暗光子:揭开暗物质之谜的关键?

暗光子:揭开暗物质之谜的关键?在阿德莱德大学专家的带领下,一个国际研究小组在探索暗物质本质的过程中发现了更多线索。"暗物质占宇宙物质的84%,但我们对它知之甚少,"阿德莱德大学物理长老教授安东尼-托马斯教授表示:"暗物质的存在已经从它的引力相互作用中得到了确凿的证明,然而,尽管全世界的物理学家都在竭尽全力,它的精确性质仍然让我们难以捉摸。理解这一谜团的关键可能在于暗光子,它是一种理论上的大质量粒子,可能是粒子暗区与常规物质之间的门户。"我们和我们的物理世界都是由普通物质构成的,但普通物质的数量远远少于暗物质:暗物质的数量是普通物质的五倍。寻找更多关于暗物质的信息是全世界物理学家面临的最大挑战之一。暗光子是一种假想的隐藏扇形粒子,被认为是一种类似于电磁学光子的力载体,但可能与暗物质有关。澳大利亚研究理事会(ARC)暗物质粒子物理卓越中心的成员托马斯教授及其同事马丁-怀特教授、王宣工博士和尼古拉斯-亨特-史密斯等科学家正在对现有的暗物质理论进行测试,以便获得更多有关这种难以捉摸但非常重要的物质的线索。托马斯教授说:"在我们的最新研究中,我们研究了暗光子可能对深度非弹性散射过程的整套实验结果产生的潜在影响。对加速到极高能量的粒子碰撞的副产物进行分析,为科学家们提供了亚原子世界的结构及其自然规律的有力证据。在粒子物理学中,深度非弹性散射是用来利用电子、μ介子和中微子探测强子(特别是重子,如质子和中子)内部的过程的名称。我们利用了最先进的杰斐逊实验室角动量(JAM)部分子分布函数全局分析框架,修改了基础理论,以考虑暗光子的可能性。我们的工作表明,暗光子假说优于标准模型假说,其显著性为6.5西格玛,这构成了粒子发现的证据。"该研究小组包括来自阿德莱德大学的科学家和美国弗吉尼亚杰斐逊实验室的同事,他们在《高能物理杂志》(JournalofHighEnergyPhysics)上发表了自己的研究成果。...PC版:https://www.cnbeta.com.tw/articles/soft/1385001.htm手机版:https://m.cnbeta.com.tw/view/1385001.htm

相关推荐

封面图片

新研究表明暗物质可能是由暗光子构成的

新研究表明暗物质可能是由暗光子构成的从超级计算机模拟得到的宇宙网的二维投影。资料来源:EwaldPuchwein博士和Sherwood-Relics合作项目COS收集的数据表明,宇宙星系间的细丝比结构形成的标准模型的流体力学模拟预测的温度更高。"由于暗光子将能够转化为低频光子并加热宇宙结构,"科学家解释说"它们可以很好地解释实验信息。"这项研究是由SISSA研究人员与特拉维夫大学、诺丁汉大学和纽约大学的研究人员合作进行的。"暗光子是假设的新粒子,它是暗部门新力量的力的载体,就像光子是电磁力的力的载体一样。"作者詹姆斯-S-博尔顿(诺丁汉大学)、安德里亚-卡普托(欧洲核子研究中心和特拉维夫大学)、刘洪万(纽约大学)和马特奥-维尔(SISSA)解释。"然而,与光子不同,它们可以有质量。特别是,超轻的暗光子,其质量比电子的质量小20个数量级,是暗物质的一个很好的候选者。"暗光子和普通光子也有望像不同类型的中微子一样混合,让超轻暗光子暗物质转化为低频光子。这些光子将加热宇宙网,但与其他加热机制不同,基于天体物理过程,如恒星形成和银河系风,这种加热过程更加分散,在密度不大的区域也很有效。MatteoViel解释说。"通常,宇宙丝被用来探测暗物质的小规模特性,而在这种情况下,我们首次使用低红移星系间介质数据作为热量计,以检查我们所知的所有加热过程是否足以重现数据。我们发现情况并非如此:有一些东西缺失了,我们将其建模为暗光子产生的贡献。"这项工作确定了暗光子的质量和与标准模型光子的混合,以调和观测和模拟之间的差异;研究人员的努力可以推动进一步的理论和观测调查,以探索暗光子可能构成暗物质这一令人兴奋的可能性。...PC版:https://www.cnbeta.com.tw/articles/soft/1339413.htm手机版:https://m.cnbeta.com.tw/view/1339413.htm

封面图片

暗光子暗物质的突破:开拓性的低温探测技术

暗光子暗物质的突破:开拓性的低温探测技术虽然没有检测到明显的信号,但实验中采用的严格限制为调查暗物质提供了可能性。这项研究还可能进一步推动5G和6G等先进电信技术的发展。用低温毫米波接收器搜索暗光子暗物质。资料来源:京都大学全球通讯社/足立俊介将圣经中的歌利亚击倒的方法可能不止一种,但大卫选择用弹弓的小石头进行攻击。本着同样的精神,科学家们不是通过直接观察,而是通过记录其对可见物质的引力影响来接近暗物质的奥秘--它构成了宇宙的四分之一。京都大学的一个研究小组现在已经建立了一种检查0.1毫电子伏特左右的超轻暗物质的实验方法,应用了一种低温条件下的毫米波传感技术,其特点是热噪声低。领衔作者ShunsukeAdachi说:"我们通过使用以前在这个领域没有测试过的新技术,实现了暗光子暗物质--或DPDM--的未探索的质量范围的实验参数。"难以捉摸的单个暗物质粒子的质量被认为比质子的质量还要重。Adachi团队对超低质量暗物质的搜索解决了极富挑战性的探测问题,而这一问题在过去三十多年里一直困扰着科学家。Adachi补充说:"我们对毫米波技术的研究可能会进一步推动先进电信的发展,如5G和6G。"一个专用的毫米波接收器被冷却到-270℃,以抑制热噪声,以适应弱的转换光子。这个低温接收器被用来搜索质量范围约为0.1meV的DPDMs。Adachi认为,尽管他的团队在这个数据集中没有发现任何重要的信号,但通过在前所未有的严格约束下进行实验--比宇宙学约束更严格--他们为调查暗物质开辟了可能性。普通光子在理论上是利用金属板表面从暗光子中转换出来的。由于能量守恒,这些转换光子与暗光子的质量相对应。例如,10-300GHz的转换光子频率对应于0.05-1meV的暗光子质量。"我们很高兴,我们的小团队能够从我们的高灵敏度实验中获得重要的结果,用于探测未曾探索过的质量范围内的DPDM,"Adachi总结道。...PC版:https://www.cnbeta.com.tw/articles/soft/1353667.htm手机版:https://m.cnbeta.com.tw/view/1353667.htm

封面图片

中子星碰撞事件GW170817帮助揭开暗物质之谜

中子星碰撞事件GW170817帮助揭开暗物质之谜两颗正在合并的中子星的艺术家插图。资料来源:NSF/LIGO/索诺玛州立大学/A.Simonnet类轴子粒子研究文理学院的物理学家布帕尔-德夫(BhupalDev)利用这次中子星合并的观测结果--天文学界将这一事件命名为GW170817--得出了关于类轴子粒子的新约束条件。这些假想粒子尚未被直接观测到,但它们出现在标准物理学模型的许多扩展中。轴子和类轴子粒子是构成科学家至今无法解释的宇宙中部分或全部"缺失"物质或暗物质的主要候选粒子。至少,这些相互作用微弱的粒子可以作为一种门户,将人类所知的可见部分与宇宙中未知的黑暗部分连接起来。《物理评论快报》(PhysicalReviewLetters)上这项研究的第一作者、该大学麦克唐纳空间科学中心(McDonnellCenterfortheSpaceSciences)的研究员德夫说:"我们有充分的理由怀疑,超越标准模型的新物理学可能就潜伏在不远处。"中子星合并的启示当两颗中子星合并时,会在短时间内形成一个高温、高密度的残余物。德夫说,这个残余物是产生奇异粒子的理想温床。残余物会在一秒钟内变得比单个恒星热得多,然后根据初始质量的不同,沉淀为一颗更大的中子星或黑洞。在这幅动画中,注定要灭亡的中子星呼啸着走向灭亡,它代表了在GW170817发生九天后观测到的现象。图片来源:美国宇航局戈达德太空飞行中心/CI实验室这些新粒子悄无声息地逃离了碰撞的碎片,在远离其源头的地方,可以衰变成已知的粒子,通常是光子。德夫和他的团队(包括华盛顿大学校友史蒂文-哈里斯(现为印第安纳大学NP3M研究员)以及让-弗朗索瓦-福尔廷、库弗-辛哈和张永超)发现,这些逃逸的粒子会产生独特的电磁信号,可以被美国宇航局的费米-LAT等伽马射线望远镜探测到。研究小组分析了这些电磁信号的光谱和时间信息,确定他们可以将这些信号与已知的天体物理背景区分开来。然后,他们利用费米-LAT关于GW170817的数据,推导出轴子-光子耦合作为轴子质量函数的新约束条件。这些天体物理约束与实验室实验(如轴子暗物质实验(ADMX))的约束相辅相成,后者探测的是轴子参数空间的不同区域。粒子物理学的未来前景未来,科学家们可以利用现有的伽马射线太空望远镜(如费米-LAT)或拟议中的伽马射线任务(如华盛顿大学领导的先进粒子-天体物理学望远镜(APT)),在中子星碰撞期间进行其他测量,帮助提高他们对类轴心粒子的理解。德夫说:"中子星合并等极端天体物理环境为我们寻找轴子等暗部门粒子提供了新的机会之窗,轴子可能是了解宇宙中缺少的85%物质的关键。"编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423415.htm手机版:https://m.cnbeta.com.tw/view/1423415.htm

封面图片

科学简单点:什么是暗物质和暗能量?

科学简单点:什么是暗物质和暗能量?人类对天空的研究已有数千年的历史,而在上个世纪,科学家们才真正开始了解宇宙是如何在一种叫做"万有引力"的力量影响下运动和变化的。万有引力影响着万物,不仅包括物质(科学术语),还包括光。它把我们的身体拉向地球,也在恒星和星系之间的遥远距离上发挥作用。在这段"科学101"视频中,博士后研究员吉莉安-贝尔茨-莫尔曼(GillianBeltz-Mohrmann)和弗洛里安-凯鲁佐雷(FlorianKéruzoré)将探讨科学界的两大谜团:暗物质和暗能量。这些奇怪的影响因素似乎正在以意想不到的方式将宇宙拉伸开来,并将物质聚集在一起。它们加在一起占宇宙的95%,但由于我们看不见、摸不着,所以不知道它们是什么。全球各地的研究人员,包括美国能源部阿贡国家实验室的科学家,正在通过大型宇宙学调查、粒子物理实验以及先进的计算和模拟,研究暗物质和暗能量的本质。引力在星系的形成和移动过程中起着至关重要的作用。随着科学家对宇宙了解的加深,他们发现除非存在大量看不见的物质--比我们尚未发现的物质还要多得多--否则星系的许多行为都是不合理的。这种看不见的物质--或者说暗物质--会产生额外的引力。如果它不存在,有些星系就会飞散,有些星系根本就不会形成。这张图展示了一个真实的例子,说明暗物质如何使螺旋星系的外部区域比只受可见物质引力影响的星系旋转得更快。这种差异表明暗物质的存在,施加了额外的引力。资料来源:阿贡国家实验室我们称它为"暗"是因为我们看不见它。与可见物质(我们能看到的物质,包括恒星、行星、水等)不同,它不会释放或吸收光线,也不会与其他物质相互作用,除非通过引力。我们知道它应该在哪里,但当我们观察时却什么都没有。这就像看到池塘里的涟漪,却看不到是什么造成的。与此同时,另一些东西正在推动宇宙以越来越快的速度膨胀。据我们所知,宇宙从138亿年前开始就一直在膨胀。天体之间的空间不断增大,就好像空间本身被拉伸开来,就像气球充气时的表面一样。科学家本以为这种膨胀的速度会随着时间的推移而减慢,但他们却发现了相反的情况。大约50亿年前,宇宙膨胀的速度开始加快。我们不知道是什么导致了这种加速膨胀,但我们把它命名为暗能量。来自暗物质的引力可以弯曲从遥远星系发出的光线,导致它们的图像在到达我们的望远镜时出现扭曲。这种现象被称为引力透镜,它揭示了暗物质的存在,即使我们看不到它。资料来源:阿贡国家实验室据科学家所知,可见物质只占宇宙的5%。暗物质和暗能量据信分别占另外的27%和68%。换句话说,我们所熟知的--可见物质--根本无法解释宇宙绝大部分物质的性质。那么,科学家们是如何试图解开这个谜团的呢?什么是暗物质和暗能量?为了找出答案,我们需要数据,而且是大量的数据。为了收集这些数据,科学家们建造了巨型望远镜和照相机。其中包括外太空的哈勃太空望远镜和詹姆斯-韦伯太空望远镜;南极洲的南极望远镜;亚利桑那州的暗能量光谱仪;以及智利的暗能量勘测和即将建成的维拉-C-鲁宾天文台。宇宙主要由暗能量和暗物质组成。可见物质(我们能看到的一切,包括恒星和行星)只占宇宙的5%左右。科学家们正在研究这未知的95%的性质。图片来源:阿贡国家实验室这些灵敏的仪器对天空进行勘测,以揭示星系在宇宙中的位置和移动情况。超级计算机帮助科学家对宇宙进行详细模拟,并分析来自望远镜的数据。除了在天空中寻找答案,科学家们还在建造敏感的探测器,以直接在地球上寻找暗物质。美国能源部阿贡国家实验室的研究人员通过参与这些大型宇宙学调查、粒子物理实验以及使用先进的计算和模拟,为暗物质和暗能量的研究做出了贡献。来自这些测量和模拟的信息帮助科学家绘制出暗物质存在的地图,并提供了有关暗能量性质的线索。随着我们的望远镜、超级计算机和其他仪器越来越先进,我们发现越来越多的证据表明,我们遗漏了一些重大的东西,科学家们正在努力了解它可能是什么。阿贡科学家们的工作正在让世界离揭开这些宇宙之谜越来越近。编译自:ScitechDaily相关文章:科学简单点:什么是超级计算?科学简单点:什么是人工智能?科学简单点:什么是量子力学?科学简单点:什么是水力发电?科学简单点:什么是核能?科学简单点:什么是气候复原力?科学简单点:什么是纳米科学?...PC版:https://www.cnbeta.com.tw/articles/soft/1425688.htm手机版:https://m.cnbeta.com.tw/view/1425688.htm

封面图片

暗能量与暗物质获迄今最精确计算

暗能量与暗物质获迄今最精确计算美国天体物理学家的一项分析,对宇宙的组成和演化设置了迄今为止最精确的限制。通过这种被称为Pantheon+的分析,宇宙学家确认宇宙由大约三分之二的暗能量和三分之一的物质组成,这种物质主要以暗物质的形式,在过去数十亿年中加速膨胀。研究结果近日发表在《天体物理学杂志》特刊上。PC版:https://www.cnbeta.com/articles/soft/1329785.htm手机版:https://m.cnbeta.com/view/1329785.htm

封面图片

宇宙发光猎手:脉冲星之光能否揭开暗物质的神秘面纱?

宇宙发光猎手:脉冲星之光能否揭开暗物质的神秘面纱?目前寻找暗物质的核心问题是:暗物质是由什么构成的?一个可能的答案是,暗物质由被称为轴子的粒子组成。阿姆斯特丹大学和普林斯顿大学的天体物理学家最近的研究提出,如果暗物质确实是由轴子构成的,那么它可能会以脉动恒星发出的微弱额外光辉的形式显现出来。暗物质可能是我们宇宙中最炙手可热的成分。令人惊讶的是,这种神秘的物质形式,物理学家和天文学家迄今为止还未能探测到,但却被认为占了宇宙物质的很大一部分。宇宙中不少于85%的物质被怀疑是"暗物质",目前只能通过它对其他天文物体产生的引力来察觉。科学家们想要更多,这是可以理解的。他们想真正看到暗物质--或者至少直接探测到它的存在,而不只是从引力效应中推断。当然,他们还想知道暗物质是什么。解决两个问题有一点很清楚:暗物质不可能是你我由同一种物质构成的。如果是这样的话,暗物质的行为就会像普通物质一样--它会形成像恒星一样的物体,发光,不再是"暗"的。因此,科学家们正在寻找一种新的东西--一种尚未被人探测到的粒子,它很可能只与我们已知的粒子类型发生非常微弱的相互作用,这也解释了为什么我们世界的这一组成部分至今仍难以捉摸。我们有很多线索可以寻找。一种流行的假设是,暗物质可能是由轴子构成的。这种假想的粒子类型最早出现在20世纪70年代,是为了解决一个与暗物质无关的问题。作为普通原子的组成部分之一,中子内部正负电荷的分离程度出乎意料地小。科学家们当然想知道原因。结果发现,有一种迄今为止尚未发现的粒子与中子的成分发生非常微弱的相互作用,恰恰会产生这种效应。后来的诺贝尔奖得主弗兰克-威尔切克(FrankWilczek)为这种新粒子起了一个名字:轴子--不仅与质子、中子、电子和光子等其他粒子名称相似,而且还受到一种同名洗衣粉的启发。轴子的出现是为了解决一个问题。事实上,尽管从未被探测到,但它可能会解决两个问题。包括弦理论(统一自然界所有力量的主要候选理论之一)在内的几种基本粒子理论似乎都预测可能存在类似轴子的粒子。如果轴子确实存在,它们是否也能构成部分甚至全部缺失的暗物质?也许是的,但困扰所有暗物质研究的另一个问题对轴子同样适用:如果是这样,我们如何才能看到它们?如何让"黑暗"的东西变得可见?照亮暗物质幸运的是,对于轴子来说,似乎有办法解决这个难题。如果预测轴子的理论是正确的,那么它们不仅有望在宇宙中大量产生,而且一些轴子还可能在强电磁场的作用下转化为光。一旦有了光,我们就能看见。这会是探测轴子--进而探测暗物质--的关键吗?要回答这个问题,科学家们首先要问自己,宇宙中已知最强的电场和磁场出现在哪里?答案是:在旋转中子星(又称脉冲星)周围的区域。这些脉冲星--"脉冲星"的简称--是一种致密天体,质量与太阳大致相同,但半径却小了约10万倍,只有约10千米。脉冲星如此之小,却以极高的频率旋转,沿着旋转轴发出明亮的窄射电束。脉冲星的光束就像灯塔一样,可以扫过地球,使人们很容易观测到脉冲星。然而,脉冲星巨大的自转还有更多作用。它把中子星变成了一个极强的电磁铁。这反过来可能意味着脉冲星是非常高效的轴子工厂。一颗普通的脉冲星每秒钟就能产生50位数的轴子。由于脉冲星周围存在强大的电磁场,这些轴子中的一部分可以转化为可观测到的光。也就是说:如果轴子存在的话--但现在可以用这一机制来回答这个问题。只要观察脉冲星,看看它们是否会发出额外的光,如果会,就确定这些额外的光是否可能来自轴子。模拟微妙的光芒在科学领域,要真正进行这样的观测当然没那么简单。轴子发出的光可以用无线电波的形式探测到--只是这些明亮的宇宙灯塔向我们发出的总光的一小部分。我们需要非常精确地知道一颗没有轴子的脉冲星和一颗有轴子的脉冲星是什么样子,才能看出其中的差别--更不用说量化这种差别并将其转化为暗物质数量的测量值了。这正是一组物理学家和天文学家现在所做的。在荷兰、葡萄牙和美国的共同努力下,研究小组构建了一个全面的理论框架,可以详细了解轴子是如何产生的、轴子是如何逃离中子星引力的,以及在逃离过程中轴子是如何转化为低能射电辐射的。然后将这些理论结果放到计算机上,利用最先进的等离子体数值模拟来模拟脉冲星周围轴子的产生,这种模拟最初是为了了解脉冲星如何发射无线电波背后的物理学原理而开发的。一旦虚拟产生,轴子在中子星电磁场中的传播就会被模拟出来。这使得研究人员能够定量地了解无线电波的后续产生,并模拟这一过程如何在脉冲星本身产生的固有发射之外提供额外的无线电信号。检验轴心模型理论和模拟的结果随后接受了第一次观测检验。利用对附近27颗脉冲星的观测,研究人员将观测到的无线电波与模型进行了比较,以确定测量到的任何过量是否能为轴子的存在提供证据。不幸的是,答案是"否"--或者乐观一点说:"还没有"。轴子并没有立即出现在我们面前,但也许这并不在我们的预料之中。如果暗物质那么容易泄露秘密,那么它早就被观测到了。因此,我们现在只能寄希望于在未来的观测中发现轴子。与此同时,目前没有观测到轴子发出的无线电信号本身就是一个有趣的结果。模拟脉冲星和实际脉冲星之间的首次比较,为轴子与光的相互作用设定了迄今为止最严格的限制。当然,我们的最终目标不仅仅是设定限制,而是要证明轴子确实存在,或者确保轴子根本不可能是暗物质的组成部分。新成果只是朝着这个方向迈出的第一步;它们只是一个全新的、高度跨学科领域的开端,这个领域有可能极大地推动轴子的研究。参考文献"迪昂-诺德胡斯(DionNoordhuis)、阿尼鲁德-普拉布(AnirudhPrabhu)、塞缪尔-维特(SamuelJ.Witte)、亚历山大-陈(AlexanderY.Chen)、法比奥-克鲁兹(FábioCruz)和克里斯托夫-韦尼格(ChristophWeniger)合著的《脉冲星极冠级联中产生的轴子的新约束》,2023年9月15日,《物理评论快报》。DOI:10.1103/PhysRevLett.131.111004编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403853.htm手机版:https://m.cnbeta.com.tw/view/1403853.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人