X射线计算机视觉揭示前所未有的锂电池物理和化学细节

X射线计算机视觉揭示前所未有的锂电池物理和化学细节来自SLAC、斯坦福大学、麻省理工学院和丰田研究所的研究小组利用机器学习重新分析了电池循环过程中锂离子进出电池电极纳米粒子(左)的X射线图像。图像中的假色显示了每个粒子的电荷状态,并揭示了单个粒子内部的变化过程是多么不均匀。图片来源:Cube3D9月13日,来自美国能源部SLAC国家加速器实验室、斯坦福大学、麻省理工学院和丰田研究所的研究人员在《自然》杂志上报告说,这种新方法已经提出了一种方法,可以使一种锂离子电池电极中的数十亿纳米粒子更有效地储存和释放电荷。斯坦福大学副教授、SLAC院系科学家兼SLAC-斯坦福电池中心主任WilliamChueh说:"现在能制作出电池纳米粒子工作时的精美X射线影片,但这些影片信息量太大,要了解粒子如何发挥作用的微妙细节确实是个挑战,"他与麻省理工学院教授MartinBazant共同领导了这项研究。"Chueh说:"现在我们可以获得以前不可能获得的见解。我们的行业合作伙伴需要这种以科学为基础的基本信息,以便更快地开发出更好的电池。"研究人员说,从更广泛的意义上讲,这种发现图像中复杂图案背后的物理学原理的方法甚至可以为其他类型的化学和生物系统(如发育中胚胎的细胞分裂)提供前所未有的洞察力。透视电池泄露秘密研究小组所研究的电池微粒由磷酸铁锂或LFP制成。它们以数十亿计地装入许多锂离子电池的正极,每个正极都涂有一层薄薄的碳,以提高电极的导电性。为了观察电池工作时内部发生的情况,Chueh的团队制造了微型透明电池,其中两个电极被充满自由移动锂离子的电解质溶液包围。当电池放电时,锂离子流入正极的锂离子电池电极,并像拥挤的停车场中的汽车一样停在其纳米颗粒中,这种反应被称为插层。当电池充电时,锂离子会再次流出,到达相反的负极。来自SLAC、斯坦福大学、麻省理工学院和丰田研究所的研究小组利用机器学习技术,逐像素重新分析了像这样的X射线影片,发现了电池循环的新物理和化学细节。这段动画基于该团队在2016年制作的X射线图像。它展示了锂离子电池电极中数十亿个纳米粒子中的一些粒子在锂离子流入和流出时的充电(红到绿)和放电(绿到红)过程,并揭示了单个粒子内部的过程是多么不均匀。资料来源:SLAC国家加速器实验室丰田研究所能源与材料高级主管布莱恩-斯托里(BrianStorey)说:"磷酸铁锂是一种重要的电池材料,因为它成本低、安全性能好,而且使用丰富的元素。我们看到LFP在电动汽车市场的应用越来越广泛,因此这项研究的时机再好不过了。"合作历史和先前的工作Chueh和Bazant八年前开始合作进行电池研究。Bazant已经对锂离子进出LFP粒子时形成的图案进行了大量的数学建模。Chueh一直在使用劳伦斯伯克利国家实验室先进光源的先进X射线显微镜,拍摄电池颗粒工作时的纳米级电影,细节可小至十亿分之一米。2016年,他们的研究团队发表了突破性的纳米级影片,展示了锂离子如何进出单个LFP纳米粒子。随后,在丰田研究院的资助下,该团队开始使用麻省理工学院开发的机器学习工具,大大加快了电池测试和筛选众多可能的充电方法以找到最有效方法的过程。他们还将在数据中寻找模式的传统机器学习与从实验中获得的知识和物理学指导下的方程式相结合,发现并解释了缩短快速充电锂离子电池寿命的过程。逐像素分析在这项最新研究中,Chueh和Bazant使用了机器学习的一个子领域--计算机视觉,从他们在2016年拍摄的62张关于锂离子电池颗粒充电或放电的纳米级X射线影片中挖掘出了更多详细信息。这些影片中的每张静止图像都包含大约490个像素--这是可以从图像中获取的最小信息单位,无论是用X射线照射探测器还是用可见光照射智能手机摄像头拍摄的图像。这就为他们提供了大约180000个像素的信息。研究小组利用这18万个像素来训练他们的计算模型,以生成能准确描述锂插入反应如何进行的方程。他们发现,离子在LFP粒子内的运动与Bazant的计算机模拟预测非常吻合。Bazant说:"里面的每个小像素都在从满到空,从满到空地跳跃。我们正在绘制整个过程的地图,用我们的方程来理解这是如何发生的。""新技术揭示了一些以前无法看到的现象,包括单个LFP纳米粒子不同区域锂插入反应速率的变化。"巴赞特说,"有些区域的反应速度似乎很快,有些则很慢"。论文最重要的实际发现是,LFP粒子碳涂层厚度的变化直接控制着锂离子的进出速度,这可能会带来更高效的充电和放电。科学家们从这项研究中了解到,控制电池过程的是液态电解质和固态电极材料之间的界面--插层反应和颗粒碳涂层厚度的变化在这里以复杂的方式相互作用。这意味着,下一步的重点应该真正放在该界面的工程设计上。丰田研究所的Storey补充说:"这篇论文的发表是我们六年努力与合作的结晶。这项技术让我们以一种前所未有的方式揭开了电池的内部构造。我们的下一个目标是通过应用这一新的认识来改进电池设计。"...PC版:https://www.cnbeta.com.tw/articles/soft/1385821.htm手机版:https://m.cnbeta.com.tw/view/1385821.htm

相关推荐

封面图片

韩国研究人员为未来的锂电池开发出一种新型轻质结构

韩国研究人员为未来的锂电池开发出一种新型轻质结构浦项科技大学(POSTECH)化学系的SoojinPark教授和博士生Dong-YeobHan与韩国能源研究所(KIER)的GyujinSong博士以及浦项N.EX.THUB的研究团队合作开发出了一种三维聚合物结构。这种轻质结构有利于锂(Li)离子的传输。他们的研究成果最近发表在国际期刊《先进科学》(AdvancedScience)的网络版上。电池技术的进步用于电动汽车和智能手机等电子设备的电池技术不断发展。值得注意的是,锂金属阳极的能量容量为3860mAh/g,是目前商业化石墨阳极的十倍以上。锂金属阳极可以在更小的空间内储存更多的能量,而且与石墨或硅不同,锂金属阳极可以作为电极直接参与电化学反应。然而,在充电和放电过程中,锂离子的不均匀分布会产生被称为"死锂"的区域,从而降低电池的容量和性能。此外,当锂向一个方向增长时,它可能会到达相反一侧的阴极,从而造成内部短路。虽然最近的研究重点是优化三维结构中的锂传输,但这些结构大多依赖重金属,大大降低了电池的单位重量能量密度。锂电沉积后的混合结构内部几何形状示意图。资料来源:POSTECH用于阳极的创新型三维结构为了解决这个问题,研究小组利用聚乙烯醇(一种对锂离子具有高亲和力的轻质聚合物)与单壁碳纳米管和纳米碳球相结合,开发出了一种混合多孔结构。这种结构比通常用于电池阳极的铜(Cu)集流体轻五倍以上,对锂离子有很高的亲和力,有利于锂离子通过三维多孔结构中的空隙迁移,实现均匀的锂电沉积。在实验中,采用了该团队三维结构的锂金属阳极电池在经过200多次充放电循环后表现出很高的稳定性,并达到了344Wh/kg(能量与电池总重量之比)的高能量密度。值得注意的是,这些实验使用的是代表实际工业应用的袋装电池,而不是实验室规模的纽扣电池,这凸显了该技术商业化的巨大潜力。POSTECH的SoojinPark教授表达了这项研究的意义,他说:"这项研究为最大限度地提高锂金属电池的能量密度开辟了新的可能性"。KIER的GyujinSong博士强调说:"这种结构兼具轻质特性和高能量密度,是未来电池技术的一个突破"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1433139.htm手机版:https://m.cnbeta.com.tw/view/1433139.htm

封面图片

纳米级变化揭示了提高固态电池性能的线索

纳米级变化揭示了提高固态电池性能的线索研究表明,与材料的其他部分相比,接口处的振动增加更多的阻碍了锂离子的移动。这些发现于4月27日发表在《自然-材料》上,可能会导致开发新的方法来改善固态电池的离子传导性。固态电池包含由固体材料制成的电解质,它有希望比使用易燃液体电解质的传统锂离子电池更安全、更持久、更高效。但是这些电池的一个主要问题是,锂离子的运动受到更多限制,特别是在电解质与电极接触的地方。"我们制造更好的固态电池的能力受到了阻碍,因为我们不知道在这两种固体之间的界面上到底发生了什么,这项工作为观察这类界面提供了一个新的显微镜。通过看到锂离子在做什么,了解它们如何在电池中移动,我们可以开始设计方法,让它们更有效地来回移动。"该研究的共同第一作者托德-帕斯卡尔说,他是纳米工程和化学工程教授,也是加州大学圣地亚哥雅各布斯工程学院可持续动力和能源中心的成员。在这项研究中,帕斯卡尔与他的长期合作者、加州大学伯克利分校化学教授MichaelZuerch合作,开发了一种直接探测界面上锂离子的技术。在过去的三年里,这两个小组一直致力于开发一种全新的光谱方法,用于探测埋藏的功能性界面,如电池中存在的界面。帕斯卡尔的实验室领导了理论工作,而祖尔奇的实验室领导了实验工作。他们开发的新技术结合了两种既定的方法。第一种是X射线吸附光谱学,它涉及到用X射线束击中一种材料以确定其原子结构。这种方法对于探测材料内部深处的锂离子很有用,但在界面上却没有。因此,研究人员使用了第二种方法,称为二次谐波生成,它可以专门识别界面上的原子。它涉及到用两个连续的高能粒子脉冲击中原子--在这种情况下,是特定能量的高强度X射线束,这样电子就能达到一个高能状态,称为双激发态。这种激发状态不会持续很久,这意味着电子最终会回到它们的基态,并释放出吸附的能量,随后作为信号被检测到。这里的关键是,只有某些原子,如界面上的原子可以进行这种双重激发。因此,从这些实验中检测到的信号将必然而且只提供关于在界面上发生的事情的信息,帕斯卡尔解释说。研究人员在一个模型固态电池上使用了这种技术,该电池由两种常用的电池材料组成:作为固体电解质的镧系钛酸锂和作为阴极的氧化钴锂。为了验证他们看到的信号确实来自于界面,研究人员根据帕斯卡尔研究小组开发的方法进行了一系列的计算机模拟。当研究人员比较实验和计算数据时,他们发现这些信号几乎完全匹配。研究报告的共同第一作者萨萨瓦-贾姆努奇说:"理论工作使我们能够填补空白,并使我们在实验中看到的信号更加清晰,但是该理论的一个更大的优势是我们可以用它来回答更多的问题。例如,为什么这些信号会以这样的方式出现?"他是帕斯卡尔研究小组的一名纳米工程博士生,最近通过了博士论文答辩。解开界面上的离子运动Jamnuch和Pascal将这项工作向前推进了一步。他们对固体电解质中的锂离子的动态进行建模,并发现了一些意想不到的东西。他们发现,高频振动发生在电解质界面,与材料其他部分的振动相比,这些振动进一步限制了锂离子的移动。"这是这项研究的主要发现之一,我们能够用理论来提取,"Jamnuch说。电池研究人员长期以来一直怀疑固体电解质和电极材料之间的不相容性限制了锂离子在界面的移动。现在,Jamnuch、帕斯卡尔及其同事表明,还有其他东西在起作用。帕斯卡尔说:"实际上,在这种材料的界面上,对离子运动有一些内在的阻力。锂离子通过的障碍不仅仅是两种固体材料在机械上相互不兼容的功能,它也是材料本身振动的功能。"他将离子运动的障碍描述为类似于一个球在一个墙壁也在移动的房间内弹跳时的经历。他说:"想象一下,一个房间的后面有一个球,而这个球正试图向前面移动,现在还可以想象,房间的两侧也在移动,来回移动,这导致球从一侧反弹到另一侧。总的能量是守恒的,所以如果球从侧面反弹得更多,那么它从后面到前面的运动就会更少。换句话说,两侧的运动速度越快,球花在反弹上的时间就越多,到前面的时间就越长。同样,在这些固态电池中,锂离子穿过材料的路径受到材料本身在界面上的振动频率比在体积上的振动频率高的影响。因此,即使电解质和电极材料之间有完美的兼容性,由于这些高频振动,锂扩散通过界面仍然会有阻力。"这一计算工作让研究人员为未来的固态电池设计奠定了基础。"一个想法是减缓固体电解质材料界面的振动,"Jamnuch说。"比如说,可以通过在界面上掺入重元素来做到这一点。现在我们对锂离子如何通过这个系统有了更多的了解,我们可以合理地设计新的系统,使离子更容易通过,我们发现了可以转动的新旋钮,优化这些系统的新方法。"...PC版:https://www.cnbeta.com.tw/articles/soft/1358301.htm手机版:https://m.cnbeta.com.tw/view/1358301.htm

封面图片

锂电池循环寿命和快充性能有望大幅提升

锂电池循环寿命和快充性能有望大幅提升近日,荷兰代尔夫特理工大学的MarnixWagemaker教授团队与中核集团原子能院核物理研究所中子散射团队合作,在国际权威期刊《自然》上发表了锂离子电池领域的最新研究成果。该成果或将大幅提升锂电池循环寿命和快充性能,标志着中核集团重大科研设施中国先进研究堆全面开放应用取得重要进展。该研究围绕有序层状氧化物开展,这是目前锂离子电池中最重要的正极材料之一。在进行深度充电时,该结构框架容易受到晶格应力、结构或机械化学降解的影响,使得电池容量急剧下降,从而导致电池寿命缩短。(科技日报)

封面图片

引力透镜以前所未有的细节揭示暗物质的细微结构

引力透镜以前所未有的细节揭示暗物质的细微结构透镜系统MGJ0414+0534中的暗物质波动。蓝白色代表ALMA观测到的引力透镜图像。暗物质的计算分布以橙色显示;较亮区域表示暗物质浓度较高,暗橙色区域表示浓度较低。资料来源:ALMA(ESO/NAOJ/NRAO),K.T.Inoueetal.新研究以前所未有的细节揭示了暗物质的分布,最小尺度为30000光年。观测到的分布波动为暗物质的性质提供了更好的约束。神秘的暗物质占宇宙物质的大部分。暗物质是不可见的,只有通过引力效应才能让人们知道它的存在。暗物质从未在实验室中被分离出来,因此研究人员必须依靠"自然实验"来研究它。引力透镜是自然实验的一种。有时,由于随机的机缘巧合,从地球上看,宇宙中距离不同的两个物体会位于同一条视线上。当这种情况发生时,前景天体周围的物质所造成的空间曲率就像透镜一样,使背景天体的光线路径发生弯曲,从而形成透镜图像。然而,在自然实验中很难达到探测质量小于星系的暗物质团块的高分辨率,因此暗物质的确切性质一直没有得到很好的证实。引力透镜系统MGJ0414+0534的概念图。与透镜星系相关的暗物质显示为淡蓝色和白色。星系际空间的暗物质用橙色表示。实线表示受引力弯曲的无线电波的实际路径。虚线表示透镜图像的明显观测位置。图片来源:NAOJ,K.T.Inoue由日本景代大学教授KaikiTaroInoue领导的日本研究小组利用ALMA(阿塔卡马大型毫米波/亚毫米波阵列)研究了金牛座方向上被称为MGJ0414+0534的引力透镜系统。在这个系统中,由于大质量星系对光线的引力作用,前景天体形成的背景天体图像不是一个,而是四个。借助弯曲效应和新的数据分析方法,研究小组能够以前所未有的高分辨率探测到暗物质沿视线分布的波动,最小尺度可达3万光年。家观测到的暗物质分布所提供的新约束条件与缓慢移动或"冷"暗物质粒子的模型是一致的。未来,研究小组计划通过更多的观测来进一步制约暗物质的性质。...PC版:https://www.cnbeta.com.tw/articles/soft/1397475.htm手机版:https://m.cnbeta.com.tw/view/1397475.htm

封面图片

偏光X射线揭示了关于黑洞周围极热物质的新细节

偏光X射线揭示了关于黑洞周围极热物质的新细节天鹅座X-1系统的艺术家印象图,黑洞出现在中间,其伴星在左边。11月3日在《科学》杂志上报道的天鹅座X-1的新测量结果,代表了美国宇航局和意大利航天局的国际合作项目--成像X射线偏振探测仪(IXPE)任务对一个产生质量的黑洞的首次观测。资料来源:JohnPaice来自天鹅座X-1的新测量结果最近发表在《科学》杂志上,代表了美国宇航局和意大利航天局(ASI)之间的国际合作项目--成像X射线偏振探测仪(IXPE)任务对一个创造质量的黑洞的首次观测。天鹅座X-1是我们银河系中最明亮的X射线源之一,由一个21个太阳质量的黑洞和一个41个太阳质量的伴星组成。"以前对黑洞的X射线观测只测量了热等离子体向黑洞螺旋运动的X射线的到达方向、到达时间和能量,"主要作者HenricKrawczynski说,他是圣路易斯华盛顿大学文理学院的WaymanCrow物理学教授和该大学麦克唐纳空间科学中心的一名教员。"IXPE还测量它们的线性偏振,它携带着关于X射线如何发射的信息--以及它们是否以及在哪里从靠近黑洞的物质上散射出去。"没有任何光线,甚至是X射线的光线可以从黑洞的事件视界内逃脱。用IXPE探测到的X射线是由黑洞60公里直径的事件穹界周围2000公里直径区域的热物质或等离子体发出的。将IXPE数据与美国宇航局NICER和NuSTARX射线观测站在2022年5月和6月的同步观测相结合,使作者能够约束等离子体的几何形状--即形状和位置。研究人员发现,该等离子体垂直于一个两面的铅笔形等离子体外流或喷流延伸,这在早期的无线电观测中得到了体现。X射线偏振方向和喷流方向的一致有力地支持了这样一个假设,即靠近黑洞的X射线明亮区域的过程在发射喷流中起着关键作用。观测结果与预测模型相吻合,即热等离子体的日冕要么夹住了向黑洞旋转的物质盘,要么取代了该盘的内部部分。新的偏振数据排除了黑洞的日冕是一个狭窄的等离子体柱或沿喷流轴的锥体的模型。科学家们指出,更好地了解黑洞周围等离子体的几何形状可以揭示出许多关于黑洞的内部运作以及它们如何增加质量的信息。这些新的见解将能够改进对黑洞附近的空间和时间的重力曲线的X射线研究。与天鹅座X-1黑洞具体相关的是,IXPE观测显示,吸积流比以前认为的更加边缘化。这可能是黑洞的赤道面和双星的轨道面错位的标志,或者说是黑洞及其伴星的配对组合,该系统可能在黑洞原生星爆炸时获得了这种错位。IXPE任务使用了美国宇航局马歇尔太空飞行中心制造的X射线反射镜和由ASI、国家天体物理研究所(INAF)和国家核物理研究所合作提供的焦平面仪器,除了天鹅座X-1之外,IXPE还被用来研究广泛的极端X射线源,包括质量增加的中子星、脉冲星和脉冲星风星云、超新星遗迹、银河系中心和活动星系核。同期《科学》杂志上的第二篇论文由帕多瓦大学的RobertoTaverna领导,描述了IXPE对来自磁星4U0142+61的高偏振X射线的探测。...PC版:https://www.cnbeta.com.tw/articles/soft/1337071.htm手机版:https://m.cnbeta.com.tw/view/1337071.htm

封面图片

研究人员找到抑制锂电池枝晶生长的方法 提高其效率、安全性与寿命

研究人员找到抑制锂电池枝晶生长的方法提高其效率、安全性与寿命枝晶是锂离子电池在快速充电过程中可能出现的一种现象。当锂离子积聚在电池负极表面而不是夹杂在负极中时,就会形成一层金属锂,并持续增长成树枝形状,最终刺破隔膜,这会损坏电池,缩短其使用寿命,并导致短路,从而引发火灾和爆炸。XuekunLu博士解释说,通过优化石墨负极的微观结构,可以显著减少锂镀层。石墨负极由随机分布的微小颗粒组成,微调颗粒和电极形态以获得均匀的反应活性并降低局部锂饱和度是抑制锂电镀和提高电池性能的关键。石墨负极充电过程中的锂浓度分布用颜色表示。图片来源:XuekunLuetal/NatureCommunications"我们的研究发现,在不同条件下,石墨颗粒的锂化机制各不相同,这取决于它们的表面形态、大小、形状和取向。这在很大程度上影响了锂的分布和枝晶的倾向,"Lu博士说。"在开创性的三维电池模型的帮助下,我们可以捕捉到锂镀层何时何地开始形成,以及锂镀层的生长速度。这是一项重大突破,可能会对未来的电动汽车产生重大影响。"这项研究加深了人们对快速充电过程中锂在石墨颗粒内重新分布的物理过程的理解,为开发先进的快速充电协议提供了新的见解。这些知识可帮助实现高效的充电过程,同时最大限度地降低锂镀层的风险。除了加快充电时间外,研究还发现,改进石墨电极的微观结构可以提高电池的能量密度。这意味着电动汽车一次充电可以行驶更远的距离。这些发现是电动汽车电池开发领域的重大突破。它们可以使电动汽车充电更快、寿命更长、更安全,从而成为对消费者更具吸引力的选择。...PC版:https://www.cnbeta.com.tw/articles/soft/1379241.htm手机版:https://m.cnbeta.com.tw/view/1379241.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人