人工智能系统在识别气味方面比人类更胜一筹

人工智能系统在识别气味方面比人类更胜一筹当然,已经有电子鼻可以嗅出血细胞中的癌细胞,并对废水处理厂周围的空气进行评估,但真正由计算机驱动的嗅觉却一直难以实现。这也许是因为我们的鼻子有400个嗅觉受体,比视觉的4个受体和味觉的约40个受体多出许多。宾夕法尼亚大学莫奈尔化学感官中心的研究人员与Osmo公司(GoogleDeepMind的衍生公司)的同事们一起,领导了一项研究,创建了一个基于神经网络的系统,该系统可以分析气味分子,并用人类语言描述该分子应该是什么味道。该人工智能系统开发出了研究人员所称的"主要气味图"(POM)。"在嗅觉研究中[......],是什么物理特性让空气中的分子在大脑中产生这样的气味一直是个谜。"但是,如果计算机能够辨别出分子的形状与我们最终如何感知其气味之间的关系,科学家们就可以利用这些知识来加深对我们的大脑和鼻子如何协同工作的理解。这些知识可以帮助研究人员开发出更好的驱蚊剂或除臭产品,以及其他可能的应用。为了训练该系统,研究小组向它输入了5000种气味物质的分子结构,以及一系列描述气味的描述,如"薄荷味"或"霉味"。研究小组还请来了15位专家组成员,让他们嗅出400种气味,并给他们55个词来描述每种气味。在测试中,人工智能系统的表现略好于小组成员。但还有一个更令人印象深刻的结果。"然而,最令人惊讶的结果是,该模型成功地完成了它没有接受过训练的嗅觉任务,"Mainland说。"让人大开眼界的是,我们从未训练它学习气味强度,但它仍能做出准确的预测"。接下来,研究人员利用该系统绘制了50万种从未被实际合成过的气味分子--研究小组表示,这项任务需要人类嗅闻70年才能完成。研究人员写道:"神经科学的进步通常以神经回路支持的新世界地图的创建和发现来衡量。之所以能够做到这一点,是因为科学家们首先拥有了外部世界的地图,然后测量了大脑中的反应是如何随着刺激物在地图上的位置而变化的。这项研究提出并验证了以数据为驱动的人类嗅觉地图。我们希望这张地图能对化学、嗅觉神经科学和心理物理学研究人员有所帮助[......]成为研究嗅觉本质的新工具。"这项研究发表在《科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1380867.htm手机版:https://m.cnbeta.com.tw/view/1380867.htm

相关推荐

封面图片

揭开新气味的面纱 科学家在气味世界中带来改变游戏规则的突破

揭开新气味的面纱科学家在气味世界中带来改变游戏规则的突破该研究结果发表在《自然》杂志上,预计将重新点燃人们对嗅觉科学的兴趣,并对香水、食品科学等产生深远的影响。嗅觉受体是位于嗅觉细胞表面的蛋白质,与气味分子结合,构成了我们身体中最多样化和最广泛的受体家族的一半。对它们更全面的理解为各种生物过程中的新发现奠定了基础。该研究的资深作者、药物化学副教授AashishManglik博士说:"一段时间以来,这一直是该领域的一个巨大目标。他说,梦想是绘制数千种气味分子与数百种气味受体的相互作用图,以便化学家能够设计一种分子并预测它的气味。"Manglik说:"但是我们一直无法制作这种地图,因为如果没有图片,我们不知道气味分子与它们相应的气味受体如何反应。"一张图片描绘了奶酪的香味,嗅觉涉及大约400个独特的受体。我们能检测到的数十万种气味中的每一种都是由不同的气味分子混合而成。每种类型的分子都可能被一系列的受体检测到,在每次鼻子闻到新东西的时候,都会给大脑带来一个难题。杜克大学分子遗传学和微生物学教授、Manglik的亲密合作者HiroakiMatsunami博士说:"这就像在钢琴上敲击琴键以产生一个和弦。松南在过去20年里的工作重点是对嗅觉进行解码。了解气味受体是如何结合气味剂就可以从根本上解释了它是如何工作的。"为了创建这幅图,Manglik的实验室使用了一种叫做低温电子显微镜(cryo-EM)的成像技术,它允许研究人员看到原子结构并研究蛋白质的分子形状。但是在Manglik的团队能够看到气味受体与气味分子的结合之前,他们首先需要提纯足够数量的受体蛋白。气味受体是出了名的具有挑战性,有些人说不可能,在实验室里为这种目的制造。Manglik和Matsunami团队寻找一种在人体和鼻子中都很丰富的气味受体,认为它可能更容易人工制造,而且还能检测水溶性气味。他们最终选择了一种叫做OR51E2的受体,这种受体对丙酸盐有反应--这种分子会带来类似瑞士奶酪的刺激性气味。但事实证明,即使是OR51E2也很难在实验室里制造。典型的低温电镜实验需要一毫克的蛋白质来产生原子级的图像,但是共同第一作者ChristianBillesbøelle博士,Manglik实验室的高级科学家,开发了只使用1/100毫克OR51E2的方法,使受体和气味剂的快照触手可及。Billesbøelle说:"我们通过克服长期以来扼杀该领域的几个技术难题实现了这一目标。这样做使我们能够在检测到气味的那一刻,首次看到气味剂与人类气味受体的连接。"这个分子快照显示,由于气味剂和受体之间非常特殊的配合,丙酸盐紧紧地粘在OR51E2上。这一发现与嗅觉系统作为危险哨兵的职责之一相吻合。虽然丙酸盐对瑞士奶酪丰富的坚果香味做出了贡献,但就其本身而言,它的气味却不那么令人胃口。Manglik说:"这种受体以激光为焦点,试图感知丙酸盐,并可能已经进化到帮助检测食物何时变坏。他推测,像薄荷或香菜这样令人愉悦的气味的受体可能反而与气味剂的互动更加松散。"除了一次使用大量的受体外,嗅觉的另一个有趣的特点是我们能够检测到微小的气味,这些气味可以来去自如。为了研究丙酸盐如何激活这一受体,该合作项目邀请了希望之城的定量生物学家NagarajanVaidehi博士,他使用基于物理学的方法来模拟和拍摄OR51E2如何被丙酸盐打开。Vaidehi说:"我们进行了计算机模拟,以了解丙酸盐如何在原子水平上导致受体的形状变化。这些形状变化在气味受体如何启动导致我们嗅觉的细胞信号传导过程中起着关键作用。该团队现在正在开发更有效的技术来研究其他气味受体对,并了解与受体相关的非嗅觉生物学,这些受体与前列腺癌和肠道中的血清素释放有关联。"Manglik设想了一个未来,在那里可以根据对化学品的形状如何导致感知体验的理解来设计新的气味,这与今天的药物化学家根据致病蛋白质的原子形状来设计药物并无不同。他说:"我们多年来一直梦想着解决这个问题。现在有了第一个立足点,第一次看到了嗅觉分子是如何与我们的气味受体结合的。对我们来说,这只是一个开始。"...PC版:https://www.cnbeta.com.tw/articles/soft/1357361.htm手机版:https://m.cnbeta.com.tw/view/1357361.htm

封面图片

蚊子是如何找到人类的?科学家揭开背后的秘密

蚊子是如何找到人类的?科学家揭开背后的秘密无论是蚊香液、蚊香、驱蚊水,在夏天人类必然要面对的是蚊子的侵扰。那么这些蚊子是如何找到我们的呢?现在研究人员发现了背后的秘密。人类散发出一种由体味、热量和二氧化碳组成的独特气味,这种气味虽然因人而异,但是蚊子利用它追踪人类。虽然大多数动物都有一组特定的神经元来检测每种类型的气味,但蚊子可以通过几种不同的途径来接收气味。该研究发表在科学杂志《细胞》上。该研究的主要作者之一,来自波士顿大学生物学助理教授MegYounger说:“结果表明和目前已知的其他动物相比,蚊子对它们所遇到的气味进行编码的方式是不同的”。研究小组随后检查了蚊子触角中的气味受体,这些受体与漂浮在环境中的化学物质结合,并通过神经元向大脑发出信号。Younger表示:“我们假设蚊子会遵循嗅觉的中心教条,即每个神经元只表达一种类型的受体。但结果和预期相反,同一个神经元中不同受体可以对不同的气味做出反应”。这意味着失去一个或多个受体并不影响蚊子对人类气味的接收能力。研究人员说,这种备份系统可能已经进化为一种生存机制。Younger说:“埃及伊蚊专门叮咬人类,据说它们之所以进化成这样,是因为人类总是靠近淡水,因此蚊子在淡水中产卵。”研究人员说,最终,了解蚊子的大脑如何处理人类的气味可以用来干预叮咬行为,减少蚊子传播的疾病的传播,如疟疾、登革热和黄热病。Younger表示:“控制蚊子的一个主要策略是把它们吸引到诱捕器中,把它们从咬人的人群中清除出去。如果我们能够利用这些知识来了解人类的气味在蚊子的触角和大脑中是如何体现的,我们就可以开发出比人类更吸引蚊子的混合剂。我们还可以开发针对那些检测人类气味的受体和神经元的驱虫剂”...PC版:https://www.cnbeta.com/articles/soft/1306477.htm手机版:https://m.cnbeta.com/view/1306477.htm

封面图片

研究表明:中国在人工智能人才培养方面处于领先地位

研究表明:中国在人工智能人才培养方面处于领先地位在为ChatGPT等聊天机器人提供支持的人工智能方面,中国落后于美国。但在培养新一代人形技术背后的科学家方面,中国处于领先地位。新的研究表明,从某些指标来看,中国已经超过美国,成为人工智能人才的最大生产国,全球顶尖人工智能研究人员的近一半来自中国。相比之下,根据保尔森基金会运营的智库MacroPolo的研究,大约18%的人来自美国本科院校,该机构致力于促进中美之间的建设性关系。调查结果显示,中国的人才数量跃升,三年前,中国培养了约三分之一的世界顶尖人才。相比之下,美国的情况基本保持不变。该研究基于在2022年神经信息处理系统会议上发表论文的研究人员的背景。众所周知,NeurIPS专注于神经网络的进步,神经网络奠定了生成人工智能的最新发展。——

封面图片

小触角,大发现:果蝇如何以少感知多?

小触角,大发现:果蝇如何以少感知多?这项研究的第一作者、物理学博士生帕尔卡-普里(PalkaPuri)说:"我们的工作揭示了昆虫用来对复杂嗅觉刺激做出反应的感觉处理算法。研究表明,昆虫感觉神经元的专门组织是解开谜题的关键--实现了一个重要的处理步骤,促进了中枢大脑的计算。"Puri和他的合著者,博士后学者Shiuan-TzeWu、副教授Chih-YingSu和助理教授JohnatanAljadeff在《美国国家科学院院刊》上发表了这些发现。这项新研究挑战了以前关于中枢大脑是果蝇气味处理的主要场所的假设。相反,它表明昆虫感官能力的有效性依赖于其感官系统外围的"预处理"阶段,该阶段为稍后在中枢脑区进行的计算准备气味信号。加州大学圣迭戈分校的科学家们提出了一种解决方案,解决了果蝇如何利用简单而高效的系统识别气味的问题。图片来源:加州大学圣地亚哥分校阿尔杰德夫实验室果蝇通过触角来感知气味,触角上长满了能探测周围环境元素的感觉毛。每根感觉毛通常有两个嗅觉受体神经元(或称ORN),它们会被环境中不同的气味分子激活。耐人寻味的是,同一根感觉毛上的嗅觉受体神经元通过电相互作用紧密耦合在一起。这种情况就好比两根载流导线紧靠在一起。电线携带的信号通过电磁相互作用相互干扰。然而,就果蝇的嗅觉系统而言,这种干扰是有益的。研究人员发现,当果蝇遇到气味信号时,感受器之间的特定干扰模式能帮助果蝇迅速计算出气味的"要点":"它对我是好是坏?"外围的这一初步评估结果随后被传递到果蝇大脑中枢的一个特定区域,在那里,有关外界气味的信息被转化为行为反应。研究人员发现,当果蝇遇到气味信号时,嗅觉感受器之间的特定干扰模式能帮助果蝇快速计算出气味的"要点"。资料来源:PalkaPuri,加州大学圣地亚哥分校研究人员构建了一个数学模型,说明气味信号是如何通过ORN之间的电耦合进行处理的。然后,他们分析了蝇类大脑的线路图("connectome"),这是霍华德-休斯医学研究所研究园区的科学家和工程师生成的一个大规模数据集。这样,研究人员就能追踪来自感官外围的气味信号是如何整合到大脑中枢的。生物科学学院教师阿尔杰德夫说:"值得注意的是,我们的工作表明,最佳气味混合--每根感觉毛发最敏感的精确比例--是由耦合嗅觉神经元之间的基因预定大小差异决定的。我们的工作凸显了感觉外围在中枢大脑处理先天意义气味和学习气味方面意义深远的算法作用。"阿尔杰德夫用一个形象的比喻描述了这一系统。果蝇就像一台可以检测特定类型图像的专用相机,它已经开发出一种基因驱动的方法来区分图像,或者在这种情况下,区分气味混合物。他说:"我们发现,果蝇的大脑具有从这种非常特殊的相机中读取图像的线路,然后启动行为。"为了得出这些结果,研究人员将苏的实验室以前的研究成果进行了整合,这些研究成果描述了果蝇嗅觉系统中ORNs在感觉毛中的保守组织。在每只果蝇身上,相同气味分子所携带的信号总是相互干扰,这一事实向研究人员表明,这种组织是有意义的。苏说:"这项分析表明,大脑高级中枢的神经元如何利用外围的平衡计算。真正将这项工作提升到另一个高度的是,这种外围预处理能够在多大程度上影响高级大脑功能和电路操作。"这项工作可能会启发人们研究外围器官处理过程在其他感官(如视觉或听觉)中的作用,并有助于为设计具有解释复杂数据能力的小型检测设备奠定基础。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1435231.htm手机版:https://m.cnbeta.com.tw/view/1435231.htm

封面图片

以闪电般的速度绘制冰山地图 人工智能比人类快一万倍

以闪电般的速度绘制冰山地图人工智能比人类快一万倍AnneBraakmann-Folgmann是11月9日发表在《冰冻圈》(TheCryosphere)杂志上的这一研究成果的主要作者,她在英国利兹大学攻读博士学位期间开展了这项研究。现在她在特罗姆瑟的挪威北极大学工作,她强调了大型冰山在南极环境中的重要性。这张图片由哥白尼哨兵-1号雷达卫星任务拍摄,显示了南极洲西海岸阿蒙森海的冰山。巨型冰山是南极环境的重要组成部分。它们影响海洋物理、化学、生物,当然也影响海上作业。因此,监测冰山范围并量化冰山向海洋释放的融水数量至关重要。利兹大学的研究人员推出了一种神经网络,它能迅速准确地绘制出哥白尼哨兵-1卫星雷达图像中南极大型冰山的范围,完成这项任务仅需0.01秒。这种新颖的方法与之前费时费力的人工操作形成了鲜明对比。图片来源:包含经修改的哥白尼哨兵数据(2015年),由欧空局处理冰山监测的意义"巨型冰山是南极环境的重要组成部分。它们影响海洋物理、化学、生物,当然也影响海上作业。因此,必须确定冰山的位置并监测其范围,以量化冰山向海洋释放的融水量"。哥白尼哨兵-1号雷达任务提供冰山图像,不受云层遮挡和日光不足的影响,在利用人工智能绘制冰山地图的创新方法中发挥着关键作用。在携带类似照相机的仪器的卫星所拍摄的图像中,冰山、海冰和云层都呈现白色,因此很难分辨出真正的冰山。而在大多数雷达图像中,如哨兵一号传回的图像,冰山在较暗的海洋和海冰背景中显示为明亮的物体。哥白尼哨兵-1号携带有先进的合成孔径雷达,以多种专业模式工作,为欧洲的哥白尼计划提供详细的图像。这些数据可用于监测海洋,包括航道、海冰、冰山和漏油等。图片来源:欧空局/ATGmedialab尽管如此,当周围环境复杂时,有时仍很难将冰山与海冰甚至海岸线区分开来。Braakmann-Folgmann博士解释说:"我们有时很难将冰山与周围的海冰区分开来,因为海冰更粗糙、更古老,因此在卫星图像中看起来更明亮。这同样适用于被风吹皱的海洋。另外,较小的冰山碎片经常出现在冰山附近,因为它们的边缘会不断掉落碎冰,很容易被错误地与主冰山归为一类。卫星图像中的南极海岸线可能与冰山相似,因此标准的分割算法往往也会选择海岸线,而不仅仅是实际的冰山。"神经网络能力然而,即使在这些具有挑战性的条件下,新的神经网络方法也能出色地绘制冰山范围图。其强大之处在于神经网络能够理解错综复杂的非线性关系,并将整个图像背景考虑在内。要想有效跟踪冰山面积和厚度的变化(这对了解冰山如何溶解并向海洋释放淡水和养分至关重要),精确定位特定的巨型冰山以进行持续监测至关重要。巨型冰山是南极环境的重要组成部分。它们影响海洋物理、化学、生物,当然也影响海上作业。因此,监测冰山范围并量化冰山向海洋释放的融水数量至关重要。利兹大学的研究人员推出了一种神经网络,它能迅速准确地绘制出哥白尼哨兵-1卫星雷达图像中南极大型冰山的范围,完成这项任务仅需0.01秒。这种新颖的方法与之前费时费力的人工操作形成了鲜明对比。资料来源:利兹大学这项研究中引入的神经网络能够非常熟练地识别出每张图像中最大的冰山,而不像其他方法,后者经常会选择附近稍小的冰山。神经网络的架构基于著名的U-net设计。该系统使用哨兵-1拍摄的各种环境下的巨型冰山图像进行了细致的训练,并以人工绘制的轮廓作为目标。在整个训练过程中,系统不断改进其预测结果,并根据人工得出的轮廓与预测结果之间的差异调整其参数。当系统达到最佳性能时,就会自动停止训练,以确保其适应性和在新示例上的成功。研究成果和影响该算法已在七座冰山上进行了测试,面积从54平方公里到1052平方公里(21平方英里到406平方英里)不等,分别大致相当于瑞士伯尔尼市和香港的面积。我们编制了一个多样化的数据集,每个冰山包含15至46幅图像,时间跨度为2014-2020年的不同季节。为确保数据集的多样性,每个冰山每月使用一张哨兵-1图像。结果令人印象深刻,准确率达到99%。Braakmann-Folgmann博士补充说:"能够以更快的速度和更高的精度自动绘制冰山范围图,将使我们能够更轻松地观测几座巨型冰山的冰山面积变化,并为实际应用铺平道路。"欧空局的马克-德林克沃特(MarkDrinkwater)指出:"当然,卫星对于监测变化和了解远离人类文明的过程至关重要。这一新的神经网络使定位和报告冰山范围这一人工和劳动密集型任务实现了自动化。我们祝贺该团队引入了这种创新的机器学习方法,以实现一种强大而准确的方法来监测脆弱的南极地区的变化"。...PC版:https://www.cnbeta.com.tw/articles/soft/1396019.htm手机版:https://m.cnbeta.com.tw/view/1396019.htm

封面图片

研究人员在感知气味的神经元内发现了一种以前未知的细胞成分

研究人员在感知气味的神经元内发现了一种以前未知的细胞成分在电子显微镜放大镜下,带有转导蛋白的囊泡的释放分子生物学系教授斯塔凡-博姆(StaffanBohm)说:"找到治疗嗅觉受损的方法的前提是首先了解嗅觉如何工作。"研究人员所发现的是神经细胞内的一个所谓的细胞器,这在以前是没有被观察到的。新发现的细胞器被研究人员命名为"多泡转导体",这一发现要归功于于默奥大学独特的显微镜基础设施。DevendraKumarMaurya研究人员DevendraKumarMaurya使用了一种被称为相关显微镜的新技术,该技术结合了电子显微镜和共焦显微镜,这样就可以对细胞的内部结构和不同蛋白质的位置进行成像。细胞器是细胞内独特的"工作站",可与人体的不同器官相比较,即不同的细胞器在细胞内有不同的功能。大多数细胞器在不同的细胞类型中是通用的,但也有一些细胞器具有特定的功能,只出现在某些细胞类型中。嗅觉神经细胞有长长的突起,即纤毛,突入鼻腔,含有结合气味物质的蛋白质,从而启动神经脉冲到大脑。将气味转化为神经脉冲的过程被称为转导,新发现的细胞器只包含转导蛋白。斯塔凡-博姆,于默奥大学分子生物学系教授转导体的作用是既储存又保持转导蛋白相互分离,直到它们被需要。当嗅觉受到刺激时,该细胞器的外膜破裂,释放出转导蛋白,以便它们能够到达神经元的纤毛,从而感知到气味。研究人员还发现,转导体携带一种叫做视网膜色素变性2号的蛋白质,即RP2,它在其他方面被称为调节眼睛感光细胞的转导。如果RP2基因发生突变,就会导致眼睛疾病视网膜色素变性的一个变种,损害眼睛的光敏细胞。"需要进一步研究的一个问题是,转导体是否在视觉中发挥作用,以及它是否存在于由神经递质而非光和气味激活的大脑神经元中。如果是这样,这一发现可能会被证明更加重要,"斯塔凡-博姆说。当研究人员DevendraKumarMaurya使用一种叫做相关显微镜的新技术时,发现了转导体。该技术结合了电子显微镜和共焦显微镜,因此可以同时对细胞的内部结构和不同蛋白质的位置进行成像。对这一发现至关重要的是Devendra的方法开发,它使该技术能够被用于分析组织切片中的完整神经元。...PC版:https://www.cnbeta.com.tw/articles/soft/1343173.htm手机版:https://m.cnbeta.com.tw/view/1343173.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人