科学家成功捕捉M87黑洞喷流周期性进动

科学家成功捕捉M87黑洞喷流周期性进动9月27日深夜,国际顶尖学术期刊《自然》在线发表了这一重磅发现。动画模拟中,M87黑洞自转的样子好像一只即将停下的陀螺,在深邃的宇宙中摇摆旋转。虽然这一切看起来与人们眼前的衣食住行无关,但或许未来当人类进行星际旅行时,会回想起这一刻。几个“反常”数据触发探索灵感在浩渺宇宙中,活动星系的中央有着超大质量黑洞。这一近百年前由爱因斯坦预言的神秘天体,终于在2019年被人类拍下了第一张剪影。质量和自旋,是黑洞的两大基本参数。目前,黑洞质量已经有了成熟的估算方法,可黑洞是否会自旋,却仍是一个谜。1963年,天文学家在理论上证明了黑洞自旋的存在。而2016年引力波的发现,则使“黑洞自旋”拥有了间接证据——两个黑洞在旋转合并时,会拖拽周围时空,引发“时空涟漪”的引力波。那么,如何能获得黑洞自旋的更为直接证明?2017年,当时在日本国立天文台/日本综合研究大学院大学攻读博士课程的崔玉竹在处理东亚甚长基线干涉(VLBI)观测网关于M87星系中央黑洞的喷流数据时,发现2017年M87的喷流结构与以往的结构指向不同。▲2013年至2020年期间每两年合并后的M87喷流结构(观测频段为43GHz)。对应的年份显示在左上角。白色箭头指示了每个子图中喷流轴线的指向(表征不同的喷流位置角)。(YuzhuCuietal.2023)黑洞周围物质在被黑洞吸入时,会发出极其明亮的光芒,看起来好像一个发亮的扁平圆盘,被称为吸积盘。物质被吸入黑洞后,它们所携带的巨大角动量最终以喷流的形式,被喷射出黑洞。这让黑洞、吸积盘、喷流看起来好像一个巨大的宇宙陀螺。“M87的黑洞喷流非常明亮,长达5000光年,过去大家一直以为它的喷射角度是不变的。”崔玉竹说,可有几个数据显示,喷流角度竟然与之前熟知的不同。“这到底是观测误差,还是意味着喷流在转动?”带着这个疑问,崔玉竹查询了从2000年至2022年国际VLBI观测网对于M87黑洞的170个观测数据,发现它的角度果然在不断变化。于是,来自全球10个国家的45个机构的70多位同行,与崔玉竹一起投入到了相关数据的整理、分析和模拟中。经过长达6年的努力,最终他们确定,M87喷流应该绕着一根“看不见的轴”旋转,周期大约为11年。M87中心黑洞应该处于自旋状态。云南大学中国西南天文研究所副研究员林伟康说,通过计算机的数据拟合,喷流方向的周期性变化,与黑洞自旋轴非常吻合,“这就直接证明了黑洞自旋的存在”。几十年VLBI观测带来厚积薄发在人类所认识的宇宙中,M87是个明星星系。它个头大,质量约为太阳的65亿倍;距离地球近,仅相距5500万光年,使得它成为天文学家观测的最佳对象之一。早在1918年,人们就发现了M87的喷流,成为宇宙中首个发现喷流的天体。此后,M87喷流就成为地球上各大射电望远镜的观测对象,尤其在全球射电望远镜联网组建VLBI观测网后,对M87的观测数据精度不断提高。而这次研究用到的数据,是VLBI观测网中时间跨度最大、数据数量最多的。▲东亚VLBI网络和意大利/俄罗斯射电望远镜组成的EATING观测网中参加了此论文的望远镜分布(YuzhuCuietal.2023、IntouchableLab@Openverse和之江实验室)“此次发现的关键数据,主要得益于东亚VLBI网的精度提升,而上海佘山的天马望远镜、新疆南山的26米射电望远镜,贡献了主要数据。”崔玉竹告诉记者,国内共有26位同行参与了这项研究。早在1986年,上海天文台就建成了佘山25米射电望远镜,并于1991年加入欧洲VLBI网的协联成员,1998年就参与到国际VLBI网的观测中。2017年,口径65米的天马望远镜建成并加入国际VLBI网。中国科学院上海天文台台长沈志强介绍,由于天马望远镜的高灵敏度,提升了整个网络的观测能力,“尤其使得东亚VLBI观测网的成像质量提升了约50%”。而新疆天文台南山望远镜则因其独特的地理位置,使东亚VLBI观测网的联网口径从3000千米扩展到5000千米。中国科学院新疆天文台研究员崔朗介绍,这台口径26米的射电望远镜于2017年加入东亚VLBI网,每年投入300小时参加相关观测。就在两周前,上海天文台日喀则40米射电望远镜开工建设,新疆天文台奇台110米射电望远镜也已在建设中。沈志强说,“未来,这些后起之秀的加入,将进一步提升观测能力,助力天文学家发现更多宇宙奥秘。”开启黑洞自旋深入研究新里程曾经,美国甚长基线阵(VLBA)对M87喷流的常年观测,帮助大家了解了很多M87的物理性质,以为对M87已经足够了解,已逐步取消观测时间,转向其他观测目标。而中国科学家的此次发现,使他们又开始恢复对M87喷流的长期监测计划。在模拟动画中,假设M87黑洞的自旋方向垂直于地面,它的吸积盘就如同与地面形成一定角度的陀螺螺体,而晃动的陀螺轴心则是一道长达5000光年的喷流。不过,与陀螺不同的是,吸积盘的运动中心就是其中心的黑洞。“这是一个非常漂亮而干净的结果,也是一个非常基础而重要的发现。”美国康奈尔大学教授、上海交通大学李政道研究所李政道访问讲席教授赖东提到,意大利、美国都曾发射卫星,专门探测天体的时空拖拽效应,但均未成功,“这次证明黑洞自旋的存在,将对这一效应的研究带来实质性推动”。如今,崔玉竹是之江实验室的一名博士后研究人员。她说,获得黑洞自旋的最为有力的证据后,还有一连串问题需要更深入的研究:M87黑洞自旋的速度是多少?黑洞自旋是否普遍存在?推动黑洞自旋的外力又来自何方?此外,自旋很可能是黑洞喷流产生的关键,那么这是否会给黑洞物质喷射的机制研究带来新视角?所有这些都等着她和众多同行一起寻找答案。...PC版:https://www.cnbeta.com.tw/articles/soft/1387127.htm手机版:https://m.cnbeta.com.tw/view/1387127.htm

相关推荐

封面图片

天文学家首次拍摄到黑洞与喷流“全景照”

天文学家首次拍摄到黑洞与喷流“全景照”最近,由中国科学院上海天文台研究员路如森领导的国际研究团队,换了个频道看M87黑洞,首次拍到了M87的黑洞全景。照片里,不仅有“甜甜圈”,还能看到从“甜甜圈”向远处延展的“尾巴”,即黑洞的喷流。作为EHT照片的拓展,新照片首次展现出了黑洞和它周围环境的关系。4月26日,相关成果发表于《自然》。“甜甜圈”长了“尾巴”、发了“胖”黑洞,是一个引力极强的时空区域,包括光在内的任何东西都无法逃逸。它可以“吃掉”靠近它的一切。此次,天文学家用3.5毫米波段开展了新观测。他们拍摄到的黑洞照片中,依然可以清晰看到“甜甜圈”——黑洞周围绕转着热气体,这些气体在不断发出辐射,形成亮环。与此同时,黑洞附近被“吐出”的气体也被拍到,“甜甜圈”长出了“尾巴”。“以前我们曾在单独的图像中分别看到过黑洞和喷流,但现在我们在一个新的波段拍摄了黑洞和喷流的全景图。”论文第一作者路如森告诉《中国科学报》。“我们可以看到喷流是如何从中央超大质量黑洞周围的环状结构中出现的,也可以在另一个波段测量黑洞周围环状结构的直径。”德国马普射电天文研究所的ThomasKrichbaum说。通过这张全景图,天文学家获得了一些关于黑洞的新认识。他们发现“甜甜圈”比之前“胖”了。“本次的观测波长是3.5毫米,而EHT的观测波长是1.3毫米,我们看到的环状结构变得更大、更厚。这表明在新图像中可以看到落入黑洞的物质产生了额外辐射。这使我们能更全面地了解黑洞周围的物理过程。”路如森说。他们还发现黑洞不是“很饿”。“它消耗物质的速度很低,只将其中一小部分转化为辐射。于是,为了了解这个更大、更厚的环的物理来源,我们使用计算机模拟测试不同的情况。最终我们得出结论,亮环更大、更厚与吸积流有关。”台湾地区“中研院”天文和天体物理研究所的KeiichiAsada说。此外,从数据中,他们还看到了一些“令人惊讶的事情”。日本国立天文台的KazuhiroHada说:“在靠近黑洞的内部区域,辐射宽度比我们预期的宽。这可能意味着黑洞周围不仅仅有气体落入,也可能有一股‘风’吹出来,造成黑洞周围的湍流和混乱。”不过,路如森表示,尽管发现了很多新现象,但“星系中央的超大质量黑洞是如何形成的,仍是未解之谜”。尽管还有很多问题无法回答,但论文的两位审稿人都给予高度评价。一位审稿人指出:“该研究具有独创性、主题性,表现力强,可以引起人们的普遍兴趣,值得在《自然》杂志上发表。”另一位审稿人评价:“这项工作是及时的,是在理解活动星系核喷流的形成和准直方面迈出的重要一步。”黑洞照片的背后此次研究由中国学者路如森领衔,成员来自17个国家和地区的64家研究单位,共计121位。拍摄动用了全球16台射电望远镜,共同组成了一台口径等效于地球直径的望远镜。16台射电望远镜包括全球毫米波阵的14台望远镜、位于智利的阿塔卡马大型毫米波/亚毫米波阵列,以及位于格陵兰岛的格陵兰望远镜。黑洞新照片其实在5年前的2018年4月14日至15日就已经拍好,但直至今日才正式发布。“在初步处理数据后,我们从中注意到了前所未有的新特征。之后用了5年,经过复杂的数据处理和成图过程、反复验证和确认结果,才最终发布。”路如森说。在将“生数据”处理成“熟数据”过程中,他们前后做了4次甚长基线干涉测量技术分析中的“互相关处理”以及相应的“相关后处理”分析。“大家克服了来来回回返工的煎熬,得到了最可靠的‘熟数据’。”路如森说。从“熟数据”重建观测图像时,研究团队遇到了前所未有的挑战。“这是一张视场很大的图像,图像包含许多成分,且这些成分的亮度差异很大。通过汇聚遍布全球各地许多合作者的经验,经过各种尝试和反复验证,我们才克服了这些困难。”路如森说。要拍“彩照”,还要拍“电影”路如森和他领衔的国际研究团队,已经想好了下一步目标——与EHT一起给黑洞拍摄“彩色”照片。所谓“彩色”就是在不同的观测波长上给黑洞拍照。“进一步的观测和强大的望远镜阵列将继续揭开它的神秘面纱。”韩国天文和空间科学研究所的JonghoPark说,“未来,毫米波观测将研究M87黑洞的时间演变,并将结合不同颜色的‘射电光’图像获得M87中心黑洞区域的多色视图。”在上海天文台台长、研究员沈志强看来,未来非常令人期待。“此次展现的3.5毫米波长图像代表了当前的最新成就,但为了揭开M87中央超大质量黑洞及其相对论性喷流的形成、加速、准直传播的物理机制之谜,我们需要拍摄更多色的高质量图像,包括在0.8毫米或更短的亚毫米波波长的黑洞照片,以及在长至7.0毫米波长的黑洞和喷流的全景图像。”沈志强说。“由于不同波长的电磁辐射揭示了黑洞附近不同的物理过程,相比于‘单色’黑洞,‘彩色’黑洞将带给我们更多信息,帮助我们更好理解黑洞本身,以及它和周围环境的关系。”路如森说。路如森还有一个更远的目标——给黑洞拍“电影”。“黑洞并不是静止的,而是每时每刻都和周围环境相互作用,因此不同时刻看它,它是不一样的。拍摄‘动态’黑洞要求我们在空间维度上再解锁时间维度,以便全方位观测和理解黑洞。”路如森说。对于5500万光年外的M87星系来说,黑洞图像的变化速度缓慢,需要通过长时间监测才能拍出它的变化。“EHT在过去几年进行了多次连续成像观测,未来5年也有持续的观测计划。这些观测数据将呈现M87黑洞在10年时间跨度上的‘电影’。”路如森说。对于人类所居的银河系中央的银心黑洞,目前EHT的望远镜分布不足以实现“快拍模式”的动态摄影,“丢帧”问题严重。但路如森对未来保持乐观:“随着更多望远镜加入,人类将能达到所需的时间分辨率,并最终拍出‘黑洞电影’。”相关论文信息:https://doi.org/10.1038/s41586-023-05843-w...PC版:https://www.cnbeta.com.tw/articles/soft/1356983.htm手机版:https://m.cnbeta.com.tw/view/1356983.htm

封面图片

天体物理学家利用模型准确预测了观测到的M87黑洞喷流的形态

天体物理学家利用模型准确预测了观测到的M87黑洞喷流的形态自从发现喷流以来,包括诺贝尔奖获得者罗杰-彭罗斯爵士在内的许多学者都在研究这些神秘现象的形成。目前,有两种主要模型试图解释喷流的形成:"BZ-喷流模型"是以研究人员布兰福德和兹纳杰克的名字命名的,也是目前最有影响力的模型,它认为喷流是通过与黑洞事件视界相连的磁场线从黑洞中提取自旋能量而形成的。与此相反,第二种模型认为喷流是通过从黑洞的吸积盘中提取旋转能量形成的。后者是在黑洞强大引力作用下围绕黑洞旋转的电离气体的集合。第二种模型可以被称为"圆盘-喷流模型"。尽管其他研究人员已经使用BZ射流模型模拟了广义相对论准直外流,实际上也就是射流,但还不清楚BZ射流模型能否解释观测到的实际射流的形态,包括其拉长的结构、宽度和边缘增亮(即射流边缘附近亮度增加)。为了研究这两个模型的有效性,中国科学院上海天文台袁峰博士领导的一个国际研究小组计算了这两个模型分别预测的位于室女座巨型星系Messier87(M87)中心的超大质量黑洞的喷流。研究小组随后将计算结果与对M87喷流的实际观测结果进行了比较,后者被记录在事件地平线望远镜(EHT)首次捕捉到的黑洞图像中。研究小组的研究表明,BZ-喷流模型准确地预测了观测到的M87喷流的形态,而圆盘-喷流模型则难以解释观测结果。该研究发表在《科学进展》(ScienceAdvances)上。模型预测图像与观测图像的对比研究小组首先采用了三维广义相对论磁流体力学(GRMHD)模拟来再现M87喷流的结构。为了计算模拟喷流的辐射并将辐射与观测结果进行比较,辐射电子的能谱和空间分布至关重要。研究小组假设电子加速是通过"磁重联"发生的,即磁能转化为动能、热能和粒子加速的过程。根据这一假设,研究小组结合粒子加速研究的结果,利用动力学理论求解了稳态电子能量分布方程。然后,研究小组获得了模拟射流不同区域的电子能量谱和数量密度。在距离核心的三个距离上,由基准模型预测的边缘增亮(实线)及其与观测数据的比较(虚线)将这些信息与吸积模拟(包括磁场强度、气体等离子体温度和速度)相结合,研究小组获得了可以与实际观测结果进行比较的结果。结果显示,BZ-喷流模型预测的喷流形态与观测到的M87喷流形态非常吻合,包括喷流宽度、长度、边缘增亮特征和速度。相比之下,盘状喷流模型的预测结果与观测结果不一致。此外,研究小组还分析了磁再连接过程,发现它是由于M87黑洞吸积盘中的磁场产生的磁爆发造成的。这些爆发对磁场造成了强烈的扰动,这种扰动可以传播很远的距离,从而导致喷流中的磁重联。这项工作弥合了喷流形成动态模型与各种观测到的喷流特性之间的差距,首次证明BZ喷射模型解决了喷流的能量问题,也解释了其他观测结果。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428700.htm手机版:https://m.cnbeta.com.tw/view/1428700.htm

封面图片

自然杂志刊出黑洞新图 显示强大喷流

自然杂志刊出黑洞新图显示强大喷流国际权威学术期刊自然杂志,刊登一张黑洞最新图片及相关论文,是首张显示到黑洞事件视界边缘,射出强大喷流的图像。科学家利用处于地球上不同位置的16台望远镜获取这幅图像,图中的超大质量黑洞位于距离地球约5400万光年的M87星系。天文学家比较2019年拍摄的M87黑洞图像,发现新图像中的环形物,尺寸扩大了约50%,估计因为期间有更多物质落入黑洞,当物质围绕黑洞运行时,被加热而释放的辐射光线,形成黑洞阴影周围发光的环形结构。研究认为图像中的喷流,由黑洞的旋转提供动力,目前不清楚喷流的源头,而今次发现有助天文学家更深入了解黑洞的行为模式,以及黑洞可于宇宙发射高能量物质喷流的原因。2023-04-2713:43:42

封面图片

科学家发现热气泡在黑洞周围以“惊人的速度”出现

科学家发现热气泡在黑洞周围以“惊人的速度”出现今年5月,事件地平线望远镜(EHT)合作组织首次拍摄到银河系中心超大质量黑洞SagitarriusA*的图像。在距离这个黑洞约27000光年的地球有利位置,天文学家们一直在警惕地观察和研究这个虚空,试图解读银河系的“强大引擎”到底是如何工作的。上个月,一个使用强大的射电望远镜--阿塔卡马大型毫米波/亚毫米波阵列(ALMA)的工作人员收集到了一些新的线索。PC版:https://www.cnbeta.com/articles/soft/1325761.htm手机版:https://m.cnbeta.com/view/1325761.htm

封面图片

黑洞如何发射喷流?

黑洞如何发射喷流?黑洞是宇宙中最神秘的物体,它的引力极其强大,连光也无法从中逃逸。但这些巨行星通过提供天体物理喷流,又为宇宙带来了源源不断的能量。因此,为什么有喷流物能从黑洞边缘发射出来?成为宇宙中最大的谜团。2019年,事件视界望远镜(EHT)发布了第二张黑洞照片,帮助天文学家更深入地了解天体物理喷流的内部工作原理。照片中的光环有条纹,表明光是偏振光。黑洞旋转时会吸进带电粒子,这些粒子会产生磁场并在黑洞的作用下被扭曲成一个紧密的螺旋线,这种扭曲将产生一种电压,从黑洞中向两个方向流出,并在扭曲的磁场推动下加速,同时向太空中喷射出数千光年的能量,黑洞喷流也由此成为宇宙的巨大发电厂,本期视频就带你领略它的独特魅力。来自:雷锋频道:@kejiqu群组:@kejiquchat投稿:@kejiqubot

封面图片

哈勃望远镜捕捉到一个拥有贪婪黑洞的高能量星系

哈勃望远镜捕捉到一个拥有贪婪黑洞的高能量星系访问:Saily-使用eSIM实现手机全球数据漫游安全可靠源自NordVPN这张美国宇航局哈勃太空望远镜拍摄的照片显示的是距地球大约5000万光年的螺旋星系NGC4951。图片来源:NASA、ESA和D.Thilker(约翰霍普金斯大学);图片处理:GladysKober(NASA/美国天主教大学):GladysKober(美国国家航空航天局/美国天主教大学)NGC4951位于室女座,距离地球大约5000万光年。它被归类为塞弗特星系,这意味着它是一种能量极高的星系,有一个活跃的星系核(AGN)。不过,塞弗特星系与其他类型的AGN不同,因为我们仍然可以清楚地看到星系本身--不同类型的AGN是如此明亮,以至于几乎不可能观测到它们所在的实际星系。像NGC4951这样的AGN由超大质量黑洞驱动。当物质旋入黑洞时,会产生整个电磁波谱的辐射,使AGN发出耀眼的光芒。哈勃望远镜帮助证明了宇宙中几乎每个星系的核心都存在超大质量黑洞。在这架望远镜于1990年发射进入低地球轨道之前,天文学家们只是从理论上推测它们的存在。这次任务通过观测黑洞不可否认的影响,如从黑洞喷射出的物质喷流和围绕黑洞高速旋转的气体和尘埃盘,验证了它们的存在。对NGC4951进行的这些观测为天文学家研究星系的演化过程提供了宝贵的数据,其中特别关注恒星的形成过程。哈勃收集到的这些信息正与詹姆斯-韦伯太空望远镜(JWST)的观测数据相结合,以支持JWSTTreasury计划。Treasury计划收集的观测数据侧重于利用单一、连贯的数据集解决多个科学问题的潜力,并促成各种引人注目的科学调查。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1430340.htm手机版:https://m.cnbeta.com.tw/view/1430340.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人