非线性电路利用石墨烯获取清洁电力 长期被认为不可能实现的技术成为现实

非线性电路利用石墨烯获取清洁电力长期被认为不可能实现的技术成为现实研究人员发现了一种利用石墨烯从环境热量中获取能量的方法,颠覆了长期以来形成的物理学理论。这一突破具有巨大的商业潜力,特别是在无线传感器方面。然而,费曼忽略了一些重要的东西,发表在《物理评论E》杂志上的一项题为"利用二极管的热波动为电容器充电"的新研究证明了这一点。论文的五位作者中有三位来自阿肯色大学物理系。据第一作者保罗-蒂巴多(PaulThibado)介绍,他们的研究严格证明了独立石墨烯的热波动在连接到具有非线性电阻的二极管和存储电容器的电路时,确实能通过给存储电容器充电产生有用功。支持这一发现的经验证据科学家们发现,当存储电容器的初始电荷为零时,电路会从热环境中汲取能量为其充电。研究小组随后证明,该系统在整个充电过程中都符合热力学第一和第二定律。他们还发现,较大的存储电容器可产生更多的存储电荷,而较小的石墨烯电容可提供更高的初始充电速率和更长的放电时间。这些特性非常重要,因为它们可以在净电荷损失之前,让存储电容器有时间与能量收集电路断开连接。这篇最新论文是在该研究小组之前两项研究的基础上发表的。第一项研究发表在2016年《物理评论快报》上,题为"独立石墨烯薄膜的反常动力行为"(AnomalousDynamicalBehaviorofFreestandingGrapheneMembranes)。在该研究中,Thibado和他的合著者确定了石墨烯独特的振动特性及其能量收集潜力。第二项研究发表在2020年的《物理评论E》上,题为"来自独立石墨烯的波动诱导电流",他们在文章中讨论了一种使用石墨烯的电路,这种电路可以为小型设备或传感器提供清洁、无限的电力。这项最新研究更进一步,从数学上确定了一种电路的设计,这种电路能够从地球的热量中收集能量,并将其储存在电容器中,以供日后使用。蒂巴多解释说:"从理论上讲,这就是我们要证明的。"有一些众所周知的能量来源,如动能、太阳能、环境辐射能、声能和热梯度能。现在还有非线性热能。通常,人们认为热能需要温度梯度。这当然是一种重要的实用动力源,但我们发现的是一种前所未有的新动力源。这种新动力不需要两种不同的温度,因为它只存在于一个温度下。"除蒂巴多外,共同作者还包括PradeepKumar、JohnNeu、SurendraSingh和LuisBonilla。库马尔和辛格是阿肯色大学的物理学教授,诺伊是加州大学伯克利分校的物理学教授,博尼利亚是马德里卡洛斯三世大学的物理学教授。十年探索这项研究代表了蒂巴多十多年来一直在研究的问题的解决方案,当时他和库马尔首次在原子水平上跟踪了独立石墨烯中波纹的动态运动。石墨烯于2004年被发现,是一种一原子厚的石墨薄片。二人观察到,独立石墨烯具有波纹结构,每个波纹都会随着环境温度的变化而上下翻转。蒂巴多说:"越薄的东西越灵活。只有一个原子厚度的材料,没有比它更柔韧的了。它就像一个蹦床,不断地上下移动。如果你想阻止它移动,就必须把它冷却到20开尔文。"他目前开发这项技术的重点是制造一种他称之为石墨烯能量收集器(或GEH)的设备。GEH使用的是悬浮在两个金属电极之间的带负电的石墨烯薄片。当石墨烯向上翻转时,会在顶部电极中产生正电荷。当石墨烯向下翻转时,它在底部电极中产生正电荷,从而产生交变电流。将二极管反向接线,让电流双向流动,就能在电路中提供单独的路径,产生脉动直流电流,对负载电阻器做功。商业应用NTSInnovations是一家专门从事纳米技术的公司,拥有将GEH开发成商业产品的独家许可。由于GEH电路非常小,只有纳米大小,因此非常适合在硅芯片上大规模复制。当多个GEH电路以阵列形式嵌入芯片时,可以产生更大的功率。它们还可以在多种环境下工作,因此对于在更换电池不方便或昂贵的地方(如地下管道系统或飞机内部电缆管道)安装无线传感器特别有吸引力。NTSInnovations公司创始人兼首席执行官唐纳德-迈耶(DonaldMeyer)在谈到蒂巴多的最新研究成果时说道:"保罗的研究让我们更加坚信,我们在石墨烯能量收集领域的发展方向是正确的。我们感谢与阿肯色大学的合作,将这项技术推向市场。"NTSInnovations的销售和营销副总裁RyanMcCoy补充说:"电子行业对缩小外形尺寸、减少对电池和有线电源的依赖有着广泛的需求。我们相信石墨烯能量收集技术将对这两方面产生深远影响。...PC版:https://www.cnbeta.com.tw/articles/soft/1378571.htm手机版:https://m.cnbeta.com.tw/view/1378571.htm

相关推荐

封面图片

量子电路的革命:石墨烯的精密工程

量子电路的革命:石墨烯的精密工程圣地亚哥-德-坎波斯特拉大学生物化学和分子材料研究中心(CiQUS-USC)的DiegoPeña教授,ICN2团队的前成员、目前在坎塔布里亚大学担任研究员的CesarMoreno博士,以及多诺斯蒂亚国际物理中心(DIPC)和Ikerbasque基金会的AranGarcia-Lekue博士已经做了类似的事情,但在单原子尺度上,目的是合成具有可调整特性的新型碳基材料。正如刚刚发表在《美国化学学会杂志》(JACS)上的一篇论文所解释的那样,这项研究是原子薄型材料精确工程的一个重大突破--由于其尺寸减少而被称为"二维材料"。所提出的制造技术为材料科学开辟了令人兴奋的新的可能性,特别是在先进的电子产品和未来可持续能源的解决方案中的应用。该研究被刊登在《美国化学会杂志》(JACS)的封面上。资料来源:MariaTenorio博士和DámasoTorres-ICN2这项研究的作者通过连接被称为"纳米带"的超窄石墨烯条,通过由苯基分子(是大分子的一部分)组成的灵活"桥梁",合成了一种新的纳米多孔石墨烯结构。通过连续修改这些桥的结构和角度,科学家们可以控制纳米带通道之间的量子连通性,并最终对石墨烯纳米结构的电子特性进行微调。这种可调性也可以由外部刺激控制,如应变或电场,为不同的应用提供机会。这些突破性的发现来自于西班牙顶级机构(CiQUS、ICN2、坎塔布里亚大学、DIPC)和丹麦技术大学(DTU)之间的合作,表明所提出的分子桥策略可以对具有定制属性的新材料的合成产生巨大影响,是实现量子电路的有力工具。这些电路执行的操作与传统电路类似,尽管与后者不同,量子电路利用了量子效应和现象。这些系统的设计和实现与量子计算机的发展极为相关。但本研究提出的方法的潜在应用超越了未来的电子设备和计算机。事实上,它还可以导致热电纳米材料的发展,这在可再生能源发电和废热回收方面可以产生重要影响,因此解决了另一个关键的社会挑战。...PC版:https://www.cnbeta.com.tw/articles/soft/1357837.htm手机版:https://m.cnbeta.com.tw/view/1357837.htm

封面图片

超微型超级电容器:改变游戏规则的储能奇迹

超微型超级电容器:改变游戏规则的储能奇迹印度科学研究院(IISc)仪器与应用物理系(IAP)的研究人员设计出了一种新型超微超级电容器,这是一种能够存储大量电荷的微型装置。它比现有的超级电容器更小、更紧凑,可用于从路灯到消费电子产品、电动汽车和医疗设备等多种设备。目前,这些设备大多由电池供电。然而,随着时间的推移,这些电池会失去储存电荷的能力,因此保质期有限。而电容器凭借其设计,可以存储更长时间的电荷。例如,一个工作电压为5伏的电容器在十年后仍能以相同的电压工作。但与电池不同的是,超级电容器不能持续放电,例如为手机供电。另一方面,超级电容器集电池和电容器的优点于一身,既能储存又能释放大量能量,因此在下一代电子设备中备受青睐。在最近发表在《ACSEnergyLetters》上的这项研究中,研究人员使用场效应晶体管(FET)作为电荷收集器,而不是现有电容器中使用的金属电极,制造出了他们的超级电容器。"使用场效应晶体管作为超级电容器的电极是调整电容器电荷的新方法,"该研究的通讯作者、IAP教授AbhaMisra说。设备示意图。资料来源:VinodPanwar和PankajSinghChauhan电容器设计的创新目前的电容器通常使用基于金属氧化物的电极,但它们受到电子迁移率低的限制。因此,米斯拉和她的团队决定制造混合型场效应晶体管,由二硫化钼(MoS2)和石墨烯的几原子厚层交替组成,以提高电子迁移率,然后与金触点相连。两个FET电极之间使用固体凝胶电解质,以构建固态超级电容器。整个结构建立在二氧化硅/硅基底上。米斯拉说:"设计是关键部分,因为你要整合两个系统。这两个系统是两个场效应晶体管电极和凝胶电解质(一种离子介质),它们具有不同的电荷容量。该研究的主要作者之一、IAP的博士生维诺德-潘瓦尔(VinodPanwar)补充说,制造这种装置以获得晶体管的所有理想特性具有挑战性。由于这些超级电容器非常小,没有显微镜是无法看到的,而且制造过程需要高精度和手眼协调。"VinodPanwar在无尘室中制作设备。资料来源:PragyaSharma性能和未来计划超级电容器制作完成后,研究人员通过施加各种电压测量了该装置的电化学电容或电荷保持能力。他们发现,在某些条件下容量增加了3000%。相比之下,仅含有MoS2而不含石墨烯的电容器在相同条件下容量仅提高了18%。今后,研究人员计划探索用其他材料替代MoS2能否进一步提高超级电容器的存储能力。他们补充说,他们的超级电容器功能齐全,可通过片上集成应用于电动汽车电池等储能设备或任何小型化系统中。他们还计划为超级电容器申请专利。...PC版:https://www.cnbeta.com.tw/articles/soft/1392215.htm手机版:https://m.cnbeta.com.tw/view/1392215.htm

封面图片

天然双层石墨烯内发现新奇量子效应

天然双层石墨烯内发现新奇量子效应由德国哥廷根大学领导的一个国际研究团队在最新一期《自然》杂志上发表论文称,他们在对天然双层石墨烯开展的高精度研究中,发现了新奇的量子效应,并从理论上对其进行了解释。这一系统制备简单,为载荷子和不同相之间的相互作用提供了新见解,有助于理解所涉及的过程,促进量子计算机的发展。2004年,两位英国科学家用一种非常简单的实验方法从石墨中剥离出石墨片,并借助特殊胶带得到仅由一层碳原子构成的石墨烯。石墨烯是强度最高的材料之一,具有很好的韧性、超强导热性与导电性,应用前景十分广阔。如果将两层石墨烯彼此以特定的角度偏转,所得到的系统甚至会表现出超导性和其他激发量子效应,如磁性。但迄今为止,很难制备出这种偏转的双层石墨烯。在最新研究中,科学家们使用了天然形成的双层石墨烯。他们首先使用简单的胶带从一块石墨中分离出石墨烯样品。为观察量子力学效应,施加了垂直于样品的高电场。他们发现,所得到系统的电子结构发生了变化,且拥有类似能量的电荷载流子出现强烈的累积效应。研究进一步发现,在略高于绝对零度(-273.15℃)下,石墨烯中的电子可相互作用,出现了各种意想不到且复杂的量子相。如相互作用导致电子自旋对齐,使材料在没有施加外部影响的情况下具有磁性。通过改变电场,研究人员也能不断改变双层石墨烯中载流子相互作用的强度。此外,电子运动的自由度在特定条件下会受限,形成电子晶格,且由于相互排斥作用,不再有助于传输电荷,导致系统对电绝缘。哥廷根大学物理系托马斯·韦茨教授表示,新系统的主要优势之一在于材料制备非常简单,研究人员不需要像以前那样在高温下才能获得所需结果,可用于进一步研究各种量子态及量子计算机等。PC版:https://www.cnbeta.com/articles/soft/1305337.htm手机版:https://m.cnbeta.com/view/1305337.htm

封面图片

研究人员成功将废弃鸡脂肪转化为清洁能源

研究人员成功将废弃鸡脂肪转化为清洁能源研究人员开发出一种将鸡脂肪转化为超级电容器碳基电极的新方法,为传统材料提供了一种环保型替代品。这一创新不仅解决了与现有存储设备相关的成本和环境问题,还提高了能源存储技术的性能和效率。全球正朝着更可持续的绿色能源方向发展,这增加了电力储备和对储能设备的需求。遗憾的是,用于这些设备的某些材料既昂贵又存在环境问题。利用通常被扔掉的东西生产替代储能设备有助于解决这些难题。现在,研究人员在《ACS应用材料与界面》(ACSAppliedMaterials&Interfaces)杂志上报告了一种将鸡脂肪转化为碳基电极的方法,这种电极可用于超级电容器,储存能量并为LED供电。这种提取的鸡脂肪为超级电容器创造了一种碳基材料。资料来源:MohanReddyPallavolu根据国际能源机构的数据,2023年,全球可再生能源发电能力将比上一年前所未有地增长近50%。但是,这些多余的能源必须储存起来,以便日后从其生产中获益。例如,由于屋顶太阳能电池板供应过剩,加利福尼亚州的晴天最近引发了负能源价格。由于石墨烯等碳材料具有高效的电荷传输和天然丰富的资源,最近设计高性能存储设备的努力利用了这些材料,但其制造成本高昂,而且会产生污染和温室气体。为了寻找替代碳源材料,MohanReddyPallavolu、JaeHakJung、SangWooJoo及其同事希望开发一种简单、经济有效的方法,将废弃鸡脂肪转化为导电纳米结构,用于超级电容器储能装置。研究人员首先使用燃气火焰喷枪灼烧鸡肉中的脂肪,然后使用火焰灯芯法燃烧融化的油,就像使用油灯一样。然后,他们将油烟收集到悬浮在火焰上方的烧瓶底部。电子显微镜显示,烟尘中含有碳基纳米结构,它们是由同心石墨环组成的均匀球形晶格,就像洋葱的层状结构。研究人员测试了一种通过将碳纳米粒子浸泡在硫脲溶液中来增强其电气特性的方法。在这些非对称超级电容器中,当使用源自鸡肉的碳材料作为电极时,LED可以点亮。资料来源:MohanReddyPallavolu将鸡脂肪来源的碳纳米粒子组装到非对称超级电容器的负极中,可显示出良好的电容性和耐用性,以及高能量和功率密度。正如所预测的那样,当电极由硫脲处理过的碳纳米颗粒制成时,这些特性得到了进一步改善。研究人员随后演示了新型超级电容器的实时应用--充电并连接两个超级电容器,点亮红色、绿色和蓝色LED灯。这些成果凸显了利用鸡脂肪等食物垃圾作为碳源,寻找更环保的绿色能源的潜在优势。编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1435382.htm手机版:https://m.cnbeta.com.tw/view/1435382.htm

封面图片

全新石墨烯纳米电子平台有望完美取代硅 芯片更小更高效

全新石墨烯纳米电子平台有望完美取代硅芯片更小更高效研究人员指出,“石墨烯的力量在于其平坦的二维结构,这种结构由已知最强的化学键结合在一起。相较于硅,石墨烯可微型化的程度更深、能以更高的速度运行并产生更少的热量。这意味着,原则上,单一的石墨烯芯片要比硅芯片内可封装更多器件。”为了创建新的纳米电子平台,研究人员在碳化硅晶体基板上创建了一种改良形式的外延石墨烯,用电子级碳化硅晶体生产了独特的碳化硅芯片。研究人员使用电子束光刻技术(微电子学中常用的一种方法)来雕刻石墨烯纳米结构,并将其边缘焊接到碳化硅芯片上。这一过程机械地稳定和密封石墨烯的边缘,否则它会与氧气和其他可能干扰沿边缘电荷运动的气体发生反应。最后,为了测量石墨烯平台的电子性能,该团队使用了一个低温设备,使他们能够记录从接近零摄氏度到室温下的特性。他们的研究成果已于近期发表在了《自然·通讯》杂志上。研究小组在石墨烯边缘态下观察到的电荷类似于光纤中的光子,可以在不散射的情况下长距离传播。他们发现电荷在散射之前沿边缘移动了数万纳米。在之前的技术中,石墨烯电子只能移动约10纳米,然后就会撞到小缺陷并向不同方向散射。在金属中,电流由带负电的电子传递。但与研究人员的预期相反,他们的测量表明,边缘电流不是由电子或空穴携带的。相反,电流是由一种不同寻常的准粒子携带的,这种准粒子既没有电荷也没有能量,但运动时没有阻力。尽管是单个物体,但观察到混合准粒子的成分在石墨烯边缘的相对侧移动。研究人员表示,其独特的性质表明,这种准粒子可能是物理学家几十年来一直希望利用的粒子——马约拉纳费米子。“在无缝连接的石墨烯网络中使用这种新的准粒子开发电子产品将改变游戏规则。”他们补充道,“我们可能还需要5到10年才能拥有第一个基于石墨烯的电子产品。但由于我们团队新的外延石墨烯平台,技术比以往任何时候都更接近让石墨烯成为硅的继承者。”...PC版:https://www.cnbeta.com.tw/articles/soft/1336115.htm手机版:https://m.cnbeta.com.tw/view/1336115.htm

封面图片

来自中国科学院物理研究所、国家纳米科学中心等单位的科研人员,通过研究三层石墨烯的菱形堆垛结构发现,在菱形堆垛三层石墨烯中,电子和

来自中国科学院物理研究所、国家纳米科学中心等单位的科研人员,通过研究三层石墨烯的菱形堆垛结构发现,在菱形堆垛三层石墨烯中,电子和红外声子之间具有强相互作用,这有望应用于光电调制器和光电芯片等领域。相关研究成果在线发表于《自然-通讯》杂志。据悉,这项研究为理解菱形堆垛的三层石墨烯中的超导和铁磁等物理效应提供了新的视角。同时,它也为新一代光电调制器和光电芯片的设计提供了相关材料研究的基础。(科技日报)

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人