科学家在咖啡中发现一种脑力促进剂

科学家在咖啡中发现一种脑力促进剂最近的研究越来越多地集中于寻找能够抵御与年龄相关的认知能力下降和促进健康老龄化的天然化合物。咖啡、葫芦巴种子和萝卜中含有的一种植物生物碱--三高碱(TG),被认为是增强认知能力的候选物质。在一项新的研究中,筑波大学的研究人员利用衰老加速小鼠易感基因8(SAMP8)模型,从认知和分子生物学的角度综合研究了TG对记忆和空间学习(获取、保留、构建和应用与周围物理环境相关的信息)的影响。给SAMP8小鼠口服TG30天后,与未服用TG的SAMP8小鼠相比,莫里斯水迷宫测试表明小鼠的空间学习和记忆能力有了显著提高。接下来,研究人员对海马进行了全基因组转录组分析,以探索潜在的分子机制。他们发现,与神经系统发育、线粒体功能、ATP合成、炎症、自噬和神经递质释放有关的信号通路在TG组中受到显著调节。此外,研究小组还发现,TG通过负向调节信号因子Traf6介导的转录因子NF-κB激活,抑制了神经炎症。此外,蛋白质定量分析证实,炎症细胞因子TNF-α和IL-6的水平显著降低,海马中神经递质多巴胺、去甲肾上腺素和血清素的水平显著升高。这些研究结果表明,TG能有效预防和改善与年龄相关的空间学习记忆损伤。这项工作得到了DyDoDRINCO和日本科学技术振兴机构(JST基金编号JPMJPF2017)的支持。...PC版:https://www.cnbeta.com.tw/articles/soft/1398837.htm手机版:https://m.cnbeta.com.tw/view/1398837.htm

相关推荐

封面图片

咖啡中所含的化合物可改善与年龄有关的记忆力和学习能力衰退

咖啡中所含的化合物可改善与年龄有关的记忆力和学习能力衰退研究人员越来越多地转向具有神经保护特性的天然生物活性化合物,以延缓大脑衰老的进程。由日本筑波大学研究人员领导的一项新研究调查了咖啡豆中高浓度的生物碱化合物三尖杉碱(TG)如何影响小鼠的认知功能。咖啡因、TG和烟酸(烟酸或维生素B3)是咖啡中三种重要的生物活性化合物。在咖啡豆的烘焙过程中,TG会被分解成烟酸,而烟酸对神经系统、消化系统和皮肤都有好处。不过,研究发现TG本身也有治疗作用。葫芦巴种子和日本萝卜中也含有这种化合物。在目前的研究中,研究人员使用了表现出空间学习障碍和记忆力减退症状的年龄加速小鼠,以5毫克/千克/天的剂量连续30天口服TG。30天后,小鼠接受了一项行为测试,以测量空间学习和记忆能力。海马体是颞叶深处的一个复杂的大脑结构,海马体受损的常见后果是出现空间记忆问题,如迷路或忘记物品放置的位置。在人类中,海马体积会随着年龄的增长而减小,这可能会导致与年龄相关的认知能力下降。研究人员发现,与未服用TG的小鼠相比,服用了TG的小鼠在空间学习和记忆能力方面有明显改善。鉴于海马依赖性空间记忆衰退的减少,研究人员对TG在海马中的生物效应进行了研究。基因转录的动态变化对大脑建立长期记忆和记忆检索过程至关重要。因此,研究人员分析了小鼠海马的全基因组转录组学。他们发现,在以TG为食的小鼠中,与神经系统发育、细胞能量产生、炎症和自噬(人体重新利用旧细胞和受损细胞的过程)有关的信号通路受到了显著调节。突触特异性基因也被上调,包括那些控制突触可塑性的基因。突触可塑性是神经元改变其连接强度的能力,被认为是学习和记忆保持过程的基础。此外,研究人员还发现,TG通过负向调节导致促炎细胞因子产生的途径,抑制了神经炎症,同时显著提高了对正常大脑功能至关重要的神经递质:多巴胺、去甲肾上腺素(去甲肾上腺素)和血清素。研究人员说:"总之,我们的研究为我们了解TG在改善与衰老相关的认知能力下降方面的治疗潜力提供了宝贵的见解,突出了TG针对神经炎症、突触功能和海马神经递质释放的能力。因此,TG可被视为一种潜在的辅助药物化合物,用于改善认知衰老和与神经炎症相关的中枢神经系统(CNS)功能障碍。"对于那些希望通过喝咖啡来提高TG含量的人来说,2014年的一项研究发现,一杯标准的意大利浓缩咖啡(0.8盎司/25毫升)平均含有42.4毫克的TG,其中阿拉比卡咖啡的TG含量高于罗布斯塔咖啡。如果您不想过于兴奋,无咖啡因咖啡也含有TG。这项研究发表在《GeroScience》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1386181.htm手机版:https://m.cnbeta.com.tw/view/1386181.htm

封面图片

科学家们发现了一种新的日常节奏 使人们了解到大脑活动是如何被微调的

科学家们发现了一种新的日常节奏使人们了解到大脑活动是如何被微调的该结果发表在《PLOS生物学》杂志上,可能有助于解释细微的突触变化如何改善人类的记忆。来自国家神经疾病和中风研究所(NINDS)的研究人员领导了这项研究,该研究所是国家卫生研究院的一部分。"抑制对大脑功能的各个方面都很重要。但二十多年来,大多数睡眠研究都集中在了解兴奋性突触上,"NINDS的高级调查员WeiLu博士说。"这是一项及时的研究,试图了解睡眠和清醒如何调节抑制性突触的可塑性"。Lu博士实验室的博士后WuKunwei调查了小鼠在睡眠和清醒时抑制性突触的情况。从海马体(一个参与记忆形成的大脑区域)的神经元进行的电记录显示了一种以前未知的活动模式。在清醒状态下,稳定的"强直"抑制活动增加,但快速的"阶段性"抑制活动减少。他们还发现,在清醒的小鼠神经元中,抑制性电反应的活动依赖性增强得多,这表明清醒,而不是睡眠,可能在更大程度上加强这些突触。抑制性神经元使用神经递质γ-氨基丁酸(GABA)来减少神经系统的活动。这些神经元在抑制性突触处将GABA分子释放到突触裂隙中,突触裂隙是神经元之间神经递质扩散的空间。这些分子与邻近的兴奋性神经元表面的GABAA受体结合,使其减少发射次数。进一步的实验表明,清醒时的突触变化是由α5-GABAA受体数量增加所驱动的。当受体在清醒小鼠体内被阻断时,活动依赖性的相位电反应的增强就会减弱。这表明,清醒时GABAA受体的积累可能是建立更强大、更有效的抑制性突触的关键,这是一个被称为突触可塑性的基本过程。"当你在白天学习新信息时,神经元受到来自大脑皮层和许多其他区域的兴奋性信号的轰击。"Lu博士说:"为了将这些信息转变为记忆,你首先需要调节和完善它--这就是抑制的作用。"先前的研究表明,海马体的突触变化可能是由抑制性中间神经元发出的信号驱动的,这种特殊类型的细胞在大脑中只占大约10-20%的神经元。在海马中有超过20种不同的中间神经元亚型,但最近的研究强调了两种类型,即被称为副白蛋白和体蛋白,它们关键性地参与了突触调节。为了确定哪种神经元负责他们所观察到的可塑性,Lu博士的团队使用了光遗传学,这是一种使用光来打开或关闭细胞的技术,并发现清醒状态导致更多的α5-GABAA受体和来自副白蛋白的更强连接,而不是体蛋白的神经元。人类和小鼠拥有类似的神经回路,是记忆储存和其他基本认知过程的基础。这种机制可能是抑制性输入精确控制神经元之间和整个大脑网络的信息起伏的一种方式。Lu博士说:"抑制实际上是相当强大的,因为它允许大脑以一种微调的方式执行,这基本上是所有认知的基础。"由于抑制对大脑功能的几乎每一个方面都至关重要,这项研究不仅有助于帮助科学家了解睡眠-觉醒周期,而且有助于了解植根于大脑节律异常的神经系统疾病,如癫痫。在未来,Lu博士的研究小组计划探索GABAA受体贩运到抑制性突触的分子基础。这项研究的部分资金来自于美国国家疾病预防控制中心的院内研究项目。...PC版:https://www.cnbeta.com.tw/articles/soft/1335699.htm手机版:https://m.cnbeta.com.tw/view/1335699.htm

封面图片

对大脑功能的新认识:研究人员发现了一种探寻已久的基因编码蛋白

对大脑功能的新认识:研究人员发现了一种探寻已久的基因编码蛋白高级作者、OHSUVollum研究所的助理科学家SkylerJackman博士说:"当脑细胞活跃时,它们会释放神经递质来与它们的邻居交流。如果一个细胞非常活跃,它可以耗尽它的神经递质供应,这可能导致通信中断和大脑功能紊乱。事实证明,细胞有一个补充其神经递质供应的促进模式,但直到现在,我们还不知道是哪个分子在负责。"他说:"我们发现SYT3直接负责这种神经递质的提升。这让我们对大脑如何分解和无法正常处理信息有了新的认识。"OHSUVollum研究所的助理科学家SkylerJackman博士是发表在《自然》杂志上的一项神经递质发现的高级作者。他正坐在用于观察突触传输范围的设备旁边。资料来源:OHSU/ChristineTorresHicks科学家们创造了缺乏SYT3基因的"基因剔除"小鼠。他们发现,与拥有该基因的对照组小鼠相比,这些小鼠缺乏更强大的突触传输水平。值得注意的是,Syt3基因的突变与人类自闭症谱系障碍和癫痫的情况有关。据杰克曼说,最近的研究提出了开发针对SYT3的基因疗法或药物方法的前景。杰克曼实验室的博士后研究员、主要作者丹尼斯-温加顿博士说:"神经递质释放的失衡是许多神经系统疾病的根本原因。在未来,了解这些分子开关--如SYT3--是我们对抗这些疾病的关键一步"。杰克曼的实验室专门研究突触传输。人类的大脑包含了数以万亿计的突触。发现赋予这些特殊结构以独特属性的分子,对于理解大脑功能和神经系统疾病至关重要。突触传输是感知我们周围环境、做出决定以及我们内心世界几乎所有其他特征的基础。...PC版:https://www.cnbeta.com.tw/articles/soft/1334307.htm手机版:https://m.cnbeta.com.tw/view/1334307.htm

封面图片

科学家发现一种可以预防阿尔茨海默病的基因

科学家发现一种可以预防阿尔茨海默病的基因尽管存在淀粉样β(Abeta),即阿尔茨海默病患者大脑中斑块的主要成分,但这种情况仍然发生。过去,科学家们在寻求这种致命疾病的治疗方法时一直关注斑块。在这个例子中,他们选择直接绕过了它们。这些发现最近发表在《iScience》杂志上。该研究的共同第一作者、科罗拉多大学神经学教授、科罗拉多大学阿尔茨海默病和认知中心主任、科罗拉多大学医学院LindaCrnic唐氏综合症研究所阿尔茨海默病研究主任亨廷顿-波特博士说:"在小鼠中过度表达KIF11并不影响大脑中的淀粉质水平。尽管有斑块,他们在认知上仍然是正常的。这是最好的迹象之一,表明病人可以在不摆脱斑块的情况下保持认知能力。"KIF11是一种运动蛋白,因其参与非神经细胞的有丝分裂或细胞分裂而较为知名。然而,它在神经元如何发展其树突和树突棘方面也有重要作用,树突和树突棘对学习和记忆至关重要,并作为神经元之间的一种交流方式。然而,阿尔茨海默氏症斑块的主要成分Abeta有能力阻断KIF11并破坏这些结构。研究人员发现,与KIF11水平正常的AD小鼠相比,在AD小鼠中过度表达该基因会导致认知测试成绩的提高。然后他们分析了由芝加哥拉什大学的宗教秩序研究和拉什记忆与衰老项目(ROS/MAP)提供的人类AD患者的基因数据。他们想知道自然发生的KIF11水平变异是否与有或没有淀粉样斑块的成年人更好的认知表现相关。该研究的主要作者、科罗拉多大学医学院的EstebanLucero博士说:"我们分析人类数据的结果表明,在患有淀粉样病变的老年人群中,较高的KIF11水平与更好的认知表现相关。因此,我们的研究表明,较高的KIF11表达水平可能部分地防止人类在AD过程中的认知损失,这与我们关于KIF11在AD动物模型中的作用的发现相一致。"这一信息为研究人员开始测试能在人类中安全产生这种效果的新药或现有药物铺平了道路。目前许多针对AD的实验性治疗方法都集中在减少阿贝塔的产生或增加阿贝塔斑块的清除。这些方法中的大多数在临床试验中未能防止或逆转认知能力的下降。显然,需要用其他方法来开发AD治疗方法。...PC版:https://www.cnbeta.com.tw/articles/soft/1333735.htm手机版:https://m.cnbeta.com.tw/view/1333735.htm

封面图片

科学家发现致命脑癌的隐藏弱点

科学家发现致命脑癌的隐藏弱点这些发现发表在《自然》杂志上,为研究这种连最先进、最复杂的抗癌药物都无法治愈的疾病提供了一个充满希望的新方向。神经外科医生、医学博士肖恩-赫维-朱珀(ShawnHervey-Jumper)说:"胶质母细胞瘤需要一场胜利,"他与博士后学者萨里莎-克里希纳(SarithaKrishna)博士共同领导了这项研究。"这项研究为这些患者打开了一扇通往治疗可能性的大门,也为脑癌的研究提供了一种新思路。"在赫维-朱珀开始研究时,科学家们最近发现脑肿瘤是由一个正反馈循环推动的。它始于癌细胞产生可作为神经递质的物质。这种"额外"供应的神经递质刺激神经元变得亢奋,进而刺激癌细胞的生长。在先前对小鼠和脑器质性组织(在培养皿中培养的人类干细胞衍生出的神经元小束)所做研究的基础上,赫维-朱珀重点研究了脑癌的反馈回路对人类行为和认知的影响。研究小组招募了等待胶质母细胞瘤手术的志愿者,他们的肿瘤已经浸润了控制语言的大脑区域。就在对肿瘤进行手术之前,赫维-朱珀在语言区域表面放置了一个由微小电极组成的网格,向志愿者展示图片,并让他们说出所看到的内容。研究小组随后将结果与同一参与者大脑中外观正常的非肿瘤区域进行了比较。他们发现,参与者被肿瘤浸润的大脑区域使用了更广泛的大脑区域神经网络来识别他们所看到的东西。癌症是细胞之间的对话赫维-朱珀将此归因于大脑该区域信息处理能力的退化。他把这比作一个交响乐团,音乐家们同步演奏才能奏出美妙的乐章。他说:"如果你失去了大提琴和木管乐器,剩下的演奏者就无法像以前那样演奏乐曲了。被肿瘤束缚住的脑细胞受到了严重破坏,必须从更远的地方招募其他脑细胞来完成原本由较小区域控制的任务。"这项研究表明,正是细胞之间的这种相互作用导致了与脑癌相关的认知能力下降,而不是科学家们所认为的炎症和肿瘤生长带来的压力。Hervey-Jumper说:"脑肿瘤并不只是坐在那里等死。它受到神经系统的调节。它正在与周围的细胞进行对话,并积极融入大脑回路,重塑它们的行为方式"。我们从未以这种方式思考过癌症现在,研究人员知道肿瘤正在利用大脑网络。因此,他们转而使用加巴喷丁,这种药物通过抑制大脑中过剩的电活动来控制癫痫发作,并在接种了人类胶质母细胞瘤细胞的小鼠中进行测试。"加巴喷丁实际上阻止了肿瘤的扩大,"克里希纳说。"这让我们希望,将加巴喷丁与其他胶质母细胞瘤疗法结合使用,可以避免我们在患者身上看到的一些认知能力下降现象,或许还能延长他们的生命。"这些发现很可能会转化为其他神经癌症,如脊柱癌症,并可能有助于解释为什么大脑是许多癌症的第一个转移部位。Hervey-Jumper说,这项研究鼓励癌症专家考虑细胞间的通讯网络,如胶质母细胞瘤中的正反馈回路,并将其与遗传学和免疫学方法一起作为潜在的治疗目标。他说:"我们以前从未以这种方式思考过癌症。"癌细胞和健康的脑细胞之间存在对话,这种想法是一种范式的转变"。...PC版:https://www.cnbeta.com.tw/articles/soft/1373867.htm手机版:https://m.cnbeta.com.tw/view/1373867.htm

封面图片

科学家揭示一种肺癌如何转化为另一种肺癌

科学家揭示一种肺癌如何转化为另一种肺癌研究人员捕捉到肺癌转化的蛛丝马迹:免疫荧光图像显示,小细胞肺癌(紫粉色)在小鼠肺部的支气管(绿色)中扩散,支气管中含有残留的肺腺癌肿瘤细胞(蓝色)。图片来源:瓦默斯实验室埃里克-加德纳博士研究人员的研究结果发表在《科学》(Science)杂志上,他们发现,在从肺腺癌向小细胞肺癌(SCLC)转变的过程中,突变细胞似乎通过一种类似干细胞的中间状态发生了细胞身份的改变,从而促进了转变。"在人类患者身上研究这一过程非常困难。因此,我的目标是在小鼠模型中揭示肺腺癌向小细胞肺癌转化的内在机制,"研究带头人埃里克-加德纳博士说,他是刘易斯-托马斯大学医学教授、威尔康奈尔医学院桑德拉和爱德华-迈耶癌症中心成员哈罗德-瓦尔穆斯博士实验室的博士后研究员。这种复杂的小鼠模型耗时数年才开发完成并定性,但却让研究人员破解了这一难题。这项研究是与生理学和生物物理学助理教授、威尔康奈尔医学院迈耶癌症中心成员阿什利-劳格尼(AshleyLaughney)博士,以及劳格尼实验室研究生、三院计算生物学和医学项目成员伊桑-厄利(EthanEarlie)合作进行的。瓦默斯博士说:"众所周知,癌细胞会不断进化,尤其是为了逃避有效治疗的压力。这项研究表明,新技术(包括检测单个癌细胞的分子特征)与基于计算机的数据分析相结合,可以描绘出致命癌症进化过程中戏剧性的复杂事件,揭示出新的治疗目标。"SCLC最常发生在重度吸烟者身上,但这种类型的肿瘤也发生在相当多的肺腺癌患者身上,尤其是在接受了针对一种叫做表皮生长因子受体(EGFR)的蛋白质的治疗后,这种蛋白质会促进肿瘤生长。新的SCLC型肿瘤对抗表皮生长因子受体疗法具有抗药性,因为它们的生长是由一种新的癌症驱动因子--高水平的Myc蛋白所推动的。为了揭示这些癌症途径之间的相互作用,研究人员设计小鼠患上了一种常见的肺腺癌,在这种癌症中,肺上皮细胞受表皮生长因子受体基因突变的驱动。然后,他们把腺癌肿瘤变成了SCLC型肿瘤,这种肿瘤通常来自神经内分泌细胞。为此,他们关闭了表皮生长因子受体,同时还发生了其他一些变化,包括肿瘤抑制基因Rb1和Trp53的缺失,以及已知的SCLC驱动基因Myc的增殖。表皮生长因子受体(EGFR)和Myc等癌基因是正常控制细胞生长的基因的变异形式。它们在推动癌症生长和扩散方面的作用众所周知。另一方面,抑癌基因通常会抑制细胞增殖和肿瘤发展。令人惊讶的是,这项研究表明,致癌基因的作用方式与环境有关。虽然大多数肺细胞对Myc的致癌作用有抵抗力,但神经内分泌细胞对Myc的致癌作用却非常敏感。相反,肺气囊的上皮细胞是肺腺癌的前体,它们在表皮生长因子受体突变的作用下过度生长。Laughney博士说:"这表明,在错误的细胞类型中,'癌基因'不再像癌基因那样发挥作用。因此,它从根本上改变了我们对致癌基因的看法。"研究人员还发现了一种既不是腺癌也不是SCLC的干细胞样中间体。只有当肿瘤抑制基因RB1和TP53发生突变时,处于这种过渡状态的细胞才会变成神经内分泌细胞。他们观察到,另一种名为Pten的肿瘤抑制因子的缺失加速了这一过程。在这一阶段,致癌基因Myc可以驱动这些中间干样细胞形成SCLC型肿瘤。这项研究进一步支持了寻找靶向Myc蛋白疗法的努力,Myc蛋白与多种癌症有牵连。研究人员现在计划利用他们的新小鼠模型进一步探索腺癌-SCLC的转变,例如详细研究免疫系统如何正常应对这种转变。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1420151.htm手机版:https://m.cnbeta.com.tw/view/1420151.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人