天体物理学家利用模型准确预测了观测到的M87黑洞喷流的形态

天体物理学家利用模型准确预测了观测到的M87黑洞喷流的形态自从发现喷流以来,包括诺贝尔奖获得者罗杰-彭罗斯爵士在内的许多学者都在研究这些神秘现象的形成。目前,有两种主要模型试图解释喷流的形成:"BZ-喷流模型"是以研究人员布兰福德和兹纳杰克的名字命名的,也是目前最有影响力的模型,它认为喷流是通过与黑洞事件视界相连的磁场线从黑洞中提取自旋能量而形成的。与此相反,第二种模型认为喷流是通过从黑洞的吸积盘中提取旋转能量形成的。后者是在黑洞强大引力作用下围绕黑洞旋转的电离气体的集合。第二种模型可以被称为"圆盘-喷流模型"。尽管其他研究人员已经使用BZ射流模型模拟了广义相对论准直外流,实际上也就是射流,但还不清楚BZ射流模型能否解释观测到的实际射流的形态,包括其拉长的结构、宽度和边缘增亮(即射流边缘附近亮度增加)。为了研究这两个模型的有效性,中国科学院上海天文台袁峰博士领导的一个国际研究小组计算了这两个模型分别预测的位于室女座巨型星系Messier87(M87)中心的超大质量黑洞的喷流。研究小组随后将计算结果与对M87喷流的实际观测结果进行了比较,后者被记录在事件地平线望远镜(EHT)首次捕捉到的黑洞图像中。研究小组的研究表明,BZ-喷流模型准确地预测了观测到的M87喷流的形态,而圆盘-喷流模型则难以解释观测结果。该研究发表在《科学进展》(ScienceAdvances)上。模型预测图像与观测图像的对比研究小组首先采用了三维广义相对论磁流体力学(GRMHD)模拟来再现M87喷流的结构。为了计算模拟喷流的辐射并将辐射与观测结果进行比较,辐射电子的能谱和空间分布至关重要。研究小组假设电子加速是通过"磁重联"发生的,即磁能转化为动能、热能和粒子加速的过程。根据这一假设,研究小组结合粒子加速研究的结果,利用动力学理论求解了稳态电子能量分布方程。然后,研究小组获得了模拟射流不同区域的电子能量谱和数量密度。在距离核心的三个距离上,由基准模型预测的边缘增亮(实线)及其与观测数据的比较(虚线)将这些信息与吸积模拟(包括磁场强度、气体等离子体温度和速度)相结合,研究小组获得了可以与实际观测结果进行比较的结果。结果显示,BZ-喷流模型预测的喷流形态与观测到的M87喷流形态非常吻合,包括喷流宽度、长度、边缘增亮特征和速度。相比之下,盘状喷流模型的预测结果与观测结果不一致。此外,研究小组还分析了磁再连接过程,发现它是由于M87黑洞吸积盘中的磁场产生的磁爆发造成的。这些爆发对磁场造成了强烈的扰动,这种扰动可以传播很远的距离,从而导致喷流中的磁重联。这项工作弥合了喷流形成动态模型与各种观测到的喷流特性之间的差距,首次证明BZ喷射模型解决了喷流的能量问题,也解释了其他观测结果。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428700.htm手机版:https://m.cnbeta.com.tw/view/1428700.htm

相关推荐

封面图片

天体物理学家利用IACOB项目详细观测蓝超巨星

天体物理学家利用IACOB项目详细观测蓝超巨星恒星是星系乃至整个可观测宇宙的基本组成部分。在种类繁多的恒星中,质量超过太阳8倍的恒星被称为大质量恒星。它们强大的辐射和可怕的恒星风对周围的星际介质产生了重大影响。在这些恒星内部,形成了氢和氦以外的元素,在星系的化学变化中起着关键作用,并为生命的出现奠定了基础。此外,当这些恒星以超新星的形式终结时,它们会产生中子星和恒星质量的黑洞。所有这些都意味着它们的性质和演化对天体物理学至关重要。在这种情况下,"蓝超巨星"被用来定义那些处于生命中间阶段的大质量恒星,这是一个关键时期,可以被描述为"恒星青春期",它将决定恒星的余生和最终命运。鉴于这一演化阶段的复杂性,以往基于几十颗此类恒星样本的研究无法获得足够的信息来详细了解它们。英仙座h和xi双星团的图像,研究中的蓝超巨星用十字交叉表示,包括样本中的典型光谱。资料来源:AbeldeBurgosSierra(IAC)在发表的这项研究中,对地球周围6500光年范围内的约750颗蓝超巨星进行了观测,这使其成为迄今为止获得的最完整、质量最高的样本之一。为了进行这项研究,IAC的IACOB项目花费了15年的时间来获取高质量、高分辨率的大质量恒星光谱(这是恒星的指纹),其中包括对银河系中绝大多数蓝超巨星的详尽搜索。这些观测主要是利用拉帕尔马岛RoquedelosMuchachos天文台的NOT和Mercatort望远镜进行的。"对这一样本的分析,将使我们能够解决有关这些天体的演化性质和物理特性的一些问题,这些问题几十年来一直没有答案,因为它们与其他质量较小的恒星类型相比不太为人所知,尽管它们在现代天体物理学的许多领域都很重要。"IAC和ULL的研究员、文章的第一作者AbeldeBurgosSierra解释说。银河与样本中的蓝色超巨星叠加的图像。资料来源:DSS/AbeldeBurgosSierra(IAC)为了选择样本,我们使用了一种新的标记方法,这种方法是基于这些恒星光谱中一种易于识别的示踪剂(H-neta线的剖面形状)。通过简单的测量,这种新方法可以快速有效地识别特定温度和表面重力范围内的恒星。利用这种方法,研究人员无需使用复杂的恒星大气模型进行光谱分析的常规方法来推导这些数量。"当下一次大质量恒星光谱测量(如来自RoquedelosMuchachos的WEAVE-SCIP或来自智利LaSilla的4MIDABLE-LR)开始在未来五年内每晚观测银河系中成千上万颗恒星的光谱时,这对识别这类恒星将非常重要、"IACOB项目是一个由IAC领导的国际合作项目,其目标是建立一个有史以来最大的银河系大质量恒星光谱数据库。DeBurgos已经开始了他的博士论文工作,即获取750个蓝超巨星样本的物理参数(质量、温度、光度)和化学丰度(He、C、N、O、Si)的精确数据。因斯布鲁克大学研究员、文章合著者米格尔-乌尔班尼亚(MiguelA.Urbaneja)总结说:"这将有助于回答一些最有趣的未解之谜,让我们更好地了解大质量恒星的'青春期'。"...PC版:https://www.cnbeta.com.tw/articles/soft/1378061.htm手机版:https://m.cnbeta.com.tw/view/1378061.htm

封面图片

物理学家观测到“不可观测”的量子相变

物理学家观测到“不可观测”的量子相变1935年,两位当时最著名的物理学家爱因斯坦和薛定谔就现实本质产生了争论。爱因斯坦认为宇宙是局域性的,一个地方发生的事情不会立即影响遥远的另一个地方。薛定谔认为量子纠缠与局域性的假设相悖。当一对粒子发生纠缠时,测量其中一个粒子会立即影响到另一个粒子,无论它身在何处。这违背了爱因斯坦关于传播速度无法超越光速的铁令。爱因斯坦不喜欢不受范围限制的纠缠,他将其称之为幽灵,认为量子力学理论是不完整的。今天的物理学家基本上解决了该问题,纠缠不会在遥远的地方产生立即的影响,它无法在遥远距离上实现特定结果:它只是传播该结果的知识。过去几年一系列的理论和实验研究揭示了纠缠的新面孔:它不是成对出现,而是以粒子星图的形式出现。纠缠通过一组粒子自然传播,建立了一个复杂的临时网。如果你测量粒子的频率足够多,你能阻止网的形成。这种网状非网状的状态令人想起物质的液态固态。网状与非网状的转变代表着信息结构的变化,这是信息的相变。来源,频道:@kejiqu群组:@kejiquchat

封面图片

物理学家首次观测到氧-28 由8个质子和20个中子组成

物理学家首次观测到氧-28由8个质子和20个中子组成研究人员观察到富含中子的同位素28O和27O衰变为氧-24,为核结构理论提供了新的见解,并表明"反转岛"延伸到了氧同位素,从而能够对多中子相关性和奇异系统进行详细研究。东京工业大学物理系助理教授近藤洋介(YosukeKondo)领导的一个国际研究小组在发表于《自然》(Nature)上的一项新研究中,首次观测到两种这样的同位素--氧-28(28O)和氧-27(27O)--分别通过四个和三个中子衰变为氧-24。28O核由8个质子和20个中子组成,它是标准壳模型核结构图中少数几个"双魔力"核之一,因此具有重大意义。这项研究的成功得益于理化学研究所RI光束工厂的能力,它可以产生与厚液氢活动靶和多中子探测阵列耦合的不稳定核子强光束。高能29F光束产生的质子诱导核子剔除反应生成了中子不结合同位素27O和28O。研究人员观测了这些同位素,并通过直接探测其衰变产物研究了它们的性质。28O和27O同位素对现代核结构理论进行了严格的检验,拓展了我们的知识视野。资料来源:东京工业大学他们发现,27O和28O都以窄低共振形式存在,并将它们的衰变能量与复杂的理论模型结果进行了比较--一种是大规模壳模型计算,另一种是基于量子色动力学有效场理论新开发的统计方法。大多数理论方法都预测这两种同位素具有更高的能量。Kondo博士指出:"具体来说,统计耦合簇计算表明,27O和28O的能量可以为这类abinitio方法中考虑的相互作用提供有价值的约束。""研究人员还研究了从29F射束中产生28O的截面,发现它与28O没有表现出封闭的N=20壳结构相一致。"Kondo博士解释说:"这一结果表明,'反转岛',即中子轨道之间的能隙减弱或消失,已经超出了氟同位素28F和29F的范围,延伸到了氧同位素。"Kondo博士解释说:"目前的发现为我们提供了新的见解,尤其是对中子含量极高的原子核的见解,从而加深了我们对核结构的理解。此外,利用本研究中使用的多中子衰变光谱技术,还可以对多中子相关性进行详细调查,并对其他奇异系统进行研究。"希望未来的研究能揭开更多原子核的神秘面纱。...PC版:https://www.cnbeta.com.tw/articles/soft/1381119.htm手机版:https://m.cnbeta.com.tw/view/1381119.htm

封面图片

天体物理学家测量物质、暗物质和暗能量的总量

天体物理学家测量物质、暗物质和暗能量的总量第一作者、日本千叶大学埃及国家天文和地球物理研究所研究员穆罕默德-阿卜杜拉博士解释说:"宇宙学家认为,总物质中只有约20%是由常规物质或'重子'物质构成的,其中包括恒星、星系、原子和生命。"大约80%是由暗物质构成的,暗物质的神秘性质尚不清楚,但可能由一些尚未发现的亚原子粒子组成。(见图)。""研究小组使用了一种行之有效的技术来确定宇宙中的物质总量,即把观测到的单位体积内星系团的数量和质量与数值模拟的预测结果进行比较,"合著者、阿卜杜拉的前研究生导师、加州大学默塞德分校物理学教授兼研究、创新和经济发展副校长吉莉安-威尔逊(GillianWilson)说。"目前观测到的星团数量,也就是所谓的'星团丰度',对宇宙学条件,尤其是物质总量非常敏感"。图1.就像"金发姑娘"一样,研究小组将测量到的星系团数量与数值模拟的预测进行比较,以确定哪个答案"恰到好处"。资料来源:穆罕默德-阿卜杜拉(埃及国家天文和地球物理研究所/日本千叶大学)弗吉尼亚大学的阿纳托利-克莱平(AnatolyKlypin)说:"宇宙中总物质的比例越高,就会形成越多的星团。但要精确测量任何星系团的质量都很困难,因为大部分物质都是暗物质,我们无法用望远镜直接看到。"为了克服这一困难,研究小组不得不使用一种间接的星系团质量追踪器。他们所依赖的事实是,质量较大的星团比质量较小的星团包含更多的星系(质量富集度关系:MRR)。由于星系由发光的恒星组成,因此可以利用每个星团中星系的数量来间接确定其总质量。通过测量斯隆数字巡天观测样本中每个星团的星系数量,研究小组能够估算出每个星团的总质量。然后,他们将观测到的单位体积星系团的数量和质量与数值模拟的预测值进行了比较。观测结果与模拟结果的最佳拟合值是宇宙由31%的总物质组成,这一数值与普朗克卫星的宇宙微波背景(CMB)观测结果非常吻合。值得注意的是,CMB是一种完全独立的技术。验证与技术千叶大学的石山智明(TomoakiIshiyama)说:"我们首次利用MRR成功地测量了物质密度,这与普朗克团队利用CMB方法获得的结果非常吻合。这项工作进一步证明,星团丰度是约束宇宙学参数的一项有竞争力的技术,也是对CMB各向异性、重子声振荡、Ia型超新星或引力透镜等非星团技术的补充。"研究小组认为,他们的成果是首次成功利用光谱学(将辐射分离成各个波段或颜色的光谱的技术)来精确确定每个星团的距离,以及与星团有引力约束的真正成员星系,而不是视线沿线的背景或前景干扰者。以前尝试使用MRR技术的研究则依赖于粗糙得多和精确度较低的成像技术,例如使用在某些波长下拍摄的天空照片,来确定每个星团和附近真正成员星系的距离。结论和未来应用这篇发表在9月13日《天体物理学报》上的论文不仅证明了MRR技术是确定宇宙学参数的强大工具,而且还解释了如何将它应用于大型、宽视场和深视场成像以及光谱星系巡天(如斯巴鲁望远镜、暗能量巡天、暗能量光谱仪、欧几里得望远镜、eROSITA望远镜和詹姆斯-韦伯太空望远镜等进行的巡天)所获得的新数据集。...PC版:https://www.cnbeta.com.tw/articles/soft/1385143.htm手机版:https://m.cnbeta.com.tw/view/1385143.htm

封面图片

天体物理学家发现了有史以来观测到的周期最短的低质量恒星双星系统

天体物理学家发现了有史以来观测到的周期最短的低质量恒星双星系统一幅插图显示了目前超冷矮星双星的距离有多近,以及这种接近程度是如何随时间变化的。资料来源:AdamBurgasser/加州大学圣地亚哥分校LP413-53AB估计有数十亿年的历史--与我们的太阳年龄相似--但其轨道周期至少比迄今为止发现的所有超冷矮星双星短三倍。领导这项研究的西北大学天体物理学家Chih-Chun"Dino"Hsu说:"发现这样一个极端的系统是令人兴奋的。原则上,我们知道这些系统应该存在,但是还没有发现这样的系统。"Hsu最近在西雅图举行的第241届美国天文学会会议的新闻发布会上介绍了这项研究,作为"恒星及其活动"会议的一部分。Hsu是西北大学温伯格文理学院的物理学和天文学博士后研究员,也是西北大学天体物理学跨学科探索与研究中心(CIERA)的成员。他在加州大学圣地亚哥分校读博士时就开始了这项研究,他在那里得到了AdamBurgasser教授的指导。该团队在探索档案数据时首次发现了这个奇怪的双星系统。Hsu开发了一种算法,可以根据恒星的光谱数据为其建模。通过分析一颗恒星发出的光的光谱,天体物理学家可以确定该恒星的化学成分、温度、重力和旋转。这种分析还显示了恒星向观察者移动和远离观察者时的运动,称为径向速度。这张图比较了最近发现的双星系统中的两颗矮星与其他系统的接近程度。资料来源:AdamBurgasser/加州大学圣地亚哥分校在研究LP413-53AB的光谱数据时,Hsu注意到一些奇怪的现象。早期的观测发现,当这两颗恒星大致排列在一起时,它们的光谱线重叠在一起,这让他相信这只是一颗恒星。但是当这些恒星在它们的轨道上移动时,光谱线向相反的方向移动,在后来的光谱数据中分成了一对。Hsu意识到,实际上有两颗恒星被锁定在一个极其紧密的双星中。利用W.M.Keck天文台的强大望远镜,徐志摩决定亲自观察这一现象。2022年3月13日,该团队将望远镜转向金牛座,也就是该双星系统所在的位置,并观察了两个小时。然后,他们在7月、10月和12月进行了更多的后续观测。"当我们进行这种测量时,我们可以看到事情在几分钟的观察中发生变化,"Burgasser说。"我们跟踪的大多数双星的轨道周期是几年。所以,你每隔几个月就能得到一次测量。然后,过了一段时间,你就可以把拼图拼起来。在这个系统中,我们可以看到光谱线在实时地移动。在人类的时间尺度上看到宇宙中发生的这种事情是令人惊讶的。"观察结果证实了Hsu归纳的模型的预测。这两颗恒星之间的距离大约是地球和太阳之间距离的1%。研究小组推测,这些恒星要么是在进化过程中相互迁移,要么是在第三个--现在已经消失的--恒星成员被抛出后走到一起,接下来需要更多的观察来检验这些想法。Hsu还说,通过研究类似的恒星系统,研究人员可以更多地了解地球以外的潜在宜居行星。超冷矮星比太阳要暗淡得多,所以任何表面有液态水的世界--形成和维持生命的一个关键成分--都需要离恒星近得多。然而,对于LP413-53AB来说,宜居区的距离恰好与恒星的轨道相同,因此在这个系统中不可能形成宜居行星。"这些超冷矮星是我们太阳的邻居,"Hsu说。"为了确定潜在的宜居宿主,从我们的近邻开始是有帮助的。但是如果近距离双星在超冷矮星中很常见,那么可能很少有可居住的世界被发现。"为了充分探索这些情况,Hsu、Burgasser和他们的合作者希望能确定更多的超冷矮星双星系统,以创建一个完整的数据样本。新的观测数据可以帮助加强双星形成和演变的理论模型。然而,直到现在,发现超冷双星仍然是一项罕见的壮举。研究报告的共同作者、加州大学圣地亚哥分校校长博士后ChrisTheissen说:"这些系统很罕见。但是我们不知道它们之所以罕见是因为它们很少存在,还是因为我们没有发现它们。这是一个开放式的问题。现在我们有一个数据点,我们可以开始建立。这些数据已经在档案馆里放了很久了。迪诺的工具将使我们能够寻找更多像这样的双星。"...PC版:https://www.cnbeta.com.tw/articles/soft/1357595.htm手机版:https://m.cnbeta.com.tw/view/1357595.htm

封面图片

天体物理学家寻找第二近的超大质量黑洞 是太阳质量的300万倍

天体物理学家寻找第二近的超大质量黑洞是太阳质量的300万倍这个超大质量黑洞被标记为狮子座I*,这个是由独立的天文学家团队在2021年底首次提出的。该团队注意到恒星在接近星系中心时运行速度加快--这是黑洞的证据--但直接对黑洞的发射成像是不可能的。现在,CfA天体物理学家FabioPacucci和AviLoeb提出了一种验证超大质量黑洞存在的新方法。他们的工作被描述在最近发表在《天体物理学杂志》上的一项研究中。超微弱的银河系伴侣星系狮子座I出现在著名的亮星轩辕十四的右边,显示为一个微弱的斑块。资料来源:ScottAnttilaAnttlerApJLetters研究的主要作者FabioPacucci说:"黑洞是非常难以捉摸的物体,有时它们喜欢和我们玩捉迷藏。光线无法逃离它们的事件视界,但是它们周围的环境可以非常明亮--如果有足够的物质落入它们的引力井。但是,如果一个黑洞没有增殖质量,就不会发出任何光,并且变得无法用我们的望远镜找到。"这就是狮子座I*面临的挑战--一个矮小的星系,没有可用来增殖的气体,以至于它经常被描述为"化石"。那么,我们应该放弃观察它的任何希望吗?天文学家们说也许不是。Pacucci解释说:"在我们的研究中,从黑洞周围游荡的恒星中损失的少量质量可以提供观察它所需的增殖率。老恒星变得非常大,而且是红色的--我们称它们为红巨星。红巨星通常有强大的风,将其质量的一部分带到环境中。狮子座I*周围的空间似乎包含了足够多的这些古老的恒星,使它可以被观测到。"该研究的共同作者AviLoeb说:"观测狮子座I*的行动可能是突破性的。它将是继我们银河系中心的超大质量黑洞之后第二近的黑洞,其质量非常相似,但其所在的星系质量比银河系小一千倍。这一事实挑战了我们对星系及其中心超大质量黑洞如何共同演化的所有了解。这样一个超大的婴儿是如何从一个苗条的父母身上诞生的?"持续几十年的研究表明,大多数大质量星系的中心都有一个超大质量的黑洞,而黑洞的质量是其周围球状恒星总质量的十分之一。"在狮子座I的状态下,我们会期待一个小得多的黑洞。相反,狮子座I似乎包含一个质量为太阳几百万倍的黑洞,与银河系所承载的黑洞类似。这是令人激动的,因为当意外发生时,科学通常会取得最大的进展。"那么,我们什么时候可以期待一个黑洞的图像?"我们还没有到那一步,"Pacucci说。"狮子座I*正在玩捉迷藏,但它发出的辐射太多,无法长期保持不被发现。"该团队已经在太空中的钱德拉X射线天文台和新墨西哥州的甚大阵射电望远镜上获得了望远镜时间,目前正在分析新数据。...PC版:https://www.cnbeta.com.tw/articles/soft/1336001.htm手机版:https://m.cnbeta.com.tw/view/1336001.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人