或多动症。科学家们正在紧张地寻找导致这种复杂的发育障碍的分子异常,影响神经细胞分子程序的众多遗传因素已经与自闭症的发展有关。来自赫克托尔脑转化研究所(HITBR)的莫里茨-马勒(MoritzMall)长期以来一直在研究蛋白质MYT1L在各种神经元疾病中的作用。该蛋白是一种所谓的转录因子,决定哪些基因在细胞中是活跃的,哪些不是。人体中几乎所有的神经细胞在其整个生命期都会产生MYT1L。培养皿中由干细胞编程的人类脑细胞(红色,绿色)。资料来源:JanaTegethoff/HITBR几年前,马勒已经表明,MYT1L通过抑制其他发育途径来保护神经细胞的身份,这些发育途径将细胞编程为肌肉或结缔组织等。在一些神经系统疾病中发现了MYT1L的突变,如精神分裂症和癫痫,但也发现了脑部畸形。在目前由欧洲研究理事会ERC资助的工作中,Mall和他的团队研究了"神经元特性的守护者"在ASD发展中的确切作用。为此,他们从基因上关闭了小鼠和人类神经细胞中的MYT1L,这些神经细胞是在实验室中由重新编程的干细胞衍生而来。MYT1L的丧失导致小鼠和人类神经元的电生理过度活跃,从而损害了神经功能。缺乏MYT1L的小鼠出现了大脑异常,例如大脑皮层变薄。这些动物还表现出一些ASS类型的行为变化,如社交障碍或多动症。MYT1L缺陷的神经元特别引人注目的是它们产生了过多的钠离子通道,这些通道通常主要限于心肌细胞。这些孔状蛋白允许钠离子通过细胞膜,因此对导电性至关重要,因此也对细胞的运作至关重要。如果一个神经细胞产生过多的这种通道蛋白,就会造成电生理上的过度激活。在临床医学中,阻断钠通道的药物已经使用了很长时间。这些药物包括拉莫三嗪,它被认为可以防止癫痫发作。当MYT1L缺陷的神经细胞被拉莫三嗪治疗后,其电生理活动恢复正常。在小鼠身上,这种药物甚至能够抑制ASD相关的行为,如多动症。"显然,成年后的药物治疗可以缓解脑细胞功能障碍,从而抵消自闭症的典型行为异常--即使在机体发育阶段,MYT1L的缺失已经损害了大脑发育,"莫里茨-马勒解释说。然而,这些结果仍然局限于小鼠的研究;尚未对自闭症谱系中的疾病患者进行临床研究。第一个临床研究正处于早期规划阶段。...PC版:https://www.cnbeta.com.tw/articles/soft/1344565.htm手机版:https://m.cnbeta.com.tw/view/1344565.htm

封面图片

科学家开发出强大的AI算法 帮助应对致命的胶质母细胞瘤

科学家开发出强大的AI算法帮助应对致命的胶质母细胞瘤该图像显示了用于精确瞄准胶质母细胞瘤主激酶的SPHINKS网络。资料来源:AntonioIavarone,M.D.他们的研究在2月2日的《自然-癌症》杂志上有所描述,并可能对GBM(一种侵袭性的、通常是致命的脑癌类型)以及某些乳腺癌、肺癌和儿科癌症的未来治疗产生深远影响。西尔维斯特综合癌症中心副主任、该研究的资深作者、医学博士AntonioIavarone解释说:"我们的工作代表了转化科学,为改变胶质母细胞瘤患者在临床上的常规管理方式提供了直接机会。算法为精准癌症医学提供了应用,给肿瘤学家提供了一个新的工具来对抗这种致命的疾病和其他癌症。"这种人工智能算法被称为SPHINKS--基于底物PHosphosite的激酶网络推断--部署了深度机器学习,以帮助研究人员识别和实验验证两种蛋白激酶(PKCd和DNAPKcs),作为与两种GBM亚型的肿瘤进展相关的罪魁祸首,并作为其他癌症的潜在治疗目标。蛋白激酶是目前用于精准癌症医学的关键目标,以根据病人的特定癌症特性进行治疗。研究人员将最活跃的激酶在他们的论文中称为"主激酶",是那些临床医生直接使用靶向药物作为当前癌症治疗的标志的激酶。除了确定主激酶之外,Iavarone博士及其同事还使用了在实验室中从患者样本中生长出来的肿瘤器官-他们称之为"患者衍生的肿瘤化身"来证明干扰主激酶活性的靶向药物能够阻挠肿瘤的生长。此前,Iavarone博士和团队已经报告了一种新的胶质母细胞瘤分类,通过捕捉关键的肿瘤细胞特征,并根据GBM患者的生存可能性和他们的肿瘤对药物的脆弱性进行分组。在新的研究中,这些分类是通过几个全能学平台独立确认的:基因组学(基因)、蛋白质组学(蛋白质)、脂质组学(脂肪分子)、乙酰组学(表观遗传学)、代谢组学(代谢物)和其他。SPHINKS利用机器学习来完善这些omics数据集,并创建一个互动组--一套完整的生物互动--以确定每个胶质母细胞瘤亚型中产生异常生长和治疗抗性的激酶。这些发现表明,多组学数据可以产生新的算法,根据每个病人的胶质母细胞瘤亚型预测哪些靶向疗法可以提供最佳治疗方案。"我们现在可以根据不同omics之间共同的生物特征对胶质母细胞瘤患者进行分层,"Iavarone博士说。"仅仅阅读基因组是不够的。我们已经需要更全面的数据来确定肿瘤的脆弱性"。尽管在许多其他癌症方面取得了突破性进展,胶质母细胞瘤患者面临着令人沮丧的预后--五年生存率低于10%。尽管正在开发许多药物作为潜在的治疗方法,但临床医生一直需要一种方法来确定驱动每个病人疾病的分子机制,并适用于精准癌症医学。研究人员说,SPHINKS算法和相关方法可以很容易地被纳入分子病理学实验室。他们的论文包括一个临床分类器,可以帮助给每个病人分配适当的胶质母细胞瘤亚型。该团队还建立了一个在线门户来访问该算法。作者认为这种方法可以产生有洞察力的信息,使多达75%的胶质母细胞瘤患者受益。西尔维斯特中心生物化学和分子生物学教授、该研究的共同第一作者、医学博士AnnaLasorella说:"这个分类器基本上可以在任何实验室使用。通过将全息信息导入门户网站,病理学家可以收到一个肿瘤、十个肿瘤的分类信息,无论他们导入多少个,这些分类可以立即应用于病人护理"。虽然SPHINKS首先在胶质母细胞瘤上测试,但该算法同样适用于其他几种癌症。该团队在乳腺癌、肺癌和小儿脑瘤中发现了相同的癌症驱动激酶。Iavarone和Lasorella博士及其同事认为这一发现可能是一种新型临床试验的动力。"我们正在探索篮子试验的概念,"Iavarone博士解释说,"这将包括具有相同生物亚型但不一定是相同癌症类型的患者。如果胶质母细胞瘤或乳腺癌或肺癌患者具有类似的分子特征,他们可以被纳入同一个试验中,与其为一种药物做多次试验,我们可以进行一次联合试验,并有可能更快地将更多有效的药物带给更多的患者。"...PC版:https://www.cnbeta.com.tw/articles/soft/1342375.htm手机版:https://m.cnbeta.com.tw/view/1342375.htm

封面图片

麻省理工学院神经科学家发现逆转阿尔茨海默病的方法

麻省理工学院神经科学家发现逆转阿尔茨海默病的方法麻省理工学院Picower学习和记忆研究所所长、该研究的资深作者Li-HueiTsai说:"我们发现,这种肽的效果非常显著。我们看到了在减少神经变性和神经炎症反应方面的奇妙效果,甚至还能挽救行为缺陷。"随着进一步的测试,研究人员希望该肽最终能被用作治疗阿尔茨海默病和其他形式的痴呆症患者,这些患者有CDK5过度活化。该肽不会干扰CDK1,这是一种与CDK5结构相似的基本酶,而且它与其他用于临床的肽类药物大小相似。Picower研究所的研究科学家Ping-ChiehPao是该论文的主要作者,该论文于4月12日发表在《美国国家科学院院刊》上。在用新肽治疗的小鼠的大脑中(右面两个面板),右上方看到的Tau蛋白(被染成紫色)少了很多。左边的图像显示了用该肽的杂乱版本治疗的小鼠的神经元。在底部的两个面板中,细胞核中的DNA被染成蓝色,显示Tau水平的变化不是由细胞群的显著变化引起的。Tsai在其职业生涯早期就一直在研究CDK5在阿尔茨海默病和其他神经退行性疾病中的作用。作为一名博士后,她发现并克隆了CDK5基因,该基因编码了一种被称为细胞周期蛋白依赖性激酶的酶。其他大多数细胞周期蛋白依赖性激酶都参与控制细胞分裂,但CDK5却不是。相反,它在中枢神经系统的发展中起着重要作用,也有助于调节突触功能。CDK5被一个与之相互作用的较小的蛋白质激活,该蛋白质被称为P35。当P35与CDK5结合时,该酶的结构发生变化,使其能够磷酸化--在其目标上添加一个磷酸盐分子。然而,在阿尔茨海默氏症和其他神经退行性疾病中,P35被裂解成一个较小的蛋白质,称为P25,它也能与CDK5结合,但比P35的半衰期更长。当与P25结合时,CDK5在细胞中变得更加活跃。P25还允许CDK5对其通常目标以外的分子进行磷酸化,包括Tau蛋白。过度磷酸化的Tau蛋白形成神经纤维缠结,这是阿尔茨海默病的特征之一。在以前的工作中,Tsai的实验室已经表明,转基因小鼠被设计为表达P25,会出现严重的神经变性。在人类中,P25与几种疾病有关,不仅包括阿尔茨海默氏症,还包括帕金森病和额颞叶痴呆症。制药公司曾试图用小分子药物来靶向P25,但这些药物往往会产生副作用,因为它们也会干扰其他细胞周期蛋白依赖性激酶,所以没有一种药物在病人身上进行测试。麻省理工学院的团队决定采取一种不同的方法来靶向P25,即使用一种肽而不是小分子药物。他们设计的肽的序列与CDK5的一段称为T环的序列相同,这是CDK5与P25结合的关键结构。整个多肽只有12个氨基酸长--比大多数现有的多肽药物略长,后者是5到10个氨基酸长。Tsai说:"从肽类药物的角度来看,通常越小越好。"我们的多肽几乎在这个理想的分子大小之内。"戏剧性的效果在实验室培养皿中的神经元测试中,研究人员发现,用该肽治疗导致CDK5活性的适度降低。这些测试还表明,该肽并不抑制正常的CDK5-P35复合物,也不影响其他细胞周期蛋白依赖性激酶。当研究人员在CDK5过度活跃的阿尔茨海默病小鼠模型中测试该肽时,他们看到了无数的有益影响,包括减少DNA损伤、神经炎症和神经元损失。这些效果在小鼠研究中比在培养细胞的测试中要明显得多。肽治疗还在不同的阿尔茨海默氏症小鼠模型中产生了巨大的改善,该模型有一个导致神经纤维缠结的Tau蛋白突变形式。治疗后,这些小鼠显示Tau病症和神经元损失都有所减少。除了大脑中的这些影响外,研究人员还观察到行为上的改善。在一项需要学习浏览水迷宫的任务中,用该肽治疗的小鼠比用对照肽(用于抑制CDK5-P25的多肽的干扰版本)治疗的小鼠表现得更好,水迷宫依赖于空间记忆。在这些小鼠研究中,研究人员注射了该肽,并发现它能够穿过血脑屏障,到达海马体和大脑其他部位的神经元。研究人员还分析了用该肽治疗后小鼠神经元中发生的基因表达变化。他们观察到的变化包括大约20个基因的表达增加,这些基因通常由一个叫做MEF2的基因调节器家族激活。Tsai的实验室之前已经表明,MEF2激活的这些基因可以赋予有Tau缠结的人的大脑对认知障碍的恢复力,她假设这种肽治疗可能有类似的效果。斯克里普斯研究中心的神经科学教授斯图尔特-利普顿(StuartLipton)说:"如果证明这种肽抑制剂对目标有选择性,并且相对没有临床副作用,那么最终可能会导致对神经退行性疾病的新的治疗,范围包括阿尔茨海默病、前颞叶痴呆症和帕金森病。"Tsai现在计划在其他涉及P25相关神经退行性疾病的小鼠模型中做进一步研究,如额颞叶痴呆症、HIV诱导的痴呆症和糖尿病相关的认知障碍。她说:"很难准确地说哪种疾病会最受益,所以我认为还需要做更多的工作。"...PC版:https://www.cnbeta.com.tw/articles/soft/1354615.htm手机版:https://m.cnbeta.com.tw/view/1354615.htm

封面图片

研究人员在感知气味的神经元内发现了一种以前未知的细胞成分

研究人员在感知气味的神经元内发现了一种以前未知的细胞成分在电子显微镜放大镜下,带有转导蛋白的囊泡的释放分子生物学系教授斯塔凡-博姆(StaffanBohm)说:"找到治疗嗅觉受损的方法的前提是首先了解嗅觉如何工作。"研究人员所发现的是神经细胞内的一个所谓的细胞器,这在以前是没有被观察到的。新发现的细胞器被研究人员命名为"多泡转导体",这一发现要归功于于默奥大学独特的显微镜基础设施。DevendraKumarMaurya研究人员DevendraKumarMaurya使用了一种被称为相关显微镜的新技术,该技术结合了电子显微镜和共焦显微镜,这样就可以对细胞的内部结构和不同蛋白质的位置进行成像。细胞器是细胞内独特的"工作站",可与人体的不同器官相比较,即不同的细胞器在细胞内有不同的功能。大多数细胞器在不同的细胞类型中是通用的,但也有一些细胞器具有特定的功能,只出现在某些细胞类型中。嗅觉神经细胞有长长的突起,即纤毛,突入鼻腔,含有结合气味物质的蛋白质,从而启动神经脉冲到大脑。将气味转化为神经脉冲的过程被称为转导,新发现的细胞器只包含转导蛋白。斯塔凡-博姆,于默奥大学分子生物学系教授转导体的作用是既储存又保持转导蛋白相互分离,直到它们被需要。当嗅觉受到刺激时,该细胞器的外膜破裂,释放出转导蛋白,以便它们能够到达神经元的纤毛,从而感知到气味。研究人员还发现,转导体携带一种叫做视网膜色素变性2号的蛋白质,即RP2,它在其他方面被称为调节眼睛感光细胞的转导。如果RP2基因发生突变,就会导致眼睛疾病视网膜色素变性的一个变种,损害眼睛的光敏细胞。"需要进一步研究的一个问题是,转导体是否在视觉中发挥作用,以及它是否存在于由神经递质而非光和气味激活的大脑神经元中。如果是这样,这一发现可能会被证明更加重要,"斯塔凡-博姆说。当研究人员DevendraKumarMaurya使用一种叫做相关显微镜的新技术时,发现了转导体。该技术结合了电子显微镜和共焦显微镜,因此可以同时对细胞的内部结构和不同蛋白质的位置进行成像。对这一发现至关重要的是Devendra的方法开发,它使该技术能够被用于分析组织切片中的完整神经元。...PC版:https://www.cnbeta.com.tw/articles/soft/1343173.htm手机版:https://m.cnbeta.com.tw/view/1343173.htm

封面图片

科学家发现自然界最大细胞中神秘漩涡运动的起源

科学家发现自然界最大细胞中神秘漩涡运动的起源最新研究揭示了卵细胞中"漩涡状"流动背后的自然机制,这种流动对营养物质的高效分配至关重要。这些发现是通过先进的建模和实验方法实现的,为细胞运输提供了新的见解,并可能影响更广泛的生物学研究。模拟微管如何弯曲并引导成熟卵细胞中的物质形成旋涡状流动的快照。图片来源:S.Dutta等人科学家们早就知道,成熟的卵细胞(称为卵母细胞)会在内部产生类似旋涡的液流来运输营养物质,但这些液流是如何产生的一直是个谜。现在,Flatiron研究所的计算科学家与普林斯顿大学和西北大学的合作者共同领导的研究揭示了这些流动--看起来就像微型龙卷风--是由一些细胞成分的相互作用有机产生的。他们的研究成果发表在四月号的《自然-物理》(NaturePhysics)杂志上,他们利用理论、先进的计算机建模和果蝇卵细胞实验揭示了龙卷风的力学原理。这些成果有助于科学家们更好地理解有关卵细胞发育和细胞运输的基础问题。"我们的发现代表了这一领域的一大飞跃,"共同作者、Flatiron研究所计算生物学中心(CCB)主任迈克尔-谢利(MichaelShelley)说。"我们能够应用多年来从其他研究中获得的先进数值技术,这让我们能够比以往更好地看待这个问题。"在一个典型的人体细胞中,一个典型的蛋白质分子通过扩散从细胞的一侧蜿蜒到另一侧只需要10到15秒;而在一个小型细菌细胞中,这一过程只需要一秒钟。但在本文研究的果蝇卵细胞中,单是扩散就需要一整天的时间--这对细胞的正常功能来说时间太长了。相反,这些卵细胞发展出了"旋风流",它在卵细胞内部盘旋,迅速分配蛋白质和营养物质,就像龙卷风能把物质卷起并移动到比风更远更快的地方一样。在这段循环播放的卵母细胞视频中,可以看到物质在整个生长细胞中循环并帮助分配养分。图片来源:S.Dutta等人"受精后,卵母细胞将成为未来的动物,"该研究的合著者、普林斯顿大学和中央研究院的研究员萨扬坦-杜塔(SayantanDutta)说。"如果破坏了卵母细胞中的流动,所产生的胚胎就不会发育"。研究人员使用了Flatiron研究所研究人员开发的一款名为SkellySim的先进开源生物物理学软件包。通过SkellySim,他们模拟了参与制造细胞的成分。其中包括微管--细胞内部的柔性细丝--和分子马达,分子马达是作为细胞工作母机的特化蛋白质,携带着被称为有效载荷的特殊分子组。科学家还不太清楚这些有效载荷是由什么组成的,但它们在产生气流中起着关键作用。研究人员模拟了数以千计的微管在载荷分子马达的作用力下的运动。通过在实验和模拟之间来回切换,研究人员得以了解旋流的结构,以及它们是如何从细胞液和微管之间的相互作用中产生的。"我们的理论工作使我们能够放大并以三维方式实际测量和可视化这些旋涡,"该研究的合著者、CCB研究科学家RezaFarhadifar说。"我们看到了这些微管如何在没有任何外部线索的情况下,通过自组织产生大规模流动。"在这段循环播放的卵母细胞视频中,可以看到物质在整个生长细胞中循环并帮助分配养分。图片来源:S.Dutta等人模型显示,在卵母细胞内部,微管在分子马达的作用下发生弯曲。当微管在这种负荷下屈曲或弯曲时,会导致周围液体移动,从而使其他微管重新定向。在一个足够大的弯曲微管群中,所有微管都朝同一方向弯曲,流体流动就会变得"合作"。随着微管的集体弯曲,移动的有效载荷在整个卵子中形成漩涡或漩涡状流动,帮助分子分散到细胞周围。有了漩涡,分子可以在20分钟而不是20小时内穿过细胞。谢利说:"该模型显示,该系统具有令人难以置信的自我组织能力,能够创造出这种功能性流动。而只需要一些成分--只有微管、细胞的几何形状和携带有效载荷的分子马达。"这些新发现为更好地了解卵细胞的发育奠定了基础。这些结果还有助于揭开其他细胞类型中物质运输的神秘面纱。"既然我们知道了这些漩涡是如何形成的,我们就可以提出更深层次的问题,比如它们是如何混合细胞内的分子的?这开启了理论与实验之间的新对话。"法哈迪法尔说。"这项新研究让人们对微管有了全新的认识。微管在植物和动物等几乎所有真核生物的各种细胞类型和细胞功能(如细胞分裂)中发挥着核心作用。这使它们成为"细胞工具箱中非常重要的一部分",Dutta说。"通过更好地理解它们的机制,我认为我们的模型将有助于推动细胞生物物理学中许多其他非常有趣的问题的发展"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428137.htm手机版:https://m.cnbeta.com.tw/view/1428137.htm

封面图片

科学家们发现了一种酶在维持细胞生存能力方面的作用

科学家们发现了一种酶在维持细胞生存能力方面的作用乳腺癌细胞的图像资料来源:国家癌症研究所的癌症特写项目"许多疾病都与OGT功能有关,"担任这项新研究第一作者的LJI导师LiXiang博士说。"例如,许多研究表明OGT功能在癌症、糖尿病和心血管疾病中出现异常"。这项新研究由Li带头,并由LJI教授AnjanaRao博士和LJI助理教授SamuelMyers博士共同领导,首次表明OGT通过调节一种名为mTOR的关键蛋白来控制细胞生存。细胞依靠mTOR来保持其线粒体动力室的工作。如果没有功能性的mTOR,从蛋白质合成到细胞增殖,细胞几乎所有的基本功能都会失效。因此毫不奇怪,mTOR功能障碍也是许多疾病的一个标志。"OGT对身体的每个细胞都很重要,"Myers解释说。"由于这项研究,我们现在有了一个模型,我们可以用来在未来研究OGT的每个部分做什么"。OGT是一种叫做转移酶的酶。这种类型的酶执行一种叫做糖基化的工作,即把糖分子添加到最近合成的蛋白质中。OGT在转移酶中是独一无二的,因为它修改细胞内的蛋白质,而不是细胞表面的蛋白质或分泌的蛋白质。事实上,OGT的糖基化工作非常重要,没有它胚胎细胞就会死亡。但直到现在,科学家们对其原因还一无所知。正如迈尔斯所解释的,OGT的基本性质是使它难以研究的原因。科学家们通常通过开发缺乏这些蛋白质基因的细胞来研究酶和其他蛋白质。他们生成新的、功能失调的细胞,然后调查事情是如何出错的。但是对于OGT,这种实验在开始之前就已经结束了。因为只有单一的OGT,科学家们一直无法删除它或减少它的功能,而无需简单地杀死他们需要研究的细胞。Li说:"我们知道OGT对细胞生存至关重要,但20多年来我们不知道原因。"在新的研究中,Li能够通过使用诱导系统删除OGT基因来解决这个问题。他利用小鼠胚胎干细胞,然后使用一种被称为Cre的诱导型蛋白质删除OGT的基因。这意味着细胞可以正常生长,直到科学家决定激活这一过程,之后失去OGT基因的细胞开始停止增殖并死亡。研究小组发现,删除OGT的基因导致一种名为mTOR的关键酶的功能异常增加,该酶能调节细胞代谢。删除OGT的基因也助长了细胞中一个重要但有潜在危险的过程,即线粒体氧化磷酸化。为什么线粒体氧化磷酸化如此危险?细胞中的这一过程是使细胞产生ATP(为细胞提供能量的分子)的一个微妙途径的一部分。ATP可以由糖酵解产生,也可以由线粒体氧化磷酸化产生,扰乱这种平衡会对细胞产生破坏性后果。幸运的是,OGT通过保持蛋白质合成的顺利进行和调节细胞内的氨基酸水平,保障了mTOR的活动和线粒体的健康。重要的是,研究人员在CD8+T细胞中发现了OGT的相同保护作用,这表明该酶以同样的方式在整个哺乳动物细胞类型中发挥作用,而不仅仅是在小鼠胚胎干细胞中。即使是缺乏OGT的功能障碍细胞也不是永远注定的,科学家们能够使用一种称为CRISPR/Cas9的基因编辑新尖端技术来"拯救"这些功能障碍的细胞。通过观察小鼠胚胎干细胞中的第二个基因是否会恢复缺乏OGT的细胞的生长,Li发现在缺乏OGT的细胞中,mTOR和线粒体氧化磷酸化被过度激活,并且可以通过抑制其功能来拯救细胞。这对希望进一步了解OGT在体内作用的科学家来说是个好消息。Myers说:"现在我们可以删除OGT的基因,同时保持细胞的活力,我们可以尝试只恢复OGT的碎片,以了解更多关于OGT如何保持细胞活力的工作。"他的新发现可能会让研究人员进一步研究OGT的作用,并有可能找到对抗异常活动的治疗目标,研究人员认为,在未来,我们希望我们的研究可以帮助阐明与癌症和其他疾病中功能失调的OGT有关的问题。...PC版:https://www.cnbeta.com.tw/articles/soft/1347703.htm手机版:https://m.cnbeta.com.tw/view/1347703.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人