揭开黑洞的磁性之谜:黑洞周围的"MAD"吸积是如何形成的?

揭开黑洞的磁性之谜:黑洞周围的"MAD"吸积是如何形成的?黑洞X射线双星MAXIJ1820+070的示意图,黑洞周围形成了一个磁捕获盘。他们发现的关键是观测到来自黑洞喷流的射电辐射和来自吸积流外部区域的光学辐射分别滞后于来自吸积流内部区域热气体(即热吸积流)的硬X射线约8天和17天。这些发现发表在8月31日的《科学》杂志上。这项研究由武汉大学的尤蓓副教授、浙江大学的曹新武教授和中国科学院上海天文台的严震研究员领导。黑洞X射线双星MAXIJ1820+070的多波长光曲线(显示亮度随时间的变化)黑洞捕获气体的过程被称为"吸积",落入黑洞的气体被称为吸积流。吸积流内部的粘性过程会有效释放引力势能,其中一部分能量会转化为多波长辐射。这种辐射可以被地面和太空望远镜观测到,让我们"看到"黑洞。然而,黑洞周围还有"看不见"的磁场。当黑洞吸积气体时,也会将磁场向内拖拽。以前的理论认为,随着吸积气体不断带来微弱的外部磁场,磁场会逐渐向吸积流的内部区域增强。吸积流向外的磁力增加,抵消了黑洞向内的引力。因此,在黑洞附近的吸积流内部区域,当磁场达到一定强度时,吸积物质就会被磁场困住,无法自由落入黑洞。这种现象被称为磁捕获盘。MAD理论多年前就已提出,并成功解释了一些与黑洞吸积有关的观测现象。然而,当时并没有直接的观测证据证明MAD的存在,MAD的形成和磁传输机制仍然是个谜。吸积流、磁场和喷流演化示意图除了几乎所有星系中心的超大质量黑洞之外,宇宙中还有更多恒星质量的黑洞。天文学家在银河系的许多双星系统中都探测到了恒星质量的黑洞。这些黑洞的质量通常是太阳的十倍左右。大多数时候,这些黑洞处于静止状态,发射极弱的电磁辐射。不过,它们偶尔也会进入爆发期,爆发期可以持续几个月甚至几年,产生明亮的X射线。因此,这类双星系统通常被称为黑洞X射线双星。在这项研究中,研究人员对黑洞X射线双星MAXIJ1820+070的爆发进行了多波长数据分析。他们观察到,硬X射线发射出现了一个峰值,8天后射电发射也出现了一个峰值。喷流的射电辐射与热吸积流的硬X射线之间如此长的延迟是前所未有的。这些观测结果表明,吸积盘外部区域的弱磁场被热气体带入内部区域,随着吸积率的降低,热吸积流的径向范围迅速扩大。热吸积流的径向范围越大,磁场的增幅就越大。这导致黑洞附近的磁场迅速增强,从而在硬X射线发射峰值出现大约8天后形成MAD。"我们的研究首次揭示了吸积流中的磁场传输过程和黑洞附近的MAD形成过程。这是磁捕获盘存在的直接观测证据,"该研究的第一作者和共同通讯作者YouBei副教授说。此外,研究小组还观测到来自吸积流外部区域的光学发射与来自热吸积流的硬X射线之间出现了前所未有的延迟(约17天)。通过对黑洞X射线双星爆发的数值模拟,研究人员发现当爆发接近尾声时,硬X射线的辐照会导致更多来自远外层区域的吸积物质由于不稳定性而向黑洞坠落。这导致吸积流外围区域出现光学耀斑,其峰值出现在来自热吸积流的硬X射线峰值之后约17天。该研究的共同通讯作者曹新武教授说:"由于黑洞吸积物理学的普遍性,不同质量尺度黑洞的吸积过程遵循相同的物理规律,因此这项研究将推进对不同质量尺度吸积黑洞的大尺度磁场形成、喷流动力和加速机制等相关科学问题的理解。"该研究的共同通讯作者阎真教授指出,在不久的将来,有望在更多的吸积黑洞系统中观测到与MAXIJ1820+070类似的现象。...PC版:https://www.cnbeta.com.tw/articles/soft/1381353.htm手机版:https://m.cnbeta.com.tw/view/1381353.htm

相关推荐

封面图片

揭开神秘的面纱:超大质量黑洞是如何变得如此巨大的?

揭开神秘的面纱:超大质量黑洞是如何变得如此巨大的?研究人员结合X射线勘测和超级计算机模拟,追踪了120亿年的宇宙黑洞成长过程。他们的研究结果表明,黑洞的增长主要是由吸积驱动的,而兼并则起次要作用,尤其是在宇宙早期。这些发现有助于解释黑洞在宇宙年轻阶段的快速增长。超大质量黑洞是如何获得超大质量的?通过将最前沿的X射线观测与最先进的超级计算机模拟相结合,研究人员对星系中心发现的超大质量黑洞的成长过程进行了迄今为止最好的建模。利用这种混合方法,宾夕法尼亚州立大学天文学家领导的研究小组得出了黑洞在120亿年中生长的完整图景,从宇宙诞生之初的大约18亿年到现在的138亿年。这项研究包括两篇论文,一篇发表在2024年4月的《天体物理学杂志》上,另一篇尚未发表,将提交给同一杂志。研究成果将在6月9日至6月13日在威斯康星州麦迪逊市莫诺纳露台会议中心举行的美国天文学会第244届会议上公布。该成果在新闻发布会上进行了专题介绍,新闻发布会进行了现场直播,现在就可以观看:论文第一作者、宾夕法尼亚州立大学研究生邹凡(音译)说:"星系中心的超大质量黑洞的质量是太阳质量的数百万到数十亿倍。它们是如何变成这样的怪物的?这是天文学家几十年来一直在研究的问题,但一直难以可靠地追踪黑洞生长的所有方式。"超大质量黑洞主要通过两种途径生长。它们消耗宿主星系中的冷气体--这个过程被称为吸积--当星系碰撞时,它们会与其他超大质量黑洞合并。"在吞噬宿主星系气体的过程中,黑洞会放射出强烈的X射线,这是追踪黑洞吸积增长的关键,"研究小组负责人、宾夕法尼亚州立大学天文学和天体物理学埃伯利家族讲座教授兼物理学教授W.NielBrandt说。"我们利用有史以来发射到太空的三个最强大的X射线设施20多年来积累的X射线巡天数据测量了吸积驱动的增长。"研究小组使用了来自美国宇航局钱德拉X射线天文台、欧洲航天局的X射线多镜任务-牛顿(XMM-Newton)和马克斯-普朗克地外物理研究所的eROSITA望远镜的补充数据。总共测量了包含8000多个快速增长黑洞的130万个星系样本中的吸积驱动增长。研究人员将迄今为止发射到太空的最强大X射线设施的X射线观测结果与超级计算机模拟的星系在宇宙历史中的堆积过程相结合,为星系中心发现的超大质量黑洞的生长提供了迄今为止最好的模型。左侧是结合X射线(蓝色)和光学(红、绿、蓝)观测结果的图像,右侧是利用IllustrisTNG进行宇宙学模拟后得到的模拟气体柱密度。观测到的X射线辐射主要来自吸积超大质量黑洞,如插图所示。图中短边的长度与天空中满月的表面大小相同。资料来源:F.Zou(PennState)etal:观测:XMM-SERVS协作组;模拟:TNG协作组;插图:XMM-SERVS协作组:插图:NahksTrEhnl(宾夕法尼亚州立大学)Zou说:"我们样本中的所有星系和黑洞在多个波长上都有非常好的特征,在红外、光学、紫外和X射线波段都有极好的测量。数据显示,在所有宇宙纪元,质量更大的星系通过吸积黑洞的速度更快。凭借高质量的数据,我们能够比过去的研究更好地量化这一重要现象。"超大质量黑洞增长的第二种方式是通过合并,即两个超大质量黑洞碰撞并合并在一起,形成一个质量更大的黑洞。为了追踪合并后的增长,研究小组使用了IllustrisTNG,这是一套超级计算机模拟,模拟了从宇宙大爆炸后不久到现在的星系形成、演化和合并过程。Brandt说:"在我们的混合方法中,我们将观测到的吸积增长与模拟的合并增长结合起来,重现了超大质量黑洞的增长历史。我们相信,通过这种新方法,我们已经绘制出了迄今为止最真实的超大质量黑洞成长图景。"研究人员发现,在大多数情况下,吸积主导了黑洞的增长。合并起了显著的辅助作用,尤其是在过去50亿年的宇宙时间里,对于最大规模的黑洞而言。总的来说,在宇宙年轻的时候,所有质量的超大质量黑洞的增长速度都要快得多。正因为如此,到70亿年前,超大质量黑洞的总数几乎已经定型,而在宇宙早期,许多新的黑洞还在不断涌现。"通过我们的方法,我们可以追踪局域宇宙中的中心黑洞最有可能是如何随着宇宙时间的推移而增长的,"Zou说。"举例来说,我们考虑了银河系中心超大质量黑洞的成长过程,它的质量为400万太阳质量。我们的研究结果表明,我们银河系的黑洞很可能是在宇宙时间相对较晚的时候才成长起来的。"编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1435743.htm手机版:https://m.cnbeta.com.tw/view/1435743.htm

封面图片

当恒星成为黑洞的猎物:天文学家揭开潮汐扰动事件的神秘面纱

当恒星成为黑洞的猎物:天文学家揭开潮汐扰动事件的神秘面纱"恒星被撕裂后,其气体会在黑洞周围形成一个吸积盘。"来自图尔库大学和欧空局芬兰天文中心(FINCA)的博士后研究员亚尼斯-利奥达基斯(YannisLiodakis)说:"几乎所有波长都能观测到来自吸积盘的明亮爆发,尤其是利用光学望远镜和探测X射线的卫星。"直到最近,研究人员还只知道一些TDEs,因为能够探测它们的实验并不多。不过,近年来科学家们已经开发出观测更多TDE的必要工具。有趣的是,但也许并不太令人惊讶的是,这些观测结果揭示了研究人员目前正在研究的新奥秘。"利用光学望远镜进行的大规模实验发现,大量的TDEs并不产生X射线,尽管可以清楚地探测到可见光的爆发。这一发现与我们对TDEs中被破坏的恒星物质演化的基本理解相矛盾,"Liodakis指出。在潮汐扰动事件中,一颗恒星移动到足够靠近一个超大质量黑洞的位置,这样黑洞的引力就会使恒星弯曲,直到被摧毁(图1)。来自被摧毁恒星的恒星物质在黑洞周围形成一个椭圆流(图2)。气体在环绕黑洞后返回途中撞击黑洞,在黑洞周围形成潮汐冲击(图3)。潮汐冲击会产生明亮的偏振光爆发,可以用光学和紫外线波长观测到。随着时间的推移,来自被摧毁恒星的气体会在黑洞周围形成一个吸积盘(图4),并从那里被慢慢拉入黑洞。注:图片比例不准确。图片来源:JenniJormanainen由芬兰天文中心和欧洲南方天文台领导的一个国际天文学家小组在《科学》杂志上发表的一项研究表明,来自TDEs的偏振光可能是解开这个谜团的关键。在许多TDE中观测到的光学和紫外线爆发可能来自潮汐冲击,而不是黑洞周围X射线明亮吸积盘的形成。这些冲击形成于远离黑洞的地方,因为来自被摧毁恒星的气体在环绕黑洞后返回的途中撞击了自己。在这些事件中,X射线亮吸积盘的形成要晚得多。"偏振光可以提供有关天体物理系统基本过程的独特信息。我们从TDE测量到的偏振光只能用这些潮汐冲击来解释,"该研究的第一作者Liodakis说。研究小组在2020年底收到了盖亚卫星发出的公共警报,称附近一个星系发生了核瞬变事件,该星系被命名为AT2020mot。研究人员随后在图尔库大学所属的北欧光学望远镜(NOT)上对AT2020mot进行了各种波长的观测,包括光学偏振和光谱观测。在北欧光学望远镜(NOT)上进行的观测尤其有助于促成这一发现。此外,偏振观测也是高中生天文观测课程的一部分。来自FINCA和图尔库大学的博士研究员JenniJormanainen说:"北欧光学望远镜和我们在研究中使用的偏振计在我们了解超大质量黑洞及其环境的工作中发挥了重要作用。"研究人员发现,来自AT2020mot的光学光具有高度偏振,并且随着时间的推移而变化。尽管进行了多次尝试,但没有一个射电或X射线望远镜能够在爆发高峰之前、期间甚至数月之后探测到该事件的辐射。"当我们看到AT2020mot的极化程度时,我们立刻想到了从黑洞中喷射出的喷流,就像我们在超大质量黑洞周围经常观测到的那样,黑洞会吸积周围的气体。"图尔库大学和FINCA的学院研究员埃利纳-林德弗斯(ElinaLindfors)说。天文学家小组意识到,这些数据最符合这样一种情况:恒星气体流与自身发生碰撞,并在其围绕黑洞的轨道的近心点和远心点附近形成冲击。然后,冲击会放大恒星流中的磁场并使其有序化,这自然会导致高度偏振光。光学偏振的程度太高,大多数模型都无法解释,而且它还在随时间变化,这就更难解释了。卡里-科尔约宁(KarriKoljonen)指出:"我们研究的所有模型都无法解释观测结果,只有潮汐冲击模型除外。"研究人员将继续观测来自TDEs的偏振光,也许很快就会发现更多关于恒星被破坏后发生了什么的信息。...PC版:https://www.cnbeta.com.tw/articles/soft/1372269.htm手机版:https://m.cnbeta.com.tw/view/1372269.htm

封面图片

偏光X射线揭示了关于黑洞周围极热物质的新细节

偏光X射线揭示了关于黑洞周围极热物质的新细节天鹅座X-1系统的艺术家印象图,黑洞出现在中间,其伴星在左边。11月3日在《科学》杂志上报道的天鹅座X-1的新测量结果,代表了美国宇航局和意大利航天局的国际合作项目--成像X射线偏振探测仪(IXPE)任务对一个产生质量的黑洞的首次观测。资料来源:JohnPaice来自天鹅座X-1的新测量结果最近发表在《科学》杂志上,代表了美国宇航局和意大利航天局(ASI)之间的国际合作项目--成像X射线偏振探测仪(IXPE)任务对一个创造质量的黑洞的首次观测。天鹅座X-1是我们银河系中最明亮的X射线源之一,由一个21个太阳质量的黑洞和一个41个太阳质量的伴星组成。"以前对黑洞的X射线观测只测量了热等离子体向黑洞螺旋运动的X射线的到达方向、到达时间和能量,"主要作者HenricKrawczynski说,他是圣路易斯华盛顿大学文理学院的WaymanCrow物理学教授和该大学麦克唐纳空间科学中心的一名教员。"IXPE还测量它们的线性偏振,它携带着关于X射线如何发射的信息--以及它们是否以及在哪里从靠近黑洞的物质上散射出去。"没有任何光线,甚至是X射线的光线可以从黑洞的事件视界内逃脱。用IXPE探测到的X射线是由黑洞60公里直径的事件穹界周围2000公里直径区域的热物质或等离子体发出的。将IXPE数据与美国宇航局NICER和NuSTARX射线观测站在2022年5月和6月的同步观测相结合,使作者能够约束等离子体的几何形状--即形状和位置。研究人员发现,该等离子体垂直于一个两面的铅笔形等离子体外流或喷流延伸,这在早期的无线电观测中得到了体现。X射线偏振方向和喷流方向的一致有力地支持了这样一个假设,即靠近黑洞的X射线明亮区域的过程在发射喷流中起着关键作用。观测结果与预测模型相吻合,即热等离子体的日冕要么夹住了向黑洞旋转的物质盘,要么取代了该盘的内部部分。新的偏振数据排除了黑洞的日冕是一个狭窄的等离子体柱或沿喷流轴的锥体的模型。科学家们指出,更好地了解黑洞周围等离子体的几何形状可以揭示出许多关于黑洞的内部运作以及它们如何增加质量的信息。这些新的见解将能够改进对黑洞附近的空间和时间的重力曲线的X射线研究。与天鹅座X-1黑洞具体相关的是,IXPE观测显示,吸积流比以前认为的更加边缘化。这可能是黑洞的赤道面和双星的轨道面错位的标志,或者说是黑洞及其伴星的配对组合,该系统可能在黑洞原生星爆炸时获得了这种错位。IXPE任务使用了美国宇航局马歇尔太空飞行中心制造的X射线反射镜和由ASI、国家天体物理研究所(INAF)和国家核物理研究所合作提供的焦平面仪器,除了天鹅座X-1之外,IXPE还被用来研究广泛的极端X射线源,包括质量增加的中子星、脉冲星和脉冲星风星云、超新星遗迹、银河系中心和活动星系核。同期《科学》杂志上的第二篇论文由帕多瓦大学的RobertoTaverna领导,描述了IXPE对来自磁星4U0142+61的高偏振X射线的探测。...PC版:https://www.cnbeta.com.tw/articles/soft/1337071.htm手机版:https://m.cnbeta.com.tw/view/1337071.htm

封面图片

科学家揭示黑洞周围磁囚禁盘形成过程

科学家揭示黑洞周围磁囚禁盘形成过程黑洞可以自由、随意地吞噬物质吗?9月1日,武汉大学物理科学与技术学院天文学系副教授游贝团队及其合作者在国际学术期刊《科学》(Science)发表了关于黑洞的最新研究成果,首次揭示了黑洞吸积流中的磁场运输过程,及磁囚禁盘形成过程,表明了随着吞噬物质的持续进行,黑洞会达到“吃撑”的状态。该研究工作由武汉大学、浙江大学、中国科学院上海天文台、中国科学院高能物理研究所、南京大学、中国科学技术大学、法国斯特拉斯堡天文台、波兰理论物理中心等单位共同完成。游贝是该成果论文的通讯作者之一。来源:¹²投稿:@ZaiHuaBot频道:@TestFlightCN

封面图片

欧空局XMM-牛顿号天文望远镜探测到黑洞风阻碍了恒星的形成

欧空局XMM-牛顿号天文望远镜探测到黑洞风阻碍了恒星的形成这幅艺术家的作品展示了从马卡里安817星系中心喷出的超高速风。这些风以每小时数百万公里的速度从广阔的太空区域中清除星际气体。没有了这些气体,星系就无法形成新的恒星,星系中心的黑洞也就没有什么可吃的了。图片来源:欧空局每个大星系的中心都有一个超大质量黑洞,它巨大的引力从周围吸入气体。当气体向内盘旋时,会在黑洞周围形成一个扁平的"吸积盘",并在那里发热和发光。随着时间的推移,最靠近黑洞的气体越过了不归点,被吞噬殆尽。然而,黑洞只会吞噬一部分向其旋转的气体。在环绕黑洞的过程中,一些物质会被甩回太空,就像一个蹒跚学步的孩子会把盘子里的东西打翻一样。在更戏剧性的情况下,黑洞会把整个餐桌掀翻:吸积盘中的气体以极快的速度向四面八方飞散,以至于周围的星际气体都被清空了。这不仅剥夺了黑洞的食物,还意味着在大片区域内无法形成新的恒星,从而改变了星系的结构。耀眼的蓝色恒星环绕着这个螺旋星系明亮、活跃的核心。它被称为马卡里安817,位于4.3亿光年外的天龙座北部。在远离中心的地方,这个星系显示出强烈的恒星形成区,以及沿着旋臂的星际尘埃暗带。银河系中心的怪兽黑洞的质量是太阳的4000万倍。它被一个巨大的物质圆盘包围着,超大质量黑洞正以每小时数百万公里的速度向太空喷射物质。这可以从银河系中心闪耀的明亮白光中看到。这张NASA/ESA哈勃太空望远镜图片是2009年8月2日用广角相机3拍摄的。图片来源:NASA、ESA和哈勃SM4ERO小组前所未有的观察在此之前,这种超快的"黑洞风"只在极其明亮的吸积盘中被探测到,因为吸积盘吸积物质的能力已经达到极限。这一次,XMM-牛顿在一个非常普通的星系中探测到了超快的风,可以说它"只是在吃零食"。"如果把风扇开到最大,你可能会预料到风速会非常快。在我们研究的这个名为马尔卡里安817的星系中,风扇的功率设置较低,但仍然产生了能量惊人的风。"本科生研究员米兰达-扎克(密歇根大学)指出,她在这项研究中发挥了核心作用。"观测到超高速风是非常罕见的,而探测到具有足够能量来改变其宿主星系特征的风就更少见了。马尔卡里安817在并不特别活跃的情况下,产生这些风的时间长达一年左右,这一事实表明,黑洞对其宿主星系的重塑可能远远超出人们的想象,"合著者、意大利罗马特雷大学天文学家埃利亚斯-卡蒙(EliasKammoun)补充说。XMM-牛顿(X-射线多镜任务)太空望远镜的艺术效果图。图片来源:D.Ducros;ESA/XMM-Newton,CCBY-SA3.0IGO被风阻挡的X射线活跃的星系中心会发出包括X射线在内的高能量光线。马卡里安817让研究人员眼前一亮,因为它变得异常安静。米兰达利用美国宇航局的斯威夫特天文台观测了这个星系:"X射线信号如此微弱,以至于我确信自己做错了什么!"利用欧空局更灵敏的X射线望远镜XMM-牛顿进行的后续观测揭示了真实情况:来自吸积盘的超高速风就像一块裹尸布,挡住了从黑洞周围(称为日冕)发出的X射线。这些测量结果得到了美国宇航局NuSTAR望远镜观测结果的支持。对X射线测量结果的详细分析显示,马尔卡里安817的中心并没有发出一"股"气体,而是在吸积盘的广大区域内产生了一股狂风。这股风暴持续了数百天,至少由三种不同的成分组成,每种成分的运动速度都是光速的几分之一。这幅艺术家的作品展示了从马卡里安817星系中心喷出的超高速风。这些风以每小时数百万公里的速度从广阔的太空区域中清除星际气体。没有了这些气体,星系就无法形成新的恒星,星系中心的黑洞也就没有什么可吃的了。插图显示了银河系中心的情况。一个超大质量黑洞从周围吸入气体,形成一个炙热、明亮的"吸积盘"(橙色)。造成风(白色)的原因是圆盘内的磁场,它以难以置信的高速将粒子抛向四面八方。这些风有效地阻挡了黑洞周围极热等离子体(称为日冕)发出的X射线(蓝色)。这解决了我们在理解黑洞和黑洞周围星系如何相互影响方面的一个未解之谜。包括银河系在内的许多星系,其中心周围似乎都有大片区域,但在这些区域中却很少有新恒星形成。这可以用黑洞风清除恒星形成气体来解释,但这只有在黑洞风的速度足够快、持续时间足够长,并且是由具有典型活动水平的黑洞产生的情况下才可行。"黑洞研究中的许多悬而未决的问题都需要通过长时间的观测来捕捉重要事件。这凸显了XMM-牛顿任务对未来的极端重要性。"欧空局XMM-牛顿项目科学家诺伯特-沙特尔(NorbertSchartel)说:"没有其他任务能够将高灵敏度和长时间、不间断观测的能力结合起来。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1418837.htm手机版:https://m.cnbeta.com.tw/view/1418837.htm

封面图片

天文学家揭开宇宙最重黑洞双星之谜

天文学家揭开宇宙最重黑洞双星之谜两个超大质量黑洞的合并是一个早已被预测到的现象,尽管从未被直接观测到过。天文学家提出的一个理论是,这些系统的质量如此之大,以至于它们耗尽了宿主星系中驱动合并所需的恒星物质。利用双子座北望远镜的档案数据,一个天文学家小组发现了一个双黑洞,为这一观点提供了有力的证据。据研究小组估计,这个双黑洞的质量是太阳质量的280亿倍,是迄今为止测量到的最重的双黑洞。这次测量不仅为双星系统的形成及其宿主星系的历史提供了宝贵的背景资料,而且还支持了一个由来已久的理论,即超大质量黑洞双星的质量在阻止超大质量黑洞合并方面起着关键作用。资料来源:NOIRLab/NSF/AURA/J.daSilva/M.Zamani几乎每个大质量星系的中心都有一个超大质量黑洞。当两个星系合并时,它们的黑洞会形成一对双星,这意味着它们处于相互束缚的轨道上。据推测,这些双星最终会合并,但这一现象从未被观测到过[1]。几十年来,天文学家们一直在讨论这样的事件是否可能发生。在最近发表于《天体物理学报》(TheAstrophysicalJournal)的一篇论文中,一个天文学家小组提出了对这一问题的新见解。一个天文学家小组利用由美国国家科学基金会NOIRLab负责运行的双子座北望远镜(国际双子座天文台的一半)提供的档案数据,测量出了迄今发现的最重的一对超大质量黑洞。两个超大质量黑洞的合并是一种早已被预测到的现象,但从未被观测到过。这对超大质量黑洞提供了一些线索,说明为什么宇宙中发生这种事件的可能性如此之小。双子座北区前所未有的洞察力研究小组利用夏威夷双子座北望远镜(由美国国家科学基金会资助的NOIRLab运行的国际双子座天文台的二分之一)的数据,分析了位于椭圆星系B20402+379内的一个超大质量黑洞双星。这是迄今为止唯一一个被分辨得足够详细,可以分别看到两个天体的超大质量黑洞双星,[2]而且它还保持着迄今为止直接测量到的最小间隔记录--仅仅24光年[3]。虽然如此接近的分离预示着强大的合并,但进一步的研究发现,这对天体已经在这个距离上停滞了30多亿年,这不禁让人产生疑问:是什么阻碍了合并?双黑洞合并的挑战为了更好地了解这个系统的动态及其停止的合并,研究小组研究了双子座北区的双子座多目标摄谱仪(GMOS)的档案数据,这些数据使他们能够确定黑洞附近恒星的速度。"GMOS出色的灵敏度使我们能够测绘出恒星在靠近星系中心时的速度,"论文共同作者、斯坦福大学物理学教授罗杰-罗曼尼(RogerRomani)说。"有了这些,我们就能推断出居住在那里的黑洞的总质量。"据研究小组估计,这对双星的质量是太阳质量的280亿倍,是迄今测量到的最重的双黑洞。这一测量结果不仅为双星系统的形成及其宿主星系的历史提供了宝贵的背景资料,而且还支持了一个由来已久的理论,即超大质量双黑洞的质量在阻止潜在合并中起着关键作用[4]。"为国际双子座天文台提供服务的数据档案蕴藏着一座尚未开发的科学发现金矿,"国家科学基金会国际双子座天文台项目主任马丁-斯蒂尔说,"对这个极端超大质量双黑洞的质量测量是一个令人敬畏的例子,说明了探索这一丰富档案的新研究可能产生的影响。"二进制系统的形成与未来了解这个双星是如何形成的,有助于预测它是否以及何时会合并--一些线索表明,这对双星是通过多个星系合并形成的。首先,B20402+379是一个"化石星系团",这意味着它是整个星系团的恒星和气体合并成一个大质量星系的结果。此外,两个超大质量黑洞的存在,加上它们巨大的总质量,表明它们是由多个星系的多个较小黑洞合并而成的。星系合并后,超大质量黑洞不会正面相撞。相反,当它们进入一个有束缚的轨道时,就会开始互相弹射。它们每经过对方一次,能量就会从黑洞传递到周围的恒星。随着它们能量的流失,这对黑洞被越拖越近,直到相距仅有一光年时,引力辐射占据上风,它们才会合并。这一过程已经在成对恒星质量的黑洞中被直接观测到--有史以来的第一次记录是在2015年通过引力波的探测--但从未在超大质量的双星中观测到过。停滞不前的合并与未来联合的可能性通过对该星系巨大质量的新了解,研究小组得出结论,需要有数量特别多的恒星才能减缓双星轨道的速度,使它们如此接近。在这个过程中,黑洞似乎甩掉了它们附近几乎所有的物质,使得星系核心缺少恒星和气体。由于没有更多的物质来进一步减缓这对天体的轨道,它们的合并在最后阶段停滞了。罗曼尼说:"通常情况下,黑洞对较轻的星系似乎有足够的恒星和质量来驱动两者迅速结合在一起。由于这对黑洞非常重,因此需要大量恒星和气体来完成这项工作。但是这对黑洞已经将中央星系中的这些物质清除干净,使它停滞不前,可供我们研究。"这对天体究竟会克服停滞状态,最终以数百万年的时间尺度合并,还是永远继续在轨道上徘徊,目前尚无定论。如果它们真的合并,产生的引力波将比恒星质量的黑洞合并产生的引力波强大一亿倍。这对天体有可能通过另一次星系合并来征服最后的距离,这将为星系注入更多的物质,或者有可能是第三个黑洞,从而使这对天体的轨道慢到足以合并。不过,鉴于B20402+379是一个化石星系团,另一个星系合并的可能性不大。"我们期待着对B20402+379的内核进行后续调查,我们将研究其中存在多少气体,"论文第一作者、斯坦福大学本科生TirthSurti说。"这应该能让我们更深入地了解超大质量黑洞最终能否合并,或者它们是否会作为双星搁浅。"说明虽然有证据表明超大质量黑洞之间的距离只有几光年,但似乎没有一个黑洞能够跨越这个最终距离。关于这种事件是否可能发生的问题被称为"最终-秒差距问题",几十年来一直是天文学家们讨论的话题。以前曾对含有两个超大质量黑洞的星系进行过观测,但在这些情况下,它们相距数千光年--太远了,不可能像在B20402+379中发现的双星那样处于相互结合的轨道上。其他黑洞动力源的距离可能更小,不过这些都是通过间接观测推断出来的,因此最好归类为候选双星。这一理论最早是由贝格尔曼等人于1980年提出的,根据数十年来对星系中心的观测,这一理论一直被认为是存在的。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1422216.htm手机版:https://m.cnbeta.com.tw/view/1422216.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人