研究人员利用光声成像技术实现先进的神经可视化

研究人员利用光声成像技术实现先进的神经可视化因此,研究人员一直在努力开发医学成像技术,以降低神经损伤的风险。例如,超声波和磁共振成像(MRI)可以帮助外科医生在手术过程中准确定位神经的位置。然而,要在超声波图像中将神经与周围组织区分开来具有挑战性,而核磁共振成像则既昂贵又耗时。约翰霍普金斯大学的研究人员强调了多谱段光声成像在预防侵入性医疗程序中的神经损伤方面的潜力,并确定了最佳神经可视化的关键波长。首次活体记录猪尺神经(左)和正中神经(右)的光声学图像。用1725nm的光照射神经,并将其叠加在共聚焦超声波图像上。图中还显示了神经和周围琼脂糖感兴趣区(ROI)的轮廓。资料来源:M.Graham等人,doi10.1117/1.JBO.28.9.097001光声成像的前景在这方面有一种前景广阔的替代方法,即多光谱光声成像。作为一种非侵入性技术,光声成像结合了光波和声波,可生成人体组织和结构的详细图像。从本质上讲,首先用脉冲光照射目标区域,使其微微发热。这反过来又会导致组织膨胀,发出超声波,从而被超声波探测器捕捉到。约翰霍普金斯大学的一个研究小组最近进行了一项研究,他们在研究中彻底描述了神经组织在整个近红外(NIR)光谱范围内的吸收和光声特征。他们的研究成果于9月4日发表在《生物医学光学杂志》(JournalofBiomedicalOptics)上,由约翰-霍普金斯大学JohnC.Malone副教授兼PULSE实验室主任MuyinatuA.LedijuBell博士领导。他们研究的主要目标之一是确定在光声图像中识别神经组织的理想波长。研究人员假设,位于近红外-III光学窗口内的1630-1850纳米波长将是神经可视化的最佳波长范围,因为神经元髓鞘中的脂质在此范围内有一个特征吸收峰。为了验证这一假设,他们对外周神经样本进行了详细的光学吸收测量。他们在1210纳米波长处观察到一个吸收峰,属于近红外-II波段。然而,这种吸收峰也存在于其他类型的脂质中。与此相反,当从吸收光谱中减去水的贡献时,神经组织在1725纳米的近红外-III范围内显示出一个独特的峰值。实际测试和影响此外,研究人员还使用定制的成像装置对活体猪的外周神经进行了光声测量。这些实验进一步证实了这一假设:利用近红外-III波段的峰值可以有效地区分富含脂质的神经组织和其他类型的组织以及含水或缺脂的材料。贝尔对研究结果感到满意,他说:"我们的工作是首次利用宽波长光谱表征新鲜猪神经样本的光学吸光度光谱,也是首次利用近红外-III窗口的多光谱光声成像技术展示健康和再生猪神经的活体可视化"。这些发现可以激励科学家进一步探索光声成像的潜力。此外,神经组织光吸收曲线的表征有助于在使用其他光学成像模式时改进神经检测和分割技术。"我们的研究结果凸显了多光谱光声成像作为术中技术的临床前景,可用于确定有髓鞘神经的存在或防止医疗干预过程中的神经损伤,并可能对其他基于光学的技术产生影响。因此,我们的贡献成功地为生物医学光学界奠定了新的科学基础。"...PC版:https://www.cnbeta.com.tw/articles/soft/1382757.htm手机版:https://m.cnbeta.com.tw/view/1382757.htm

相关推荐

封面图片

研究人员展示了"挤压"红外光的新方法

研究人员展示了"挤压"红外光的新方法研究人员已经证明,一种特定类型的氧化物膜可以比块体晶体更有效地限制红外光,这对下一代红外成像技术具有重要意义。这些薄膜膜在压缩波长的同时保持所需的红外频率,从而实现更高的图像分辨率。研究人员利用过渡金属钙钛矿材料和先进的同步加速器近场光谱,表明这些膜中的声子极化子可以将红外光限制在其波长的10%以内。这一突破可能带来光子学、传感器和热管理领域的新应用,并可能轻松集成到各种设备中。图片来源:北卡罗来纳州立大学YinLiu“薄膜膜保持了所需的红外频率,但压缩了波长,使成像设备能够以更高的分辨率捕捉图像,”该论文的共同通讯作者、北卡罗来纳州立大学材料科学与工程助理教授YinLiu说道。“我们已经证明,我们可以将红外光限制在其波长的10%以内,同时保持其频率-这意味着波长循环所需的时间相同,但波峰之间的距离要近得多。块状晶体技术将红外光限制在其波长的97%左右。”“这种行为以前只是理论上的,但我们能够通过我们制备薄膜膜的方式和我们对同步加速器近场光谱的新用途首次在实验中证明它,”该论文的共同主要作者、北卡罗来纳州立大学材料科学与工程助理教授RuijuanXu说道。为了这项工作,研究人员使用了过渡金属钙钛矿材料。具体来说,研究人员使用脉冲激光沉积在真空室中生长出100纳米厚的钛酸锶(SrTiO3)晶体膜。这种薄膜的晶体结构质量很高,这意味着它几乎没有缺陷。然后将这些薄膜从生长它们的基底上取下,并放置在硅基底的氧化硅表面上。研究人员随后利用劳伦斯伯克利国家实验室先进光源的技术,在钛酸锶薄膜暴露于红外光时对其进行同步近场光谱分析。这使研究人员能够在纳米级捕捉到材料与红外光的相互作用。要了解研究人员学到了什么,我们需要讨论声子、光子和极化子。声子和光子都是能量在材料之间传播的方式。声子本质上是由原子振动引起的能量波。光子本质上是电磁能的波。可以把声子看作是声能的单位,而光子是光能的单位。声子极化子是准粒子,当红外光子与“光学”声子(即可以发射或吸收光的声子)耦合时就会产生。“理论论文提出了这样一种观点,即过渡金属钙钛矿氧化物膜将允许声子极化子限制红外光,”刘说。“而我们的工作现在表明,声子极化子确实限制了光子,并且还阻止光子超出材料表面。这项工作建立了一类用于控制红外波长光的新型光学材料,在光子学、传感器和热管理方面具有潜在的应用,想象一下,能够设计出使用这些材料通过将热量转化为红外光来散热的计算机芯片。”“这项工作也令人兴奋,因为我们展示的制造这些材料的技术意味着薄膜可以很容易地与各种各样的基底集成,”徐说。“这应该可以轻松地将这些材料整合到许多不同类型的设备中。”编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1434557.htm手机版:https://m.cnbeta.com.tw/view/1434557.htm

封面图片

研究人员利用现有光纤达到了301Tbps的传输速率

研究人员利用现有光纤达到了301Tbps的传输速率红外线传送是光纤宽带的一般工作原理,但研究人员利用新的定制设备,开发了一个从未在商业系统中使用过的频段,即"E波段"。伊恩-菲利普斯博士与波长管理装置。图片:阿斯顿大学科学家们在一份声明中说,工程与技术研究所(IET)于今年3月公布了测试结果,测试使用的是已经铺设在地下的光纤电缆。研究小组还在2023年10月于格拉斯哥举行的欧洲光通信会议(ECOC)上介绍了这项研究,但论文尚未公开。所有商用光纤连接都通过电缆在电磁波谱中的红外线C波段和L波段部分传送数据。用于互联网连接的特定红外区域范围为1260至1675纳米(nm),可见光波长大约在光谱的400纳米到700纳米之间。C波段和L波段(波长在1530纳米和1625纳米之间)通常用于商业连接,因为它们最稳定,意味着传输过程中丢失的数据最少。但科学家们推测,总有一天,巨大的流量会导致这两个波段拥堵,这意味着需要增加传输波段来提高容量。S波段与C波段相邻,波长范围在1460纳米到1530纳米之间。"波分复用"(WDM)系统中与其他两个波段结合使用,从而达到更高的传输速度。然而,科学家们以前从未能够模拟E波段连接,因为该区域的数据丢失率极高,大约是C波段和L波段传输丢失率的五倍。具体来说,光导纤维很容易受到羟基(OH)分子的影响,这些分子可能通过制造过程或自然环境进入管道并破坏连接。E波段被称为"水峰值"波段,因为该区域的红外光吸收羟基分子会造成极高的传输损耗。在新的研究中,科学家们建立了一个系统,使稳定的E波段传输成为可能。他们利用E波段和邻近的S波段演示了成功稳定的高速数据传输。为了在这一电磁频谱区域保持稳定的连接,研究人员创造了两种名为"光放大器"的新设备。"光放大器"和"光增益均衡器"前者有助于远距离放大信号,后者则监控每个波长通道,并在需要时调整幅度。他们在光纤电缆中部署了这些设备,以确保红外光传输数据时不会出现通常困扰这些波段连接的不稳定性和损耗。"过去几年中,阿斯顿大学一直在开发在E波段工作的光放大器。"伊恩-菲利普斯伊恩-菲利普斯(IanPhillips)说。"在开发我们的设备之前,没有人能够以可控的方式正确模拟E波段信道"。尽管301Tbps的速度已经非常快,但近年来其他科学家已经利用光纤连接展示了更快的速度。例如,美国国家信息与通信技术研究所的一个团队创下了每秒22.9Petabits的纪录,比阿斯顿大学团队达到的速度快75倍。他们使用了波分复用技术在8英里(13公里)的距离上演示了这种高速连接,但没有使用E波段。...PC版:https://www.cnbeta.com.tw/articles/soft/1425592.htm手机版:https://m.cnbeta.com.tw/view/1425592.htm

封面图片

研究人员实现精确跟踪运动动物的神经元

研究人员实现精确跟踪运动动物的神经元EPFL和哈佛大学的科学家们开发出一种基于人工智能的方法,用于追踪移动动物的神经元,从而以最少的人工标注提高大脑研究的效率。最近的研究进展允许对自由移动动物体内的神经元进行成像。然而,要解码电路活动,必须通过计算识别和跟踪这些成像神经元。当大脑本身在生物体(如蠕虫)灵活的身体内移动和变形时,这就变得尤其具有挑战性。到目前为止,科学界还缺乏解决这一问题的工具。现在,来自洛桑联邦理工学院(EPFL)和哈佛大学的科学家团队开发出了一种开创性的人工智能方法,用于追踪移动和变形动物体内的神经元。这项研究发表在《自然-方法》(NatureMethods)上,由EPFL基础科学学院的萨罕德-贾迈勒-拉希(SahandJamalRahi)领导。新方法以卷积神经网络(CNN)为基础,CNN是一种经过训练的人工智能,能够识别和理解图像中的模式。这涉及一个称为"卷积"的过程,它每次查看图片的小部分,如边缘、颜色或形状,然后将所有信息组合在一起,使其具有意义,并识别物体或模式。问题在于,要在拍摄动物大脑的过程中识别和追踪神经元,许多图像都必须手工标注,因为动物在不同时间由于身体变形的不同而呈现出截然不同的样子。考虑到动物姿态的多样性,手动生成足够数量的注释来训练CNN可能会令人生畏。秀丽隐杆线虫三维体积脑活动记录的二维投影。绿色:基因编码的钙指示器,各种颜色:分割和追踪的神经元。资料来源:MahsaBarzegar-Keshteli(EPFL)为了解决这个问题,研究人员开发了一种具有"定向增强"功能的增强型CNN。这项创新技术仅从有限的手动注释中自动合成可靠的注释作为参考。其结果是,CNN可以有效地学习大脑的内部变形,然后利用它们为新姿势创建注释,从而大大减少了人工注释和重复检查的需要。这种新方法用途广泛,无论神经元在图像中表现为单个点还是三维体积,它都能识别出来。研究人员在秀丽隐杆线虫(Caenorhabditiselegans)上对其进行了测试,该线虫仅有302个神经元,使其成为神经科学领域广受欢迎的模式生物。利用增强型CNN,科学家们测量了该蠕虫的一些中间神经元(在神经元之间传递信号的神经元)的活动。他们发现,这些神经元表现出复杂的行为,例如,当受到不同的刺激(如周期性爆发的气味)时,它们会改变自己的反应模式。研究小组将他们的CNN变得易于访问,提供了一个用户友好的图形用户界面,集成了有针对性的增强功能,将整个过程简化为一个从手动注释到最终校对的综合流水线。SahandJamalRahi说:"通过大幅减少神经元分割和跟踪所需的人工工作,新方法将分析吞吐量提高到全人工标注的三倍。这一突破有可能加速大脑成像研究,加深我们对神经回路和行为的理解"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1402931.htm手机版:https://m.cnbeta.com.tw/view/1402931.htm

封面图片

冲破迷雾 研究人员开发出使成像更清晰的新方法

冲破迷雾研究人员开发出使成像更清晰的新方法一种通过使用低成本的随机散射介质实时生成清晰图像的新技术可以为模糊图像所带来的挑战提供解决方案。当光穿过光散射介质时,它被分散而不是被吸收,导致原始物体的清晰图像丢失。这种散射介质可以包括云层,给地球上的天文学家带来困难,也包括身体组织,阻碍了医学成像工作。PC版:https://www.cnbeta.com.tw/articles/soft/1348931.htm手机版:https://m.cnbeta.com.tw/view/1348931.htm

封面图片

加州理工学院激光声成像技术迎来重大飞跃 实现三维成像并减少所需传感器

加州理工学院激光声成像技术迎来重大飞跃实现三维成像并减少所需传感器加州理工学院最近的研究对一种名为PATER的光声成像技术进行了重大改进,该技术现已发展为PACTER。新版本简化了技术,减少了对多个传感器的需求,实现了三维成像,并且无需在每次使用前进行校准。这些进步使该技术在医学成像应用中更加实用和高效。资料来源:加州理工学院加州理工学院医学工程和电子工程布伦教授王力宏实验室的最新研究就属于后者。在发表于《自然-生物医学工程》(NatureBiomedicalEngineering)杂志上的一篇论文中,王力宏和博士后学者张一德展示了他们如何简化和改进他们于2020年首次公布的一种成像技术。这项技术是一种名为PATER(通过极性中继的光声地形图)的光声成像技术,是王建民研究小组的专长。光声成像技术的改进在光声成像中,激光脉冲进入组织,被组织的分子吸收,引起分子振动。每个振动的分子都是超声波的来源,可用于以类似超声波成像的方式对内部结构进行成像。然而,光声成像在技术上具有挑战性,因为它能在短时间内产生所有成像信息。为了捕捉这些信息,王的光声成像技术的早期版本需要将数百个传感器(换能器)组成的阵列紧贴被成像组织的表面,这使得该技术既复杂又昂贵。王和张通过使用一种称为"麦积继电器"的装置减少了所需传感器的数量,这种装置可以减慢信息(以振动的形式)流入传感器的速度。正如之前有关PATER的报道所解释的那样:在计算中,有两种主要的数据传输方法:串行和并行。在串行传输中,数据以单一数据流通过一个通信通道发送。在并行传输中,多个数据通过多个通信通道同时发送。这两种通信方式大致类似于商店中使用收银机的方式。串行通信就像一台收银机。每个人都排在同一条队伍中,看到同一个收银员。并行通信就好比有几个收银机,每个收银机有一条线。Wang设计的拥有512个传感器的系统与拥有许多收银机的商店类似。所有传感器同时工作,每个传感器接收激光脉冲产生的超声波振动的部分数据。由于系统发出的超声波振动是在短时间内产生的,因此如果要在这么短的时间内收集所有数据,单个传感器将不堪重负。这就是麦哲伦继电器的用武之地。正如王力宏所描述的那样,遍历中继器是一种可以让声音在周围回荡的腔体。当超声波振动通过遍历中继器时,它们会在时间上被拉长。回到收银机的比喻,这就好比让另一名员工协助单个收银员,告诉顾客在店里走几圈,直到收银员准备好接待他们,这样收银员就不会手忙脚乱了。PACTER:下一步发展这项技术的最新版本被称为PACTER(PhotoacousticComputedTomographyThroughanErgodicRelay),它更进一步,允许系统使用单个传感器进行操作,通过使用软件,可以收集到与6,400个传感器一样多的数据。兼任安德鲁和佩吉-钱格(AndrewandPeggyCherng)医学工程领导力主席和医学工程执行官的王说,PACTER在另外两个方面改进了PATER。改进之一是PACTER可以生成三维图像,而PATER只能生成二维图像。这得益于改进软件的开发。"过渡到三维成像大大提高了数据要求。我们面临的挑战是如何通过单个传感器传输大量增加的数据,"张说。"我们通过改变方法找到了解决方案。我们首先将一个传感器扩展为数千个虚拟传感器,而不是直接采用计算密集型方法从单传感器数据中重建三维图像。这一想法简化了三维图像重建的过程,使其与我们光声成像的传统方法更加接近"。其次,与PATER不同,PACTER无需在每次使用时进行校准。"使用PATER时,我们必须在每次使用时对其进行校准,而这是不现实的。我们摆脱了这种每次使用时的一次性校准,"王说。之所以需要校准,是因为当系统向组织发射激光脉冲时,脉冲的"回波"会反弹到换能器上,使其无法感知直接的超声波信息。PACTER通过在系统中加入延迟线来解决这个问题。延迟线迫使回波在返回换能器的途中经过更长的物理路径,这样它就能在接收到直接超声波信息后到达换能器。描述这项工作的论文"利用单元素探测器进行单次容积光声断层扫描的血流动力学超快纵向成像"发表在11月30日出版的《自然-生物医学工程》(NatureBiomedicalEngineering)杂志上。该论文的共同作者包括:胡鹏(23年博士),前医学工程研究生;李磊(19年博士),前医学工程博士后;曹睿,医学工程博士后;AnjulKhadria,前医学工程博士后;KonstantinMaslov,前加州理工学院职员科学家;童欣,医学工程研究生;以及南加州大学的曾玉顺、蒋来明和周其发。研究经费由美国国立卫生研究院提供。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404763.htm手机版:https://m.cnbeta.com.tw/view/1404763.htm

封面图片

研究人员利用肽阻断破坏性突变 实现阻止神经退行性病症发展

研究人员利用肽阻断破坏性突变实现阻止神经退行性病症发展谢菲尔德大学转化神经科学研究所(SITraN)的突破性研究侧重于使用一种具有细胞穿透模块的肽来阻断突变重复RNA分子的途径。当这些"流氓分子"从细胞核迁移到外部细胞质时,它们被用来产生有毒的重复蛋白,最终杀死神经元,这助长了运动神经元疾病(MND)和额颞叶痴呆(FTD)退化。领导这项研究的谢菲尔德大学转化RNA生物学教授GuillaumeHautbergue说:"这种利用肽来阻断破坏性突变的概念解开了这样一个令人兴奋的创新治疗途径,直到现在科学家还没有探索过。"此前,研究人员已经发现,从C90RF72基因--MND和FTD的最常见原因--复制的问题RNA的移动是由于SRSF1细胞转运器的过度粘性造成的。他们的新肽由一个小的氨基酸组装链组成,能穿透细胞粘附在SRSF1转运器上,阻止其输出。在果蝇的临床研究中,科学家们甚至观察到,当肽封住这个细胞通路时,机体出现了神经功能的改善。Hautbergue说:"这意味着该肽有效地阻止了神经退行性病症的发展,也有助于恢复受影响的神经细胞的功能。"研究人员说,这种肽可以口服给MND和FTD患者,或通过开发的鼻腔喷雾进入大脑。FTD--年轻时发病的最常见原因--和MND都是使人衰弱的致命疾病,几乎没有什么治疗方法可以阻止其快速退化。这项研究为在不远的将来进行人体试验和开发非侵入性的、有针对性的和有效的医疗干预打开了大门。MND和FTD是毁灭性的疾病,目前还没有治疗方法。新的技术是对传统小分子药物的一种有希望的替代,因为传统小分子药物往往因血脑屏障的渗透性差而受到限制。该研究发表在《科学转化医学》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1347333.htm手机版:https://m.cnbeta.com.tw/view/1347333.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人