研究人员设计“纳米陷阱” 提供有关蛋白质团块的新见解

研究人员设计“纳米陷阱”提供有关蛋白质团块的新见解图片显示的是蛋白质捕获器,它由纳米级腔室和聚合物组成,在上方形成门。这些"门"通过将温度升高约10度来打开。然后,聚合物会改变形状,变成更紧凑的状态,这样蛋白质就可以进出了。资料来源:查尔默斯理工大学朱莉娅-耶尔勒巴克领导该研究项目的查尔姆斯大学教授安德烈亚斯-达林(AndreasDahlin)说:"我们相信,我们的方法具有巨大的潜力,可以加深人们对许多不同疾病的早期和危险过程的了解,并最终帮助人们了解如何用药物来对抗这些疾病。"在人体内形成团块的蛋白质会导致多种疾病,包括渐冻人症、老年痴呆症和帕金森症。如果能更好地了解凝块是如何形成的,就能找到有效的方法在早期将其溶解,甚至完全防止其形成。AndreasDahlin,查尔姆斯理工大学化学与化学工程系教授。图片来源:查尔默斯理工大学MikaelTerfors如今,有各种技术可以研究过程的后期阶段,即团块变大并形成长链的阶段,但直到现在,还很难跟踪早期的发展,因为那时它们还非常小。现在,这些新的捕集器可以帮助解决这个问题。可长时间进行高浓度研究研究人员将他们的工作描述为世界上最小的闸门,只需按下按钮就能打开和关闭。这些门成为陷阱,将蛋白质锁在纳米级的腔室中。蛋白质无法逃脱,从而将在这一水平上观察蛋白质的时间从一毫秒延长到至少一小时。这种新方法还可以在很小的体积内封闭几百个蛋白质,这对进一步了解情况非常重要。"我们希望看到并更好地理解的团块由数百个蛋白质组成,因此如果我们要研究它们,就必须能够捕获如此大量的蛋白质。"AndreasDahlin说:"小体积内的高浓度意味着蛋白质会自然地相互碰撞,这是我们新方法的一大优势。"为了将这种技术用于研究特定疾病的病程,还需要继续开发这种方法。"捕获器需要进行调整,以吸引与你感兴趣的特定疾病相关的蛋白质。"AndreasDahlin说:"我们现在的工作是规划哪些蛋白质最适合研究。"新陷阱的工作原理研究人员开发的捕集器由所谓的聚合物刷组成,位于纳米级腔室的口部。要研究的蛋白质包含在液体溶液中,经过特殊化学处理后被吸引到腔室壁上。当闸门关闭时,蛋白质就会脱离腔壁,开始相互移动。在捕集器中,您可以研究单个的蛋白质团块,这比同时研究许多蛋白质团块能提供更多信息。例如,团块可能由不同的机制形成,具有不同的大小和结构。只有逐个分析才能观察到这些差异。实际上,蛋白质可以在捕集器中保留几乎任意长的时间,但目前,时间受到化学标记保留时间的限制。在这项研究中,研究人员成功地将可见性保持了一个小时。...PC版:https://www.cnbeta.com.tw/articles/soft/1398913.htm手机版:https://m.cnbeta.com.tw/view/1398913.htm

相关推荐

封面图片

研究人员设计新蛋白质 显示出帮助预防自身免疫性疾病的希望

研究人员设计新蛋白质显示出帮助预防自身免疫性疾病的希望我们的免疫系统是抵御疾病的第一道防线,但不幸的是,它可能会失控,攻击健康组织。约翰斯·霍普金斯大学的科学家们现在设计了一种蛋白质,它可能通过提高调节性T细胞(Tregs)的数量来帮助预防这些自身免疫性疾病。PC版:https://www.cnbeta.com/articles/soft/1330367.htm手机版:https://m.cnbeta.com/view/1330367.htm

封面图片

破解细胞密码:蛋白质折叠与疾病疗法的新见解

破解细胞密码:蛋白质折叠与疾病疗法的新见解马萨诸塞大学阿默斯特分校(UMassAmherst)的一项突破性研究破解了附着在蛋白质上的糖是如何引导蛋白质正确折叠的,为治疗由蛋白质错误折叠引起的疾病提供了可能。研究小组的方法揭示了一种特定酶在折叠过程中发挥的关键作用。这种蛋白质(红色)被糖(蓝色和绿色)糖苷化。资料来源:马萨诸塞大学阿默斯特分校揭开丝氨酸的神秘面纱这项发表在《分子细胞》(MolecularCell)杂志上的研究探讨了与多种疾病有关的丝氨酸蛋白家族成员。这项研究首次探讨了附着在丝蛋白上的碳水化合物的位置和组成如何确保它们正确折叠。从肺气肿、囊性纤维化到阿尔茨海默病等严重疾病,都可能因细胞对蛋白质折叠的监督出错而导致。找出负责高保真折叠和质量控制的糖蛋白代码,可能是针对多种疾病的药物疗法的一种很有前景的方法。科学家们曾一度认为,DNA是支配生命的唯一代码,一切都受DNA的四个构建模块--A、C、G和T--如何组合和重组的支配。但近几十年来,人们逐渐认识到还有其他代码在起作用,尤其是在人体细胞的蛋白质工厂--内质网(ER)--这个膜封闭的腔室中,蛋白质折叠的起始点就是内质网。约有7000种不同的蛋白质在ER中成熟,占人体所有蛋白质的三分之一。这些分泌蛋白统称为"分泌体"--负责人体从酶到免疫和消化系统的一切功能,必须正确形成才能使人体正常运作。蛋白伴侣在蛋白质折叠中的作用被称为"伴侣"的特殊分子有助于将蛋白质折叠成最终形状。它们还能帮助识别折叠不完全正确的蛋白质,为其重新折叠提供额外的帮助,或者,如果它们折叠错误得无可救药,则在它们造成损害之前将其锁定并加以破坏。然而,作为细胞质量控制部门的一部分,伴侣系统本身有时也会失效,一旦失效,就会给我们的健康带来灾难性的后果。发现ER中基于碳水化合物的伴侣系统要归功于麻省大学阿默斯特分校生物化学和分子生物学教授、本文资深作者之一丹尼尔-希伯特(DanielHebert)在20世纪90年代作为博士后开展的开创性工作。"我们现在拥有的工具,包括阿默斯特大学应用生命科学研究所的糖蛋白组学和质谱分析技术,让我们能够回答25年来一直悬而未决的问题,"Hebert说。"这篇新论文的第一作者凯文-盖伊(KevinGuay)所做的事情是我刚开始工作时梦寐以求的。"在这些悬而未决的问题中,最迫切的问题是:伴侣如何知道7000种不同的类似折纸的蛋白质何时正确折叠?理解蛋白质质量控制的创新我们现在知道,答案涉及一种名为UGGT的"ER守门员"酶,以及大量与蛋白质氨基酸序列中特定位点相连的碳水化合物标签,即N-糖。盖伊正在完成马萨诸塞大学阿默斯特分校分子细胞生物学项目的博士学业,他重点研究了两种特殊的哺乳动物蛋白质,即α-1抗胰蛋白酶和抗凝血酶。他和他的合著者利用CRISPR编辑细胞,修改了ER伴侣网络,以确定N-聚糖的存在和位置如何影响蛋白质折叠。他们观察了疾病变体被ER守门员UGGT识别的过程,为了更仔细地观察,他们利用质谱技术开发了一系列创新的糖蛋白组学技术,以了解蛋白质表面的聚糖发生了什么变化。他们发现,UGGT酶会在特定位置用糖"标记"折叠错误的蛋白质。这是一种代码,然后伴侣可以通过读取这种代码来确定折叠过程中哪里出错以及如何修复。影响和未来方向盖伊说:"这是我们第一次能够看到UGGT在人体细胞制造的蛋白质上添加糖以进行质量控制的位置。我们现在有了一个平台,可以扩展我们对糖标签如何将蛋白质送入进一步质量控制步骤的理解,我们的工作表明,UGGT是靶向药物治疗研究的一个很有前景的途径。""这项研究最令人兴奋的地方在于",马萨诸塞大学阿默斯特分校生物化学与分子生物学杰出教授、论文共同作者之一莱拉-吉拉什(LilaGierasch)说,"我们发现聚糖在ER中充当了蛋白质折叠的代码。UGGT所扮演角色的发现为未来了解并最终治疗由错误折叠蛋白质导致的数百种疾病打开了一扇大门"。参考文献《ER伴侣使用蛋白质折叠和质量控制糖代码》,作者:KevinP.Guay、HaipingKe、NathanP.Canniff、GracieT.George、StephenJ.Eyles、MalaiyalamMariappan、JosephN.Contessa、AnneGershenson、LilaM.Gierasch和DanielN.Hebert,2023年12月4日,《分子细胞》。DOI:10.1016/j.molcel.2023.11.006编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403363.htm手机版:https://m.cnbeta.com.tw/view/1403363.htm

封面图片

揭开大脑疾病的秘密:当蛋白质陷入固态时

揭开大脑疾病的秘密:当蛋白质陷入固态时研究人员利用先进的光学技术研究了与神经退行性疾病相关的蛋白质聚集体的形成。通过分析一种与渐冻症有关的蛋白质,他们对蛋白质从液态到固态的转变有了前所未有的深入了解,从而揭示了阿尔茨海默氏症和渐冻症等疾病的真相。上图是显示蛋白质凝结相互作用的纳米扫描图像。资料来源:悉尼大学这种液态到固态的转变会引发所谓的淀粉样纤维的形成。淀粉样纤维可在神经元中进一步形成斑块,导致神经退行性疾病,如阿尔茨海默氏症。悉尼大学的生物医学工程师与剑桥大学和哈佛大学的科学家合作,现已开发出精密的光学技术,可近距离监测这些蛋白质聚集体的形成过程。通过测试一种与肌萎缩性脊髓侧索硬化症(ALS)有关的蛋白质,悉尼大学的工程师们密切监测了这种蛋白质从液相到固相的转变过程。三维共聚焦显微镜扫描培养24小时的FUS蛋白质凝结物,显示了这项研究揭示的特征性核壳结构。资料来源:悉尼大学这项研究发表在美国《国家科学院院刊》(PNAS)上,其主要作者沈怡博士说:"这是从基础角度理解神经退行性疾病如何发展的巨大进步。"生物医学工程学院高级讲师、悉尼大学纳米研究所成员DanieleVigolo博士说:"我们现在可以在纳米尺度(百万分之一米)上直接观察到这些关键蛋白质从液态向固态的转变。蛋白质在液-液相分离过程中经常会形成凝结物,这种凝结物广泛存在于关键和健康的生物功能中,例如人类胚胎的形成。这一过程有助于蛋白质浓度至关重要的生化反应,还能促进健康的蛋白质-蛋白质相互作用。"Vigolo和沈的研究团队。资料来源:悉尼大学沈博士是化学与生物分子工程学院(SchoolofChemicalandBiomolecularEngineering)的ARCDECRAFellow,同时也是悉尼纳米研究中心(SydneyNano)的成员。"这可能导致与神经退行性疾病相关的异常结构,因为蛋白质不再表现出快速还原成液态的能力。因此,监测凝结动态至关重要,因为它们会直接影响病理状态,"她说。世界上首次对这一过程进行的纳米级光学观测使研究小组得以确定,从液态到固态蛋白质的转变始于蛋白质凝聚物的界面。这个相变窗口还揭示了这些蛋白质团聚体的内部结构是异质的,而以前人们认为它们是均质的。Vigolo博士说:"我们的发现有望从根本上大大提高我们对神经退行性疾病的认识。这意味着一个充满希望的新研究领域,可以让我们更好地了解阿尔茨海默病和渐冻症是如何在大脑中发展的,这些疾病影响着全球数百万人。"...PC版:https://www.cnbeta.com.tw/articles/soft/1379653.htm手机版:https://m.cnbeta.com.tw/view/1379653.htm

封面图片

研究人员发现前生物地球上的原始蛋白质是如何形成的

研究人员发现前生物地球上的原始蛋白质是如何形成的以前的研究表明,高碱性蒸发环境是古代蛋白质合成的场所,可产生多达20个单体长的甘氨酸多肽。中性条件被认为是肽合成的最坏情况。富含硼的古代沿海地区可以催化氨基酸的聚合。图片来源:YoshihiroFurukawa在地球上发现的一些最古老的沉积岩中发现了大量的含硼矿物质,其历史可以追溯到38亿年前。这些发现表明,富含硼酸的古代小大陆和岛屿的沿海地区自发地组装了氨基酸,形成了多肽和原蛋白质。东北大学副教授古川义弘说:"多肽在中性环境中的形成对生命起源的化学进化具有重要意义。"RNA在中性条件下相当稳定,但在碱性条件下却极不稳定。众所周知,硼有助于非生物核糖核苷酸合成的许多步骤。"富含硼的中性蒸发环境是前生物地球上两种基本聚合物形成和相互作用的理想场所,"古川说。该研究小组目前正在研究在这种环境中哪些氨基酸被加入到原肽中。...PC版:https://www.cnbeta.com.tw/articles/soft/1371499.htm手机版:https://m.cnbeta.com.tw/view/1371499.htm

封面图片

研究人员发现了一种控制梳状水母独特运动的蛋白质

研究人员发现了一种控制梳状水母独特运动的蛋白质栉水母,从海洋表面到海洋深处都可以找到。这些海洋捕食者的特征是沿着它们的侧面有八条明亮的、彩虹色的波纹带。这些带子是由一排排梳子一样排列的薄片组成的,上面有数以万计的被称为纤毛的微小头发状结构。梳状水母通过这些梳状板的跳动而在水中推进。纤毛的同步波浪式运动使周围的光线散射开来,从而形成一道色彩斑斓的彩虹。作者KazuoInaba教授说:"纤毛被捆绑在一起的结构被称为隔层膜(CL)。这些薄片被认为对纤毛的定向和同步运动很重要。在以前的一项研究中,我们发现了一种叫做CTENO64的蛋白质,它是纤毛定向所需要的,但它只在CL的一个部分被发现。我们仍然没有完全理解梳状板的整体结构。"梳状板被分为两个不同的区间:近端和远端。有了CTENO64被发现在近端区间的知识,为了更好地了解CL的分子组成,研究人员检查了整个梳状板上发现的整个蛋白质。他们确定了那些既丰富又只在梳状板细胞中显示基因表达的蛋白质。搜索工作阐明了21种蛋白质,包括一种新检测到的名为CTENO189的蛋白质,它存在于CL的一个与CTENO64不同的区域。"当我们敲除这个新发现的蛋白的基因时,CL在梳状板的远端区域根本没有出现,"Inaba教授解释说。"对结构的仔细观察表明,虽然梳状板形成正常,但纤毛处于混乱状态,正常的波状运动模式消失了。"这些研究共同表明,CL的两个不同区域在控制梳状果冻的运动方面发挥着不同的作用。近端CL提供了一个强大的建筑基础,而远端CL确保纤毛之间实现弹性连接。在CL中发现的这些蛋白质共同维持着涟漪状的运动,推动着梳状水母在其海洋环境中运动。...PC版:https://www.cnbeta.com.tw/articles/soft/1334459.htm手机版:https://m.cnbeta.com.tw/view/1334459.htm

封面图片

研究人员发现蛋白质RBM10可以阻止肺癌生长与扩散

研究人员发现蛋白质RBM10可以阻止肺癌生长与扩散杜兰大学(TulaneUniversity)的一项新研究发现了一种以前未知的分子途径,它可能有助于阻止肺癌的发生。肺癌是世界上最常见的癌症之一,也是导致癌症相关死亡的主要原因。该研究的资深作者、杜兰大学医学院雷诺兹和瑞安家族癌症转化讲座教授鲁华博士说,这项发表在《美国科学院院刊》上的研究可能会开发出一种新的抗癌药物和更个性化的肺癌治疗方法。研究发现,一种名为RBM10的已知肿瘤抑制蛋白可以通过抑制c-Myc的功能来抑制肺癌的生长。研究人员发现,RBM10与两种核糖体蛋白(RPL5和RPL11)合作,可以破坏c-Myc的稳定性,阻碍肺癌的扩散。这些发现首次确定了这两种蛋白质之间的抑癌关系。Lu说:"我们发现,RBM10可以直接靶向降解c-Myc,并通过与RPL5和RPL11结合降低其致癌作用。我们对癌症有很多了解,但其中涉及的分子仍是一个黑箱。我们正在一点一点地加深理解。"要理解这一过程如何阻止肺癌的进展,可以想象一下细胞中的两个工厂,每个工厂都在制造部件,以组装成新的蛋白质机器;c-Myc在这一蛋白质生产过程中扮演着常规角色,在整个细胞生长过程中也是如此,没有它,人类就无法生存。这种生产过程偶尔会受到干扰,工厂开始生产不正确的部件。当癌症开始形成时,它就会利用c-Myc继续生产,让这些"备用零件"堆积起来形成肿瘤。RBM10在RPL5和RPL11的帮助下,可以破坏c-Myc的稳定性,并阻止肿瘤生长。重要的是,研究还发现,肺癌中经常发现的一种突变形式的RBM10失去了抑制c-Myc的能力,不能与RPL5和RPL11核糖体蛋白结合,最终促进肿瘤生长而不是抑制肿瘤生长。Lu说:"RBM10是一种可以抑制癌细胞的重要蛋白质,但当癌症想要发展时,它就会突变RBM10,阻断这一功能。"研究人员希望进一步研究RBM10突变体的功能,希望能开发出针对它的抗癌药物。Lu说:"希望我们能设计出一种分子,专门针对突变体,因为这是正常组织中不存在的特殊结构。"如果我们能转化这种突变体,就有望使它抑制c-Myc的致癌活性"。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404515.htm手机版:https://m.cnbeta.com.tw/view/1404515.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人