三维模拟显示:超大质量黑洞只需数月就能吞噬周围的气体和尘埃

三维模拟显示:超大质量黑洞只需数月就能吞噬周围的气体和尘埃西北大学的研究人员利用Summit超级计算机对围绕超大质量黑洞旋转的倾斜薄吸积盘进行了"三维广义相对论磁流体动力学"模拟。得益于橡树岭国家实验室强大的高性能计算系统,科学家们能够模拟出比以往更加逼真的黑洞,并在此过程中发现了新的现象。研究人员指出,关于超大质量黑洞的传统理论认为,它们是一种天体实体,会在数百年甚至数十万年的时间内逐渐吞噬气体和尘埃。然而,根据新的模拟,这一消耗过程似乎可以在短短几个月内发生,恰好与活跃类星体发射所需的时间相吻合。西北大学科学家制作的三维模拟阐明,旋转的黑洞会扭曲周围的时空区域。这种现象最终会撕裂围绕黑洞的气体和尘埃漩涡,即吸积盘。这一时空扭曲过程的最终结果是将吸积盘分割成内外两个子盘,随后助长了新研究中描述的超快进食行为。研究人员称,黑洞中心的奇点最初会吞噬内环。随后,外层磁盘的碎片向内溢出,填补了内环被吞噬后留下的空隙,使吞噬过程得以重复。科学家指出,这种无休止地重复"吃"--"再吃"--"再吃"的过程只需几个月的时间。与之前的理论预测相比,这一时间尺度快得令人难以置信。这种新的模拟可以揭示宇宙中观测到的一些最亮天体(如类星体)的行为。这些准恒星天体的亮度可以达到其宿主星系内所有恒星的总和,但几个月后就会"毫无解释地"消失。领导西北大学研究的尼克-卡兹(NickKaaz)指出,经典的吸积盘理论预测黑洞周围的圆盘会发生非常缓慢的演变。然而,卡兹解释说,有些类星体的亮度会在几个月或几年内发生更剧烈的变化。在类星体中观测到的亮度快速波动与通过新的黑洞模拟观测到的多层盘及其复杂的物理相互作用相吻合。...PC版:https://www.cnbeta.com.tw/articles/soft/1385763.htm手机版:https://m.cnbeta.com.tw/view/1385763.htm

相关推荐

封面图片

从类星体到黑洞:光谱能量使既定理论受到质疑

从类星体到黑洞:光谱能量使既定理论受到质疑通过对类星体中超大质量黑洞产生的辐射进行研究,科学家们发现光谱能量分布不受类星体内在亮度的影响,这是对既有观点的挑战。他们的研究表明,标准的吸积盘理论可能无法完全解释观测到的现象,强调了吸积盘风可能发挥的作用。此外,他们的研究还揭示了类星体的平均极紫外光谱能量分布与经典吸积盘理论的预测有很大偏差。这一发现对经典模型提出了挑战,并为包含广泛吸积盘风的模型提供了有力支持。相关结果于2023年10月5日在线发表在《自然-天文学》上。图1:艺术家绘制的超大质量黑洞吸积气体并在吸积盘中发光的示意图。资料来源:NASA/JPL-Caltech类星体是一类极其明亮的河外星系天体,其中心的大质量超大质量黑洞不断吞噬着宿主星系核心区域的气体。巨大的引力势能被释放到气体形成的吸积盘上,转化为热能和电磁辐射,从而形成异常明亮的星系核。类星体也被称为"宇宙巨兽",因为它们的本征光度特别高。根据标准的吸积盘理论,吸积盘会在光谱能量分布中产生众所周知的"蓝色大凸起",其峰值预计会出现在极紫外区。中心黑洞的质量越大,吸积盘的预期温度就越低,极紫外光谱就越柔和。观测发现,亮度更高的类星体(超大质量黑洞质量更大)显示出相对较弱的发射线(由更柔和的极紫外光谱解释),这就是著名的鲍德温效应(BaldwinEffect),似乎与经典的吸积盘模型一致。图2:类星体的紫外光谱能量分布斜率(右轴,空心数据点)与固有亮度无关,无法解释鲍德温效应(左轴,实心数据点)。资料来源:中国科学技术大学挑战经典理论蔡振义副教授和王俊贤教授的研究直接关注大样本类星体的光学-紫外光谱能量分布。该研究利用了地面SDSS和空间GALEX的观测数据,控制了紫外探测的不完整性。他们发现类星体的平均紫外光谱能量分布并不取决于其内在亮度,这不仅表明内在亮度的差异无法解释鲍德温效应,而且对标准吸积盘理论的预测提出了挑战。同时,研究人员提出了鲍德温效应可能的新物理起源:亮度更高的类星体吸积盘温度波动更弱,因此无法发射更多的发射线云。图3:类星体的平均本征光学-紫外光谱能量分布(红色数据点),明显比标准吸积盘预测值(左图)柔和,但与盘风模型预测值(右图)一致。资料来源:中国科学技术大学提出新模型此外,研究还修正了星系间介质吸收的影响,发现类星体的平均极紫外光谱比之前所有的研究结果都要柔和。这一差异对标准吸积盘模型提出了重大挑战,但与吸积盘风模型的预测结果十分吻合,表明类星体中普遍存在盘风。这项研究的结果对于深入理解超大质量黑洞吸积物理学、黑洞质量增长、宇宙再电离、宽线区起源、极紫外尘埃消光等各个方面具有广泛的意义。未来,具有紫外线探测能力的卫星项目,如中国空间站望远镜(CSST),将大大增强我们对类星体和类似天体物理性质的了解。...PC版:https://www.cnbeta.com.tw/articles/soft/1388701.htm手机版:https://m.cnbeta.com.tw/view/1388701.htm

封面图片

澳州天文学家发现迄今成长最快的黑洞

澳州天文学家发现迄今成长最快的黑洞澳大利亚科研人员称发现了迄今已知成长最快的黑洞,它每天吞噬掉的物质质量相当于一个太阳。新华社星期二(2月20日)报道,澳大利亚国立大学研究人员领衔的团队日前在英国《自然·天文学》杂志上发表论文说,这个黑洞的质量高达太阳的170亿倍,距离地球超过120亿光年。欧洲南方天文台发布的公报指出,这个黑洞所在的类星体代号为J0529-4351,不仅是迄今观测到的最明亮类星体,也是迄今观测到的最明亮天体。据介绍,这个黑洞的吸积盘直径达7光年,超过太阳系到其相邻恒星系统半人马座阿尔法星系的距离。论文第一作者、澳大利亚国立大学天文学和天体物理学研究学院副教授克里斯蒂安·沃尔夫说,这个黑洞“令人难以置信的成长速度意味着光和热的大量释放”,因此它所在的类星体也成为“宇宙中迄今已知的最明亮物体”。事实上,J0529-4351一直掩藏在“众目睽睽之下”。之前,研究人员利用电脑模型分析欧洲航天局“盖亚”空间探测器采集的相关数据时,错将J0529-4351识别为一颗恒星,直到最近通过地面望远镜观测才将其确定为类星体。类星体是活动星系核,由其中心的超大质量黑洞所驱动。当黑洞周围的气体被吞噬时会形成漩涡状吸积盘,巨大的引力势在吸积盘上得以释放,转化为热能和电磁辐射,使得类星体异常明亮。2024年2月20日10:09PM

封面图片

天文学家发现最亮的类星体J059-4351 由每天吞噬一个太阳的超大质量黑洞驱动

天文学家发现最亮的类星体J059-4351由每天吞噬一个太阳的超大质量黑洞驱动这幅艺术家印象图显示的是破纪录的类星体J059-4351,它是一个遥远星系的明亮核心,由一个超大质量黑洞驱动。通过使用欧洲南方天文台位于智利的甚大望远镜(VLT),我们发现这个类星体是迄今为止已知的宇宙中最亮的天体。从这里可以看到,这个超大质量黑洞正在吸积周围的物质,它的质量是太阳的170亿倍,并且每天以相当于一个太阳的速度在增长,这使它成为有史以来已知的增长速度最快的黑洞。图片来源:ESO/M.科恩梅瑟类星体是遥远星系的明亮核心,由超大质量黑洞驱动。这颗破纪录的类星体中的黑洞质量每天以相当于一个太阳的速度增长,是迄今为止增长速度最快的黑洞。类星体的黑洞从周围环境中收集物质,这个过程能量巨大,会发出大量的光。因此,类星体是我们天空中最亮的一些天体,也就是说,从地球上甚至可以看到遥远的类星体。一般来说,最亮的类星体代表着增长最快的超大质量黑洞。天文学家已经确定了迄今观测到的最亮类星体的特征,它是由增长最快的黑洞驱动的。这个黑洞的质量每天以相当于一个太阳的速度增长。被拉向这个黑洞的物质形成了一个直径为7光年的圆盘--大约是太阳到海王星轨道距离的15000倍。资料来源:欧洲南方天文台"我们发现了迄今所知增长最快的黑洞。它的质量为170亿个太阳,每天吃掉一个以上的太阳。"澳大利亚国立大学(ANU)天文学家、今天发表在《自然-天文学》上的这项研究的第一作者克里斯蒂安-沃尔夫(ChristianWolf)说:"这使它成为已知宇宙中最亮的天体。这颗类星体被称为J0529-4351,距离地球非常遥远,它的光需要120多亿年才能到达我们这里。"J0529-4351发出的能量是太阳的500万亿倍。"所有这些光都来自一个直径达7光年的热吸积盘--这一定是宇宙中最大的吸积盘,"ANU博士生兼合著者塞缪尔-赖(SamuelLai)说。7光年大约是太阳到海王星轨道距离的15000倍。这张图片显示了破纪录的类星体J0529-4351所在的天空区域。通过使用欧洲南方天文台(ESO)位于智利的甚大望远镜(VLT),我们发现这颗类星体是迄今为止已知的宇宙中最亮的天体。这张照片是根据数字化巡天2的部分图像制作的,插图显示了暗能量巡天图像中类星体的位置。图片来源:ESO/数字化巡天2/暗能量巡天而且,令人惊讶的是,这个破纪录的类星体竟然隐藏在众目睽睽之下。"直到今天,它仍然不为人知,而我们之前已经知道了多余一百万个不那么令人印象深刻的类星体。"合著者、澳大利亚国立大学天文学家克里斯托弗-昂肯(ChristopherOnken)说。这个天体早在1980年就出现在ESO施密特南天巡天的图像中,但直到几十年后才被确认为类星体。寻找类星体需要从大面积天空中获取精确的观测数据。由此产生的数据集非常庞大,研究人员通常使用机器学习模型来分析这些数据集,并将类星体与其他天体区分开来。然而,这些模型是在现有数据的基础上训练出来的,这就把潜在的候选天体限制在了与已知天体相似的天体上。如果一个新的类星体比之前观测到的任何其他类星体都更亮,程序可能会拒绝它,而将其归类为距离地球不太遥远的恒星。这幅艺术家印象图显示的是类星体J0529-4351,它是一个遥远星系的明亮核心,由一个超大质量黑洞驱动。图片来源:ESO/M.Kornmesser此前来自欧洲航天局盖亚卫星的数据进行的自动分析认为J0529-4351太亮,不可能是类星体,而认为它是一颗恒星。去年,研究人员利用澳大利亚赛丁泉天文台(SidingSpringObservatory)的ANU2.3米望远镜进行观测,确定它是一颗遥远的类星体。然而,要发现它是迄今观测到的最亮的类星体,需要更大的望远镜和更精确的仪器进行测量。位于智利阿塔卡马沙漠的欧洲南方天文台VLT上的X-shooter摄谱仪提供了至关重要的数据。这个迄今为止观测到的增长最快的黑洞也将成为欧洲南方天文台VLT干涉仪(VLTI)GRAVITY+升级的完美目标,该干涉仪旨在精确测量黑洞的质量,包括那些远离地球的黑洞。此外,欧洲南方天文台正在智利阿塔卡马沙漠建造的39米望远镜--极大型望远镜(ELT),将使识别和描述这类难以捉摸的天体变得更加可行。这段视频将带领我们从银河系远眺天空,来到类星体J0529-4351,这是一个遥远星系的明亮核心,位于Pictor星座方向。视频的最后是艺术家对这个破纪录天体的印象;其他所有画面都是真实的天文图像。图片来源:ESO/N.Risinger(skysurvey.org)/DigitizedSkySurvey2/DarkEnergySurvey/M.Kornmesser.音乐:AstralElectronicAstralElectronic寻找和研究遥远的超大质量黑洞可以揭示早期宇宙的一些奥秘,包括它们及其宿主星系是如何形成和演化的。但这并不是沃尔夫寻找它们的唯一原因。他说:"就我个人而言,我只是喜欢追逐的感觉。每天有几分钟的时间,我都会感觉自己又回到了孩提时代,玩着寻宝游戏,现在我把我从那时起学到的一切都带到了桌面上。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419349.htm手机版:https://m.cnbeta.com.tw/view/1419349.htm

封面图片

黑洞在宇宙大爆炸后不到十亿年形成类星体

黑洞在宇宙大爆炸后不到十亿年形成类星体早期宇宙中似乎不可能存在超大质量黑洞,这已经是个问题了;詹姆斯-韦伯太空望远镜发现了更早的超大质量黑洞星系,这只会让问题变得更糟。在最新的例子中,研究人员利用韦伯望远镜描述了一个由超大质量黑洞驱动的类星体,它存在于宇宙大爆炸后大约7.5亿年。它看起来正常得令人震惊。类星体是宇宙中最亮的天体,由主动进食的超大质量黑洞提供能量。它们周围的星系为它们提供了足够的物质,使它们形成了明亮的吸积盘和强大的喷流,两者都会释放出大量的辐射。它们通常有一部分被尘埃笼罩,尘埃吸收了黑洞释放的部分能量后会发光。这些类星体发出的辐射量非常大,最终会把附近的一些物质完全赶出星系。因此,早期宇宙中存在的这些特征将告诉我们,超大质量黑洞不仅存在于早期宇宙中,而且还与星系融为一体,就像近代的星系一样。但是要研究它们却非常困难。首先,我们发现的超大质量黑洞并不多;只有九颗类星体可以追溯到8亿年前的宇宙。由于距离太远,很难分辨出它们的特征,而且宇宙膨胀引起的红移将许多元素的强烈紫外线辐射带到了红外线深处。然而,韦伯望远镜是专门为探测早期宇宙中的天体而设计的,它对这种辐射出现的红外线波长非常敏感。因此,新的研究是基于将韦伯望远镜对准九个早期类星体中第一个被发现的类星体--J1120+0641。它看起来并没有什么与众不同,或者至少很像宇宙历史上最近时期的类星体。研究人员对类星体产生的连续辐射进行了分析,发现有明显迹象表明,类星体被嵌入了一个炙热的、布满尘埃的物质甜甜圈中,就像在后来的类星体中看到的那样。这种尘埃的温度略高于一些较新的类星体,但这似乎是这些天体在宇宙历史早期阶段的共同特征。来自吸积盘的辐射在发射光谱中也很明显。通过各种方法估算出的黑洞质量值是太阳质量的109倍,这显然是超大质量黑洞的范畴。还有证据表明,从某些辐射的轻微蓝移来看,类星体正在以大约每秒350公里的速度向外喷射物质。有几个奇怪的现象。一是物质似乎还在以每秒约300公里的速度向内坠落。这可能是由于吸积盘中的物质远离我们而旋转造成的。但如果是这样的话,在吸积盘的另一侧向我们旋转的物质也应该与之相匹配。这种现象在非常早期的类星体中也曾出现过几次,但研究人员承认这种效应的物理起源尚不清楚。他们提出的一种解释是,整个类星体都在移动,由于早先与另一个超大质量黑洞合并,类星体被震出了星系中心的位置。另一个奇怪的现象是,高度电离碳的外流速度也非常快,大约是类星体后期外流速度的两倍。这种情况以前也出现过,但也没有任何解释。尽管有些奇怪,但这个天体看起来很像近代的类星体,观测结果表明,尘埃环和(吸积盘)的复杂结构可以在宇宙大爆炸后不到760Myr的时间内在(超大质量黑洞)周围建立起来。同样,这也是个问题,因为它表明在宇宙历史的早期,就有一个超大质量黑洞与其宿主星系融为一体。黑洞要想达到这里所看到的大小,就必须突破所谓的"爱丁顿极限"--在产生的辐射驱赶掉邻近的物质、掐断黑洞的食物供应之前,黑洞所能吸入的物质数量。这说明有两种可能。一种是这些天体在其历史的大部分时间里摄取的物质远远超过了爱丁顿极限--这是我们没有观测到的,而且这颗类星体也绝对不是这样。另一种可能是,它们一开始的质量就很大(大约是太阳质量的104倍),并以更合理的速度不断进食。但我们并不清楚这么大的东西是如何形成的。因此,早期宇宙仍然是一个相当令人困惑的地方。DOI:10.1038/s41550-024-02273-0...PC版:https://www.cnbeta.com.tw/articles/soft/1435229.htm手机版:https://m.cnbeta.com.tw/view/1435229.htm

封面图片

距地球3.6亿光年超大黑洞苏醒 开始吞噬周围一切物质

距地球3.6亿光年超大黑洞苏醒开始吞噬周围一切物质研究称,这个超大黑洞位于SDSS1335+0728星系,距离地球大约3.6亿光年;星系直径约为5.2万光年,总质量相当于100亿个太阳大小。参与研究的欧美科学家称,黑洞所在的星系在过去数十年均未出现异常,直到2019年12月,美国科学家发现该黑洞所在星系亮度突然上升。而该星系的亮度,是由其中的超大质量黑洞驱动的,黑洞以SDSS1335+0728星系周围的气体为食时,不断增长的物质被黑洞拉了进来,使星系发光。并且,黑洞能够吞噬一切物质,如果一颗恒星运动到其附近,可能会被强大的潮汐力所撕裂并被吸积,被“吞噬/撕裂”,这种现象称作黑洞潮汐撕裂恒星事件。至于是什么触发了这次黑洞的觉醒,目前科学界尚无定论。有理论认为,这可能是星系生命周期中自然发生的活跃周期,可能涉及恒星接近并落入黑洞的事件。此外,银河系中心的人马座A*,也存在着一个距离我们约2.6万光年、质量为太阳400万倍的超大质量黑洞,目前相对平静,不过,不排除未来它也会发生类似觉醒的可能。...PC版:https://www.cnbeta.com.tw/articles/soft/1435459.htm手机版:https://m.cnbeta.com.tw/view/1435459.htm

封面图片

揭开黑洞的磁性之谜:黑洞周围的"MAD"吸积是如何形成的?

揭开黑洞的磁性之谜:黑洞周围的"MAD"吸积是如何形成的?黑洞X射线双星MAXIJ1820+070的示意图,黑洞周围形成了一个磁捕获盘。他们发现的关键是观测到来自黑洞喷流的射电辐射和来自吸积流外部区域的光学辐射分别滞后于来自吸积流内部区域热气体(即热吸积流)的硬X射线约8天和17天。这些发现发表在8月31日的《科学》杂志上。这项研究由武汉大学的尤蓓副教授、浙江大学的曹新武教授和中国科学院上海天文台的严震研究员领导。黑洞X射线双星MAXIJ1820+070的多波长光曲线(显示亮度随时间的变化)黑洞捕获气体的过程被称为"吸积",落入黑洞的气体被称为吸积流。吸积流内部的粘性过程会有效释放引力势能,其中一部分能量会转化为多波长辐射。这种辐射可以被地面和太空望远镜观测到,让我们"看到"黑洞。然而,黑洞周围还有"看不见"的磁场。当黑洞吸积气体时,也会将磁场向内拖拽。以前的理论认为,随着吸积气体不断带来微弱的外部磁场,磁场会逐渐向吸积流的内部区域增强。吸积流向外的磁力增加,抵消了黑洞向内的引力。因此,在黑洞附近的吸积流内部区域,当磁场达到一定强度时,吸积物质就会被磁场困住,无法自由落入黑洞。这种现象被称为磁捕获盘。MAD理论多年前就已提出,并成功解释了一些与黑洞吸积有关的观测现象。然而,当时并没有直接的观测证据证明MAD的存在,MAD的形成和磁传输机制仍然是个谜。吸积流、磁场和喷流演化示意图除了几乎所有星系中心的超大质量黑洞之外,宇宙中还有更多恒星质量的黑洞。天文学家在银河系的许多双星系统中都探测到了恒星质量的黑洞。这些黑洞的质量通常是太阳的十倍左右。大多数时候,这些黑洞处于静止状态,发射极弱的电磁辐射。不过,它们偶尔也会进入爆发期,爆发期可以持续几个月甚至几年,产生明亮的X射线。因此,这类双星系统通常被称为黑洞X射线双星。在这项研究中,研究人员对黑洞X射线双星MAXIJ1820+070的爆发进行了多波长数据分析。他们观察到,硬X射线发射出现了一个峰值,8天后射电发射也出现了一个峰值。喷流的射电辐射与热吸积流的硬X射线之间如此长的延迟是前所未有的。这些观测结果表明,吸积盘外部区域的弱磁场被热气体带入内部区域,随着吸积率的降低,热吸积流的径向范围迅速扩大。热吸积流的径向范围越大,磁场的增幅就越大。这导致黑洞附近的磁场迅速增强,从而在硬X射线发射峰值出现大约8天后形成MAD。"我们的研究首次揭示了吸积流中的磁场传输过程和黑洞附近的MAD形成过程。这是磁捕获盘存在的直接观测证据,"该研究的第一作者和共同通讯作者YouBei副教授说。此外,研究小组还观测到来自吸积流外部区域的光学发射与来自热吸积流的硬X射线之间出现了前所未有的延迟(约17天)。通过对黑洞X射线双星爆发的数值模拟,研究人员发现当爆发接近尾声时,硬X射线的辐照会导致更多来自远外层区域的吸积物质由于不稳定性而向黑洞坠落。这导致吸积流外围区域出现光学耀斑,其峰值出现在来自热吸积流的硬X射线峰值之后约17天。该研究的共同通讯作者曹新武教授说:"由于黑洞吸积物理学的普遍性,不同质量尺度黑洞的吸积过程遵循相同的物理规律,因此这项研究将推进对不同质量尺度吸积黑洞的大尺度磁场形成、喷流动力和加速机制等相关科学问题的理解。"该研究的共同通讯作者阎真教授指出,在不久的将来,有望在更多的吸积黑洞系统中观测到与MAXIJ1820+070类似的现象。...PC版:https://www.cnbeta.com.tw/articles/soft/1381353.htm手机版:https://m.cnbeta.com.tw/view/1381353.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人