更亮、更高效的新一代 LED:但斯坦福大学的突破是有代价的

更亮、更高效的新一代LED:但斯坦福大学的突破是有代价的当研究人员用紫外线照射时,Congreve实验室中的八块绿色过氧化物发光二极管基板会发光。图片来源:SebastianFernández/斯坦福大学斯坦福大学对经济高效照明的追求斯坦福大学的研究人员希望解决这一缺陷,他们测试了一种提高过氧化物发光二极管(或称PeLED)亮度和效率的方法,PeLED是一种更便宜、更容易制造的替代品。然而,他们的改进却导致这些灯在几分钟内就熄灭了,这表明要想推动这一类材料的发展,必须仔细权衡利弊。"我们在理解它为什么会退化方面迈出了一大步。问题是,我们能否找到一种方法,在保持效率的同时减轻这种退化?"本月初发表在《设备》(Device)杂志上的这篇论文的资深作者、电气工程助理教授丹-康格里夫(DanCongreve)说。"如果我们能做到这一点,我想我们就能真正开始为可行的商业解决方案而努力"。康格里夫实验室中的八个绿色锰掺杂包晶发光二极管在研究人员通过电流时发光。图片来源:SebastianFernández/斯坦福大学透镜LED的与众不同之处最简单地说,LED通过电流穿过半导体(在外加电场作用下发光的晶体材料层)将电能转化为光。但与白炽灯和荧光灯等能效较低的灯相比,制造这些半导体既复杂又昂贵。康格里夫实验室的博士生、本文第一作者塞巴斯蒂安-费尔南德斯(SebastianFernández)说:"这些材料很多都生长在昂贵的表面上,比如四英寸的蓝宝石衬底。光是购买这种衬底就需要几百美元。"PeLED使用一种被称为金属卤化物包晶的半导体,由不同元素混合组成。工程师可以在玻璃基板上生长过氧化物晶体,从而比普通LED节省一大笔费用。他们还可以将透辉石溶解在溶液中,然后将其"涂抹"到玻璃上,形成发光层,这种生产工艺比普通LED更简单。透镜LED的应用和局限性这些优点可以使更多的建筑环境采用节能室内照明,从而减少能源需求。PeLED还能提高智能手机和电视显示屏的色彩纯度。"绿色更绿,蓝色更蓝,"Congreve说。"你可以从设备上看到更多的颜色。"然而,目前大多数PeLED在使用几个小时后就会失效。而且它们的能效往往无法与标准LED相提并论,这是因为被称为"缺陷"的透辉石原子结构中存在随机间隙。"Congreve解释说:"这里应该有一个原子,但却没有。能量进去了,但光却出不来,这就损害了设备的整体效率。"亮度与寿命为了缓解这些问题,费尔南德斯采用了康格里夫和密西西比州立大学化学系助理教授马赫什-甘吉谢蒂(MaheshGangishetty)首次提出的一项技术。过氧化物中许多浪费能量的空隙都出现在铅原子应该出现的地方。通过用锰原子代替30%的透辉石铅(锰原子有助于填补这些空隙),研究小组将PeLED的亮度提高了一倍多,效率几乎提高了两倍,寿命也从不到一分钟延长到了37分钟。这项技术还有可能降低健康风险。费尔南德斯说:"铅对这种材料的光发射极为重要,但与此同时,众所周知铅是有毒的。铅对这种材料中的光发射极为重要,但同时,铅也是众所周知的有毒物质。"人们对有毒的商业技术持怀疑态度,这也促使我考虑其他材料。"进一步发展与挑战但费尔南德斯更进一步,将一种名为TFPPO的氧化膦混入了过氧化物中。他说:"我加入这种添加剂后,看到效率直线上升。这种添加剂使灯具的能效比只添加了锰的灯具高出五倍,并发出了迄今为止所有PeLED灯具中最明亮的光芒。"但这也带来了一个不利因素:在短短的两分半钟内,这些灯的亮度就褪到了峰值的一半(另一方面,没有经过TFPPO处理的过氧化物则是能保持灯的亮度的版本)。...PC版:https://www.cnbeta.com.tw/articles/soft/1379555.htm手机版:https://m.cnbeta.com.tw/view/1379555.htm

相关推荐

封面图片

加州大学洛杉矶分校的技术突破可能带来更耐用、更便宜的太阳能电池

加州大学洛杉矶分校的技术突破可能带来更耐用、更便宜的太阳能电池从理论上讲,基于过氧化物的太阳能电池可以用比硅成本更低、更容易获得的原材料来制造;它们也可以用更少的能源和更简单的制造工艺来生产。但是到目前为止,一个绊脚石是过氧化物在暴露于光和热的情况下会分解--这对旨在从太阳中产生能量的设备来说尤其成问题。加州大学洛杉矶分校的博士后研究员和该研究的第一作者YepinZhao拿着一枚基于过氧化物的太阳能电池。资料来源:YangLab/UCLA现在,一个由加州大学洛杉矶分校领导的国际研究合作已经开发出一种方法,在太阳能电池中使用过氧化物,同时保护它不受导致其恶化的条件影响。在最近发表在《自然材料》上的一项研究中,科学家们将少量的离子-也就是带电的原子直接添加到过氧化物中。他们发现,当暴露在光和热下时,增强后的过氧化物晶体不仅更加耐用,而且还能更有效地将光转化为电。通讯作者、加州大学洛杉矶分校工程系CarolandLawrenceE.Tannas,Jr.教授说:"可再生能源至关重要。过氧化物将是一个游戏规则的改变者,因为它可以以硅的方式进行大规模生产,而且我们已经确定了一种添加剂,将使这种材料变得更好。"卤化物过氧化物能够将光转化为电,是由于其分子形成重复的立方体网格的方式。这种结构是由带相反电荷的离子之间的键固定在一起的。但是,光和热往往会导致带负电的离子从过氧化物中弹出,这破坏了晶体结构,削弱了该材料的能量转换特性。图中显示了未经改变的过氧化物分子(左)的结构,其中碘离子(紫色)正在迁移;以及添加了钕离子(红色)的过氧化物分子,以帮助保留碘离子。资料来源:YangLab/UCLA钕通常被用于麦克风、扬声器、激光器和装饰玻璃。它的离子大小正好可以嵌在立方过氧化物晶体中,而且它们带有三个正电荷,科学家们假设这将有助于将带负电的离子固定在原位。研究人员在每10000个过氧化物分子中加入了大约8个钕离子,然后测试了该材料在太阳能电池中的性能。在最大功率下工作并在连续光照下超过1000小时,使用增强型过氧化物的太阳能电池保持了约93%的光转换效率。相比之下,使用标准过氧化物的太阳能电池在相同的条件下经过300小时后失去了一半的电力转换效率。研究小组还在没有任何设备取电的情况下对太阳能电池进行了连续照射,这加速了过氧化物的降解。一个使用含钕的过氧化物的设备在超过2000小时后保留了84%的电力转换效率,而一个使用标准过氧化物的设备在该时间后直接无法使用。为了测试材料承受高温的能力,研究人员将带有这两种材料的太阳能电池加热到大约180华氏度。使用增强型过氧化物的太阳能电池在超过2000小时后保持了约86%的效率,而标准的过氧化物装置在这段时间内完全失去了将光转化为电能的能力。在以前的许多旨在使过氧化物燃料电池更耐用的研究中,研究人员已经尝试在材料上添加保护层,但这在很大程度上是失败的。增强材料本身的想法来自于主要作者YepinZhao,他是Yang实验室的一名博士后研究人员。Zhao说,他的灵感来自于一种通常用于生产硅半导体的技术--添加少量的其他化合物来改变材料的特性。Zhao说:"离子往往像高速公路上的汽车一样在过氧化物中移动,这导致了材料的分解。有了钕,我们找到了一个路障来减缓交通并保护材料。"Yang说,这一进展可能有助于过氧化物太阳能电池在未来两到三年内进入市场。...PC版:https://www.cnbeta.com.tw/articles/soft/1336383.htm手机版:https://m.cnbeta.com.tw/view/1336383.htm

封面图片

新研发的全过氧化物串联太阳能电池拥有创纪录的高效率和电压表现

新研发的全过氧化物串联太阳能电池拥有创纪录的高效率和电压表现从效率上看,过氧化物燃料电池的运用比例在十年多一点的时间里急剧上升,从2009年的4%以下上升到2021年的25%以上,以至于现在可以与硅基太阳能电池匹敌。在所谓的串联电池中,它的效果甚至更好,在这种电池中,多层材料被堆叠在一起,以收集来自太阳的不同波长的光。例如,Perovskit-硅串联太阳能电池最近超过了30%的效率里程碑。在这项新的研究中,一个来自多伦多大学的工程师团队创造并测试了一个全过氧化物串联太阳能电池。一个太阳能电池怎么可能是全过氧化物而仍然是串联的呢?这是因为该材料的厚度和化学成分可以被调整,使其能够利用太阳光谱的不同部分,因此两种不同的材料可以结合在一个设备中。"在我们的电池结构中,顶部的过氧化物层有一个更宽的带隙,它在光谱的紫外线部分以及一些可见光中吸收良好,"该研究的共同牵头人李崇文说。"底层有一个狭窄的带隙,它更多地被调整到光谱的红外部分。在这两者之间,我们可以实现覆盖比用硅材料吸收更多的光谱。"使用这种设计,该团队报告说,一个尺寸为1平方厘米(0.15英寸)的太阳能电池的最大效率为27.4%,这将是这种类型的电池的新纪录,并且对于任何类型的太阳能电池来说都令人印象深刻。然而,该团队并没有声称自己是冠军,因为美国国家能源局之前的独立认证记录了26.3%的效率,而全过氧化物串联太阳能电池比目前的官方纪录保持者仅差0.1%。该电池确实在其电压表现方面取得了新的纪录。该团队测量的开路电压为2.19伏,是所有全过氧化物串联太阳能电池中最高的。这两个令人印象深刻的数据都是由于在过氧化物吸光层和携带电子的层之间的界面上进行了调整。研究小组发现,电场在整个过氧化物的表面并不一致,这意味着一些电子会流失到电路中。因此,研究小组添加了一层被称为1,3-丙二铵(PDA)的薄涂层,它使表面的电荷分布更均匀。该团队表示,未来的工作将集中在通过使电池更稳定、增加电流和扩大电池的尺寸来提高太阳能电池的效率。该研究发表在《自然》杂志上。了解更多:https://news.engineering.utoronto.ca/international-research-collaboration-produces-all-perovskite-tandem-solar-cell-with-high-efficiency-record-voltage/...PC版:https://www.cnbeta.com.tw/articles/soft/1332957.htm手机版:https://m.cnbeta.com.tw/view/1332957.htm

封面图片

添加银反射镜使过氧化物太阳能电池的效率提高三倍

添加银反射镜使过氧化物太阳能电池的效率提高三倍现在,一项新的研究将过氧化物的效率提高了3.5倍,甚至没有对材料本身进行调整。相反,研究小组发现,在其下方添加一层不同的材料,改变了过氧化物中电子的相互作用,减少了一个能量消耗的过程。过氧化物和其他光伏材料通过让阳光激发材料中的电子来发电,使它们从原子中跳出,准备被引导以产生电流。但有时,电子会落回它们留下的"空洞"中,减少了整体电流,因此也降低了材料的效率。这就是所谓的电子重组。研究人员发现,他们能够通过将过氧化物放置在由单独的银或银和氧化铝的交替层组成的衬底上,大幅减少电子重组。该团队说,这样做会产生一种镜子,产生电子-空穴对的反转图像,从而减少电子与空穴重组的可能性。在测试中,工程师们表明,加入这些层后,光转换的效率提高了3.5倍。该研究的主要作者郭春雷说:"一块金属可以做的工作和湿式实验室里的复杂化学工程一样多。随着新的过氧化物的出现,我们就可以用我们基于物理学的方法来进一步提高它们的性能。"这项研究发表在《自然-光子学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1345339.htm手机版:https://m.cnbeta.com.tw/view/1345339.htm

封面图片

32.5%!过氧化物/硅串联太阳能电池技术进步打破了转化效率纪录

32.5%!过氧化物/硅串联太阳能电池技术进步打破了转化效率纪录但最好的结果似乎是当这两种材料搁置其竞争关系并合作时。过氧化物/硅串联太阳能电池比任何一种材料单独使用都更有效,因为它们能够收集太阳光谱的不同部分--过氧化物能更好地吸收蓝光,而硅则更注重红色和红外波长。新的HZB装置是由一个由几层薄的过氧化物组成的顶部电池和一个用硅做的底部电池组成的。有了一系列的层,不同颜色的光就可以过滤到较低的层次,并将电损耗降到最低。该团队还在活性区域和电极之间设计了一个新界面,这有助于提高电池的整体效率。新型过氧化物/硅串联太阳能电池的分解图最终的结果是一个拥有32.5%转化效率的过氧化物/硅串联太阳能电池。根据美国国家可再生能源实验室(NREL)保存并定期更新的图表,这个已经被独立验证的新记录是目前所有新兴光伏技术中最高的。与几个月前的记录保持者31.25%相比,这是一个相当大的进步,而一年前它甚至不到30%。该团队声称这一最新进展将该技术推向了一个重要的新领域。HZB科学主任BerndRech教授说:"在32.5%转化率下,HZB串联的太阳能电池效率现在已经达到了以前只有昂贵的III/V半导体才能达到的范围。NREL的图表清楚地显示了EPFL和HZB的最后两个增长是多么的壮观"。...PC版:https://www.cnbeta.com.tw/articles/soft/1335723.htm手机版:https://m.cnbeta.com.tw/view/1335723.htm

封面图片

新涂层解决了过氧化物酶太阳能电池的最后一个弱点

新涂层解决了过氧化物酶太阳能电池的最后一个弱点硅太阳能电池可能有几十年的领先优势,但在仅仅大约15年之后,过氧化钙正在迅速缩小差距。它不仅效率接近硅,而且更便宜、更轻、更灵活。但是,当然也有一个问题--过氧化物在暴露于元素中时往往会分解,这对于设计在太阳下整天、每天、几十年的设备来说并不理想。科学家们已经通过添加笨重的分子、二维添加剂、头发制成的碳纳米点或量子点以及其他东西来实验加强它们。现在,一个团队已经使用一种新的粘合剂来保护过氧化物。它被称为BondLynx,它最初是由加拿大材料公司XlynX生产的,用于其他用途,然后在太阳能电池上进行测试。过氧化物的问题始于材料中的有机成分被热和光激活,并可能逃逸,从而削弱过氧化物并破坏太阳能电池中的其他材料。BondLynx是一种交联剂,可与这些有机成分形成化学共价键,防止它们松动并降低效率。研究小组用BondLynx处理过氧化物太阳能电池,然后将它们暴露在长期的热和光下,以观察它们与没有经过处理的太阳能电池相比的表现差异。这些太阳能电池开始时的效率为24%,在连续暴露于模拟阳光下1000小时后,几乎保持了99%的效率。相比之下,在相同的条件下,未经处理的太阳能电池在相同的时间范围内损失了其原始效率的35%。这些太阳能电池还被暴露在60°C(140°F)的恒定热量下600小时。经过BondLynx处理的电池在这段时间内成功保持了近98%的效率,而对照组则损失了27%。虽然测试只进行了几个月,但经过处理的细胞几乎没有失去任何转化效率,这表明它们应该能够忍受更长时间。加上最近的另一种涂层,估计可以使过氧化物太阳能电池有30年的寿命,这个勇敢的新竞争者可能已经弥补了它的致命弱点,并很快挑战硅的太阳能霸主地位。该研究发表在《焦耳》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1362481.htm手机版:https://m.cnbeta.com.tw/view/1362481.htm

封面图片

远古海洋和行星碰撞的遗迹 科学家揭开地球神秘"D"层的新面纱

远古海洋和行星碰撞的遗迹科学家揭开地球神秘"D"层的新面纱与完美的球体不同,D"层出人意料地错落有致。它的厚度因地而异,有些地区甚至完全没有"D"层--就像大陆高出地球海洋一样。这些有趣的变化吸引了地球物理学家的注意,他们将D"层描述为一个异质或非均匀区域。由胡青阳博士(高压科学与技术高等研究中心)和邓杰博士(普林斯顿大学)领导的一项新研究表明,"D"层可能起源于地球的早期。他们的理论基于"巨型撞击假说"(GiantImpacthypothesis),该假说认为一个火星大小的天体撞击了原地球,在撞击后形成了一个覆盖整个地球的岩浆海洋。他们认为,"D"层可能是这一巨大撞击留下的独特成分,可能蕴藏着地球形成的线索。邓杰博士强调,在这个全球岩浆海洋中存在大量的水。这些水的确切来源仍是一个争论不休的话题,人们提出了各种理论,包括通过星云气体和岩浆之间的反应形成,或由彗星直接输送。普遍的观点认为,水会随着岩浆的冷却而向岩浆海洋的底部集中。到最后阶段,最靠近地核的岩浆所含的水量可能与地球现今的海洋相当。海底岩浆海洋中的极端压力和温度条件创造了一种独特的化学环境,促进了水和矿物之间发生意想不到的反应。胡青阳博士解释说:"我们的研究表明,这种含水岩浆海洋有利于形成一种富铁相,即过氧化铁镁。这种过氧化物的化学式为(Fe,Mg)O2,与下地幔中的其他主要成分相比,它对铁的偏好更为强烈。根据我们的计算,这种过氧化物对铁的亲和力可能会导致在几公里到几十公里厚的地层中积累以铁为主的过氧化物。"地核-地幔边界异质结构的形成这种富铁过氧化物相的存在将改变D"层的矿物组成,偏离我们目前的理解。根据新的模型,D"层的矿物将以一种新的组合为主:贫铁硅酸盐、富铁(铁、镁)过氧化物和贫铁(铁、镁)氧化物。这种以铁为主的过氧化物还具有低地震速度和高导电性,使其成为解释D"层独特地球物理特征的潜在候选物质。这些特征包括超低速度区和高电导率层,两者都是D"层众所周知的成分异质性的原因。研究结果表明,由岩浆海洋中的古水形成的富铁过氧化物在形成"D"层的异质结构方面发挥了至关重要的作用。这种过氧化物对铁的强烈亲和力在这些富铁斑块和周围地幔之间形成了鲜明的密度对比。从根本上说,它就像一个绝缘体,阻止它们混合,并有可能解释在下地幔底部观察到的长期异质性。这个模型与最近的数值建模结果非常吻合,表明最下层地幔的异质性可能是一个长期存在的特征。编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432963.htm手机版:https://m.cnbeta.com.tw/view/1432963.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人