锂电颠覆性研究成果:美国科学家找到了性能下降的根本原因

锂电颠覆性研究成果:美国科学家找到了性能下降的根本原因他们的最新发现已于近期发表在了《自然能源》杂志上。他们的研究结果表明,所谓的固体电解质界面(SEI)并不是以前认为的电子绝缘体,而是表现得像半导体。SEI的作用就像一个守护者,允许锂离子自由进出阳极。一直以来,科学家们都专注于研究这种SEI层,尽管它比一张纸还薄,但它在电池性能中起着巨大的作用。当电池还是新电池时,SEI在第一次充电周期形成,理想情况下在电池的预期寿命内保持稳定。但是观察老化的可充电电池的内部,通常会发现负极上有大量固体锂的堆积。电池研究人员认为,这种累积会导致性能下降。但此前无法通过测量来检验因果关系。在最新研究中,他们通过开发一种新技术直接测量了实验系统中SEI的导电性,解决了这个问题。该团队将透射电子显微镜与显微镜内微制造金属针的纳米级操作结合起来。然后,研究人员用四种不同类型的电解质测量了在铜或锂金属上形成的SEI层的电学性能。如此一来,他们就解决了长期以来的谜团,即SEI在电池运行过程中是如何发挥作用的。该小组的测量显示,随着电池电压的增加,SEI层在所有情况下都会泄漏电子,使其成为半导电的。此外,SEI层的含碳有机成分容易泄漏电子,并缩短电池寿命。PNNL实验室研究员和电池技术专家,共同领导这项研究的ChongminWang说,“更高的导电率会导致更厚的SEI和复杂的固体锂形式,最终导致较差的电池性能。”至此,研究人员得出结论,尽量减少SEI中的有机成分将使电池具有更长的使用寿命。“即使是通过SEI传导速率的微小变化,也会导致效率和电池循环稳定性的巨大差异。”Wang补充说。...PC版:https://www.cnbeta.com.tw/articles/soft/1388893.htm手机版:https://m.cnbeta.com.tw/view/1388893.htm

相关推荐

封面图片

可充电电池性能有望迎来转折:研究人员推翻几十年来的电极假设

可充电电池性能有望迎来转折:研究人员推翻几十年来的电极假设今天(9月28日),《自然-能源》(NatureEnergy)杂志报道了首次直接测量充电电池内部固体电极和液体电解质边界电特性的研究。这项由美国能源部西北太平洋国家实验室(PNNL)研究小组领导的研究表明,所谓的固体电解质相间层(SEI)并不像以前认为的那样是一种电子绝缘体,而是表现得像一种半导体。这项研究解开了电池运行过程中SEI如何发挥电气功能这一长期未解之谜。电池研究科学家徐耀斌将样品放入透射电子显微镜中,检查充电电池的功能。图片来源:AndreaStarr太平洋西北国家实验室液态电解质通常被称为工作电池的"血液供应",通过调整液态电解质的物理和电化学特性,这些发现对设计更长寿命的电池具有直接影响。PNNL实验室研究员、电池技术专家王崇民(ChongminWang)是这项研究的共同负责人。研究人员的研究重点是这层比纸巾还薄的SEI层,因为它在电池性能中发挥着巨大的作用。在放电过程中,这层膜状镶嵌层有选择性地允许带电的锂离子穿过,并控制电子的移动,从而为电池供电。当电池是新电池时,SEI会在第一个充电周期形成,并在电池的预期使用寿命内保持稳定。但观察老化的充电电池内部,往往会发现负极上有大量固态锂堆积。电池研究人员认为,这种积聚造成了性能损失。造成这种猜测的部分原因是无法进行测量来检验因果关系。原位透射电子显微镜使研究人员能够直接观察电池材料在原子和纳米尺度上的演变过程,从而深入了解可充电电池的功能。图片来源:AndreaStarr太平洋西北国家实验室Wang与该研究的共同负责人、PNNL电池材料与系统组的材料科学家WuXu,共同第一作者YaobinXu和HaoJia,以及他们在PNNL、德克萨斯农工大学和劳伦斯伯克利国家实验室的同事一起,通过开发一种新技术来直接测量实验系统中跨SEI的电传导,从而解决了这一问题。研究小组将透射电子显微镜与显微镜内微加工金属针的纳米级操作相结合。然后,研究人员用四种不同类型的电解质测量了在铜或锂金属上形成的SEI层的电气特性。研究小组的测量结果表明,随着电池电压的升高,SEI层在所有情况下都会泄漏电子,使其成为半导电层。研究结果表明含碳分子会泄漏电子,缩短电池寿命,他们记录到这种以前从未直接观察到的类似半导体的行为后希望了解化学性质复杂的SEI的哪些成分造成了电子泄漏。Xu说:"我们发现,SEI层中的含碳有机成分容易导致电子泄漏。尽量减少SEI中的有机成分将延长电池的使用寿命。即使通过SEI的传导率发生微小变化,也会导致效率和电池循环稳定性的巨大差异。"...PC版:https://www.cnbeta.com.tw/articles/soft/1386981.htm手机版:https://m.cnbeta.com.tw/view/1386981.htm

封面图片

人工固态电解质层(ASEI)的发明有望在未来全面提高电池的功能和寿命

人工固态电解质层(ASEI)的发明有望在未来全面提高电池的功能和寿命金属锂因其能量密度优于其他材料而被选为电池阳极,这是一个明智的选择。然而,电极与电解液之间的界面存在挑战,这为在未来应用中实现更安全、更高效的性能提供了改进机会。金属锂阳极的挑战和解决方案清华大学的研究人员一开始热衷于用金属锂阳极取代石墨阳极,以构建能量密度更高的电池系统。然而,锂金属并不稳定,很容易与电解质发生反应,形成固体-电解质相(SEI)。遗憾的是,天然的SEI既脆又易碎,因此寿命和性能都很差。在此,研究人员研究了一种天然SEI的替代品,它可以有效缓解电池系统内的副反应。答案就是ASEI:人工固态电解质相。ASEI纠正了困扰裸锂金属阳极的一些问题,使其成为更安全、更可靠、甚至更强大的电源,可更放心地用于电动汽车和其他类似应用。研究成果的发表和意义9月25日,研究人员在《能源材料与器件》(EnergyMaterialsandDevices)杂志上发表了他们的研究成果。电池技术正在彻底改变我们的生活方式,与每个人的生活息息相关。为了实现真正的无碳经济,需要性能更好的电池来取代目前的锂离子电池。每个楔形层由不同的电极-电解质界面结构组成,有助于对锂金属电极进行实用的全面设计。资料来源:王艳艳,阿德莱德大学锂金属电池(LMB)就是这样一种候选电池。然而,阳极(金属锂)与电解质具有反应性,在电池运行过程中会在金属锂表面形成钝化层,即固体-电解质间相。锂金属阳极的另一个问题是电池充电时出现的所谓"枝晶生长"。枝晶看起来像树枝结构,会造成电池内部损坏,刺穿隔膜导致短路、性能不佳和潜在的安全隐患。这些弱点降低了锂金属电池板的实用性,并提出了一些必须解决的挑战。改进锂金属阳极的策略上文介绍了一些可用于制造更有效、更安全的锂金属阳极的策略。研究人员发现,要改进锂金属阳极,必须使锂离子分布均匀,这有助于减少电池负电荷区域的沉积物。这反过来又会减少枝晶的形成,从而防止过早衰变和短路。此外,在确保各层电绝缘的同时,为锂离子扩散提供更便捷的途径,有助于在电池循环过程中保持结构的物理和化学完整性。最重要的是,减少电极与电解液界面之间的应变可确保各层之间的适当连接,而这正是电池功能的重要组成部分。ASEI层的潜力和未来方向看来最有潜力的策略是聚合物ASEI层和无机-有机混合ASEI层。聚合物层在设计上有足够的可调节性,强度和弹性都很容易调节。聚合物层还具有与电解质相似的官能团,因此具有极高的兼容性;而这种兼容性正是其他元件所缺乏的主要方面之一。无机-有机混合层的最大优点是减少了层厚度,明显改善了层内成分的分布,从而提高了电池的整体性能。ASEI层的前景是光明的,但也需要一些改进。研究人员主要希望改善ASEI层在金属表面的附着力,从而全面提高电池的功能和寿命。需要注意的其他方面还有:层内结构和化学成分的稳定性,以及尽量减小层的厚度以提高金属电极的能量密度。一旦这些问题得到解决,改进型锂金属电池的前路就会一片光明。了解更多:https://doi.org/10.26599/EMD.2023.9370005...PC版:https://www.cnbeta.com.tw/articles/soft/1397963.htm手机版:https://m.cnbeta.com.tw/view/1397963.htm

封面图片

科学家找出导致电池故障的幽灵般的元凶:软短路

科学家找出导致电池故障的幽灵般的元凶:软短路阿贡团队的研究重点是全固体电池,其阳极(负极)由锂金属制成。许多人将这种设备视为电池技术的"圣杯"。为什么这么说呢?因为锂金属可以在很小的空间内储存大量电荷。这意味着,与传统的石墨阳极锂离子电池相比,它能使电动汽车的行驶里程更长。然而,锂金属会与传统电池中的液态电解质发生高度反应,这给操作带来了挑战。电解质是在电池的两个电极之间移动被称为离子的带电粒子的材料,可将储存的能量转化为电能。正常工作的电池放电时,离子从阳极通过电解质流向阴极(正极),与此同时,电子从阳极流向外部设备(如手机或电动汽车电机),然后返回阴极。电子流为设备供电。当电池充电时,电子流会反向流动。锂金属的使用往往会破坏这一过程,在充电过程中,锂枝晶会从阳极生长出来并渗入电解液。如果这些枝晶长得足够大并一直延伸到阴极,它们就会在电极之间形成一条永久性的"导线"。最终,电池中的所有电子都会通过这根线从一个电极流向另一个电极,而不会流出电池为设备供电,这一过程也会阻止离子在电极之间流动。"这就是所谓的内部短路,"阿贡博士后、团队首席研究员迈克尔-坎尼汉(MichaelCounihan)说,电池发生故障后就不再为设备供电。将锂金属阳极置于固态电池中(换句话说,就是使用固态电解质的电池),有可能减少与枝晶相关的挑战,同时还能保留锂的优点。阿贡团队正在开发一种用于电动汽车电池的新型固体电解质,并注意到了一种不寻常的行为。"当我们在实验室中操作电池时,我们观察到了非常小、非常短暂的电压波动,"Counihan说。我们决定进行更深入的研究。研究人员对电池进行了数百小时的反复充电和放电,并测量了电压等各种电气参数。研究小组确定,电池正在经历软短路,这是一种微小的暂时性短路。软短路时,枝晶会从阳极向阴极生长。但增长量比永久短路时要小。一些电子留在电池内部,另一些则可能流向外部设备。电极之间的离子流可能会继续流动。所有这些流动都会发生很大的变化。研究小组与阿贡计算专家合作开发了模型,用于预测软短路过程中的离子流和电子流数量。这些模型考虑到了枝晶尺寸和电解质特性等因素。带有软短路的电池可以持续工作数小时、数天甚至数周。但阿贡研究小组发现,随着时间的推移,枝晶的数量通常会增加,最终导致电池失效。Counihan说:"软短路是通向电池永久故障悬崖的第一步。"动态行为研究小组的进一步研究发现,软短路具有非常动态的行为。它们往往在短短的微秒或毫秒内形成、消失和重组。Counihan说:"这对电池研究人员来说是一个重要的启示。在实验室进行典型的电池测试时,研究人员可能每隔一分钟左右才测量一次电压。在这段时间里,电池可能会错过成千上万软短路的形成和死亡。它们就像一个个小幽灵,在不知不觉中破坏着电池。"软短路最常见的原因是发热。当电子流经枝晶时,会产生热量,类似于家用电器电线的发热,热量会迅速融化,尤其是在周围电解液具有隔热性能的情况下。当枝晶与某些电解质发生反应时,软短路就会溶解,阿贡研究小组正在研究的某些固体电解质会在枝晶到达阴极之前将其切断,从而导致内部短路。在对软短路进行广泛研究的过程中,阿贡团队开发并演示了几种检测和分析软短路现象的新方法。例如,一种方法可以量化软短路对电池电流阻力的影响程度。由于不同的电池组件都可能造成这种阻力,因此分离出软短路造成的阻力可以帮助研究人员更好地评估电池的健康状况。这项研究最近发表在《焦耳》(Joule)杂志上,其中包括近20种检测和分析技术。其中约三分之一的方法来自该团队最近的研究。研究报告的作者从研究界非正式的、未发表的知识中收集了其他方法。Counihan说:"我们意识到,文献中没有一篇论文使用了其中两种以上的技术。为了让这份清单对研究人员更有用,我们加入了关于每种方法优缺点的信息。由于软短线的动态性很强,因此对于研究人员来说,有很多工具可以使用,以便更好地了解软短线的影响。"研究小组希望为世界各地的研究人员提供有关软短路的见解,为他们的工作提供参考。例如,论文中的技术可以帮助推进阻止枝晶生长的硬固体电解质的设计。Counihan说:"当研究人员了解电池中软短路的动态时,他们就能更好地改进材料,避免这些失效途径。"参考文献:MichaelJ.Counihan、KanchanS.Chavan、PallabBarai、DevonJ.Powers、YuepengZhang、VenkatSrinivasan和SanjaTepavcevic合著的《固态电池研究中动态软短路的幽灵威胁》,2023年12月6日,《焦耳》。DOI:10.1016/j.joule.2023.11.007编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1418235.htm手机版:https://m.cnbeta.com.tw/view/1418235.htm

封面图片

中国科学家研制出高性能超长寿命锌离子水电池

中国科学家研制出高性能超长寿命锌离子水电池一个研究小组利用弱磁场和一种新型VS2材料开发出了一种先进的锌离子水电池,该电池的循环寿命更长。这一突破解决了锌枝晶生长和阴极材料限制的难题。资料来源:毛云杰锌离子水电池是锂离子电池的一种低成本、安全的替代品,具有很高的理论容量。然而,阴极材料有限的电化学性能和阳极上锌枝晶的生长降低了锌离子水电池的能量密度和循环寿命。要开发出更好的水性锌离子电池,设计高能量密度的阴极和抑制锌枝晶的生长非常重要。Zn-VS2AZIB的示意图和电化学性能。(b)富空位Zn-VS2AZIB的超长循环性能。(c)与其他阴极相比,富空位VS2的Ragone图。(d)由Zn-VS2电池供电的LED灯的光学照片。资料来源:毛云杰在这项研究中,研究小组克服了现有阴极材料的局限性和锌枝晶的生长问题。他们采用一步水热法和原位电化学缺陷工程来制造VS2材料。这种材料具有丰富的缺陷,能有效减少锌离子与VS2之间的静电作用。它允许Zn2+沿ab平面和c轴进行三维传输,因而具有出色的速率能力。虽然由于枝晶的生长,循环稳定性仍然是一个问题,但研究小组发现,引入外部磁场可以抑制枝晶的生长,并显著提高电池的使用寿命。在弱磁场下工作的高性能Zn-VS2电池显示出超长的循环寿命,并提供了高能量密度和功率密度。研究小组表示,这项工作可能会对未来的储能技术产生重大影响。...PC版:https://www.cnbeta.com.tw/articles/soft/1377317.htm手机版:https://m.cnbeta.com.tw/view/1377317.htm

封面图片

科学家们发现了一种稳定的高导电性锂离子导体

科学家们发现了一种稳定的高导电性锂离子导体虽然硫化物固体电解质具有导电性,但它们会与水分反应形成有毒的二硫化氢。因此,需要既导电又在空气中稳定的非硫化物固体电解质来制造安全、高性能和快速充电的固态锂离子电池。在最近发表在《材料化学》杂志上的一项研究中,由东京理科大学KenjiroFujimoto教授、AkihisaAimi教授和DENSOCORPORATION的ShuheiYoshida博士领导的研究小组发现了一种稳定且高导电性的锂离子导体烧绿石型氟氧化物的形式。藤本教授表示:“制造全固态锂离子二次电池是许多电池研究人员长期以来的梦想。我们发现了一种氧化物固体电解质,它是全固态锂离子电池的关键组成部分,它兼具高能量密度和安全性。除了在空气中稳定之外,该材料还表现出比之前报道的氧化物固体电解质更高的离子电导率。”本工作研究的烧绿石型氟氧化物可表示为Li2-xLa(1+x)/3M2O6F(M=Nb,Ta)。使用各种技术对其进行结构和成分分析,包括X射线衍射、Rietveld分析、电感耦合等离子体发射光谱法和选区电子衍射。具体来说,开发了Li1.25La0.58Nb2O6F,在室温下表现出7.0mScm⁻¹的体离子电导率和3.9mScm⁻¹的总离子电导率。人们发现它比已知的氧化物固体电解质的锂离子电导率更高。该材料的离子传导活化能极低,并且该材料在低温下的离子电导率是已知固体电解质(包括硫化物基材料)中最高的之一。确切地说,即使在–10°C的温度下,新材料在室温下也具有与传统氧化物基固体电解质相同的电导率。此外,由于在100°C以上的电导率也已得到验证,因此该固体电解质的工作范围为–10°C至100°C。传统的锂离子电池无法在低于冰点的温度下使用。因此,常用手机锂离子电池的工作条件为0℃至45℃。研究了该材料中的锂离子传导机制。烧绿石型结构的传导路径覆盖了位于MO6八面体形成的隧道中的F离子。传导机制是锂离子的顺序运动,同时改变与氟离子的键。Li离子总是穿过亚稳态位置移动到最近的Li位置。与F离子结合的固定La3+通过阻断传导路径并消除周围的亚稳态位置来抑制锂离子传导。与现有的锂离子二次电池不同,氧化物基全固态电池不存在因损坏而导致电解液泄漏的风险,也不像硫化物基电池那样产生有毒气体的风险。因此,这项新的创新预计将引领未来的研究。“新发现的材料是安全的,并且比之前报道的基于氧化物的固体电解质具有更高的离子电导率。这种材料的应用有望开发出革命性的电池,这种电池可以在从低到高的宽温度范围内工作,”藤本教授展望道。“我们相信固体电解质应用于电动汽车所需的性能是满足的。”值得注意的是,新材料非常稳定,如果损坏也不会点燃。它适用于飞机和其他对安全至关重要的地方。它还适合高容量应用,例如电动汽车,因为它可以在高温下使用并支持快速充电。此外,它还是一种有前途的用于电池、家用电器和医疗设备小型化的材料。总之,研究人员不仅发现了一种具有高导电性和空气稳定性的锂离子导体,而且还引入了一种新型的超离子导体--焦绿宝石型氧氟化物。探索锂周围的局部结构、它们在传导过程中的动态变化,以及它们作为全固态电池固态电解质的潜力,是未来研究的重要领域。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432002.htm手机版:https://m.cnbeta.com.tw/view/1432002.htm

封面图片

锂电池循环寿命和快充性能有望大幅提升

锂电池循环寿命和快充性能有望大幅提升近日,荷兰代尔夫特理工大学的MarnixWagemaker教授团队与中核集团原子能院核物理研究所中子散射团队合作,在国际权威期刊《自然》上发表了锂离子电池领域的最新研究成果。该成果或将大幅提升锂电池循环寿命和快充性能,标志着中核集团重大科研设施中国先进研究堆全面开放应用取得重要进展。该研究围绕有序层状氧化物开展,这是目前锂离子电池中最重要的正极材料之一。在进行深度充电时,该结构框架容易受到晶格应力、结构或机械化学降解的影响,使得电池容量急剧下降,从而导致电池寿命缩短。(科技日报)

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人