绿色化学技术新突破 研究人员将氨转化为可持续氮源

绿色化学技术新突破研究人员将氨转化为可持续氮源通过主族元素化合物对氨进行可逆活化和催化转移。资料来源:弗兰克-布雷赫,德国工业技术大学胺是农用和医药化学品以及洗涤剂、染料、润滑剂和涂料的基本成分。此外,还可用作生产聚氨酯的催化剂。胺还可用于炼油厂和发电厂的气体洗涤器。通过破坏氮和氢之间的强键(即活化),氨分子至少在理论上可以转移到其他分子上,如不饱和碳氢化合物。例如,将氨转移到化学工业中的重要物质乙烯上就会产生乙胺。化学家将这种加成称为氢化反应。然而,氨和乙烯之间不易发生反应。反应的发生需要催化剂。然而,基于过渡金属的传统催化剂会与氨发生反应而失去活性。"因此,非活化烯烃与氨的氢化反应被认为是催化领域的一大挑战与目标,"KIT无机化学研究所分子化学部研究小组负责人FrankBreher教授说。氨的活化和催化转移通过与帕德博恩大学(PaderbornUniversity)和马德里康普顿斯大学(ComplutenseUniversityofMadrid)的研究人员合作,无机化学研究所的弗兰克-布雷赫(FrankBreher)教授和费利克斯-克雷默(FelixKrämer)博士现在距离实现这一具有挑战性的目标又近了一步。"我们已经开发出一种氨的活化系统,它不是基于过渡金属,而是基于主族元素。活化和随后转移氨的"原子经济"过程不会产生任何废物,这在可持续发展方面具有特别意义,"布雷赫说。相关研究成果现已发表在《自然-化学》杂志上。研究小组制备出了一种所谓的受挫路易斯对(FLP),它由作为电子对受体的酸和作为电子对供体的碱组成。通常情况下,两者会相互反应并产生加合物。如果阻止或至少限制加合物的形成,就会产生受挫情况,分子很容易与氨等小分子发生反应。"关键是要抑制反应性,使其与小分子的反应是可逆的。只有这样,才有可能在催化中使用这种FLP。我们是第一个用氨作为底物实现这一点的人,"Breher报告说。研究发现,FLP很容易以热中性方式与非水氨发生反应,并在室温下可逆地拆分氨的氮氢键。研究人员首次展示了基于主族元素的催化剂催化的NH3转移反应。"迄今为止,我们只转化了活化底物,没有转化不饱和碳氢化合物。但我们已经更接近我们梦想中的反应了,"布雷赫说。"我们预计,我们的首次原理验证将启动进一步的工作,将N-H活化氨用作一种易于获得且可持续的氮源。"参考文献FelixKrämer、JanParadies、IsraelFernández和FrankBreher于2023年9月28日发表在《自然-化学》上的文章:"一种能够在非水介质中活化和催化氨转移的结晶铝碳基双亲化合物"。DOI:10.1038/s41557-023-01340-9编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403155.htm手机版:https://m.cnbeta.com.tw/view/1403155.htm

相关推荐

封面图片

新型太阳能技术可将温室气体转化为燃料和有用化学品

新型太阳能技术可将温室气体转化为燃料和有用化学品访问:NordVPN立减75%+外加3个月时长另有NordPass密码管理器在太阳光的集中照射下,这种复合材料在甲烷与二氧化碳的干转化(DRM)过程中表现出卓越的性能,合成气进化率达到180.9mmolgcat-1h-1,选择性达到96.3%。与传统催化系统相比,这是一项重大改进,因为传统催化系统通常需要高能量输入,而且会迅速失活。"我们的工作代表着在应对温室气体排放和可持续能源生产双重挑战方面迈出的重要一步,"上海交通大学首席研究员周宝文教授说。"通过利用太阳能和合理设计的纳米结构,我们展示了一条将废气转化为宝贵化学资源的绿色高效路线。"研究人员探索了Rh/InGaN1-xOx纳米线在光照驱动下与二氧化碳进行甲烷干转化制合成气(CH4+CO2+light=2CO+2H2)的应用。该研究提出,用O部分取代InGaN中的N可以大大提高催化剂在光照下的活性和稳定性,而无需额外加热。研究人员将其光催化剂的卓越性能归功于光活性InGaN纳米线、氧修饰表面和催化活性铑纳米颗粒的整合所产生的协同效应。机理研究表明,结合的氧原子在促进二氧化碳活化、促进一氧化碳生成和抑制催化剂因焦化沉积而失活方面起着至关重要的作用。这项研究成果发表在著名的《科学通报》杂志上,为开发先进的光催化系统,利用可再生资源可持续地生产燃料和化学品铺平了道路。研究小组相信,他们的方法可以推广到其他重要的化学反应中,为绿色化工提供新的机遇。周宝文教授说:"我们对这项技术的前景感到兴奋。"通过进一步优化催化剂设计和反应器配置,我们的目标是扩大该工艺的规模,并证明其在实际应用中的可行性。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1431408.htm手机版:https://m.cnbeta.com.tw/view/1431408.htm

封面图片

引用高压电-芬顿工艺 研究人员实现电催化甲烷与氧气高效转化甲酸

引用高压电-芬顿工艺研究人员实现电催化甲烷与氧气高效转化甲酸研究人员在室温下实现了CH4和O2向HCOOH的电化学转化。资料来源:JACS甲烷与氧气直接催化转化制高附加值含氧化学品是天然气资源高值化利用的有效途径。然而,在温和条件下活化氧气分子形成能够解离甲烷C-H键的高活性氧物种非常困难,导致低温下甲烷与氧气高效转化极具挑战。本研究中,团队基于自主研制的高压-电化学反应釜,开发了由高压-电芬顿驱动的甲烷与氧气催化转化新途径,在电解池的阴极区实现室温下电催化甲烷与氧气高效转化制甲酸。研究表明,氧气首先在阴极银箔上经由两电子转移路径还原生成双氧水,双氧水进一步与溶液中的Fe2+通过均相芬顿反应,生成高活性的氧物种羟基自由基,羟基自由基连续活化C-H键并将甲烷转化成甲酸。进一步地,团队发现提高氧气的分压可促进双氧水的生成,而提高甲烷的分压可以有效增强溶液中甲烷和羟基自由基之间的碰撞几率,进而提高了产物甲酸的收率和法拉第效率。该过程为低温下甲烷与氧气的高效催化转化提供了新思路。文章链接:https://doi.org/10.1021/jacs.3c10825...PC版:https://www.cnbeta.com.tw/articles/soft/1425736.htm手机版:https://m.cnbeta.com.tw/view/1425736.htm

封面图片

科学家利用硼自由基将溶液中的氮转化为氨

科学家利用硼自由基将溶液中的氮转化为氨氮气占我们呼吸的空气的77%,因此在理论上,它几乎可以无限地用于合成氨。然而,在实践中,它只与其他元素发生极其缓慢的反应。在100多年前开发的哈伯-博世工艺中,金属催化剂加速了这种迟缓的反应。它们激活了氮气,然后在高压和高温下与氢气反应,得到氨气。温和的氨气合成氨在工业上用于生产硝酸盐化肥。当氢气被用作能源时,它也可以被用作氢气储存。迄今为止,用于固氮的微生物方法一直是为哈伯-波什工艺提出的主要的温和替代方法。然而,利用细菌进行生物技术氨的生产仍然是相当低效的。由法国图卢兹的保罗-萨巴蒂埃大学(UniversitéPaulSabatier,CNRS)的NicolasMézailles领导的一个研究小组现在发现,活性硼化合物可以非常有效地瞄准和激活分子氮。该团队解释了他们最初的想法。"我们推断,使用高能自由基可能为氮的功能化提供一个动力学和热力学上的有利途径"。研究小组的理论计算随后强调了以硼为中心的自由基是合适的候选。研究人员通过向有机卤化硼添加强还原剂来产生这些硼心自由基,由此产生的物质在室温下将分子氮转化为硼胺,而硼胺又与水酸反应,得到氯化铵。Mézailles和该团队现在描述了一种利用自由基化合物在溶液中固氮的新方法。研究人员观察到,他们产生的以硼为中心的自由基有效地分解了分子氮中稳定的三键,使得在温和条件下使分子氮功能化成为可能。这种基于自由基的方法为氨的生产开辟了进一步的可能性,而不需要依赖化石原料。...PC版:https://www.cnbeta.com.tw/articles/soft/1336797.htm手机版:https://m.cnbeta.com.tw/view/1336797.htm

封面图片

迈向更绿色的未来的巨大飞跃:可持续合成氨和化肥生产的突破性进展

迈向更绿色的未来的巨大飞跃:可持续合成氨和化肥生产的突破性进展穿过多孔金属有机框架的横截面,显示出铜原子(橙色)被含有氧(红色)和碳(灰色)的有机连接分子(环己烷二甲酸酯)限制在一个刚性结构里。氨裂解了这个三维框架中的铜氧键,使其转变为一维的聚合物。当氨被赶走时,这个多孔的三维框架就会重新组装起来。资料来源:加州大学伯克利分校JeffreyLong实验室以较少的能源投入制造氨的一个主要绊脚石是将氨与反应物--主要是氮和氢分离,而不需要哈伯-波什工艺所要求的巨大温度和压力波动。该反应发生在大约300至500摄氏度之间,但氨是通过将气体冷却到大约-20ºC来去除的,在这一点上,气态氨会凝结成液体。该过程还需要将反应物加压至约150-300倍大气压。所有这些都需要来自化石燃料的能量。氨分离的替代方法可以为在不太极端的条件下运行的替代工艺打开大门。为了解决这个问题,加州大学伯克利分校的化学家们设计并合成了多孔材料--金属有机框架,或称MOF--能够在中等压力和175℃左右的温度下结合并释放氨。由于MOF不与任何反应物结合,氨的捕获和释放可以在较小的温度波动下完成,从而节省能源。领导这项研究的加州大学伯克利分校博士后本杰明-斯奈德(BenjaminSnyder)说:"化肥生产脱碳的一个巨大挑战是找到一种材料,可以捕获并释放非常大量的氨,最好是以最小的能源投入。也就是说,人们不希望在材料中投入大量的热量来迫使氨分离,同样,当氨被吸收时,也不希望产生大量的废热。"在较低温度和压力下运行的工艺的一个关键优势是,氨以及肥料可以在离农民更近的小型设施中生产,甚至在农场现场生产,而不是在大型的集中化工厂中生产。斯奈德和该论文的资深作者、加州大学伯克利分校化学和生物分子工程系教授杰弗里-朗将于本周在《自然》杂志上发表他们的MOF研究细节。本月,斯奈德加入了伊利诺伊大学厄巴纳-香槟分校的化学系,担任助理教授。据斯奈德说,许多研究人员正在研究如何使哈伯-波斯工艺--它可以追溯到20世纪初--更加可持续。这包括利用太阳能将水分成氢气和氧气来生产一种主要的反应物--氢气。今天,氢气通常从天然气中获得,其中大部分是甲烷,在反应中会释放出二氧化碳,这是主要的温室气体。其他绿色改造包括在较低温度和压力下操作的新型催化剂,使氢气与氮气(通常从空气中获取)反应,形成氨气,即NH3。但在反应后从混合物中去除氨仍然很困难,多孔材料如沸石无法吸收和释放大量的氨。而人们尝试过的其他MOFs往往在氨的存在下解体,而氨具有高度腐蚀性。斯奈德的创新是尝试一种相对较新的MOF品种,它采用了由称为环己烷二甲酸酯的有机分子连接的铜原子来创造刚性和高度多孔的MOF结构。令他惊讶的是,氨气并没有破坏这种MOF,而是将其转化为含铜和氨的聚合物链,这种聚合物具有极高的储存氨的密度。此外,这些聚合物链在相对较低的温度下很容易释放它们所结合的氨,在这个过程中把材料恢复到其最初的刚性、多孔的MOF结构。当把这个框架暴露在氨气中时,它完全改变了其结构,开始时是一种多孔的三维材料,而在暴露于氨气后,它实际上解开了自己,形成了一种聚合物,可以把它想象成一捆绳子。这种真正不寻常的吸附机制使其能够吸收大量的氨。在相反的过程中,当移除氨时,聚合物会以某种方式将自己编织成一个三维框架,这是这种材料最引人注目的特征之一。斯奈德发现,MOF可以被调整为在很大的压力范围内吸收和释放氨,使其更能适应任何反应条件,以最有效地从可持续的反应物中生产氨。氨捕获只是工艺升级的一部分,制造更绿色的氨仍然是一项正在进行的工作。...PC版:https://www.cnbeta.com.tw/articles/soft/1338757.htm手机版:https://m.cnbeta.com.tw/view/1338757.htm

封面图片

新催化剂可将废物转化为有价值的环保产品

新催化剂可将废物转化为有价值的环保产品这种新的催化剂旨在向脂肪族碳氢化合物添加官能团,脂肪族碳氢化合物是仅由氢和碳组成的有机化合物。这些碳氢化合物通常不与水混合,由于缺乏官能团而形成独立的层。通过在这些碳氢化合物链中加入官能团,可以大大改变材料的特性,使其更容易回收。"天然气中的甲烷是最简单的碳氢化合物,只有碳-氢(CH)键。油和聚合物有碳原子链,由碳-碳(CC)键连接,"Sadow解释说。脂肪族碳氢化合物构成了大量的石油和精炼石油产品,如塑料和机油。这些材料"没有其他功能团,这意味着它们不容易被生物降解,"Sadow说。"因此,长期以来,催化领域的一个目标是能够将这些种类的材料,添加其他原子,如氧气,或从这些简单的化学品中建立新的结构。"不幸的是,向碳氢化合物链添加原子的传统方法需要大量的能量投入。首先,石油被加热和加压"裂解"成小的构建块。接下来,这些构件被用来生长链。最后,在链的末端添加所需的原子。在这种新方法中,现有的脂肪族碳氢化合物无需裂解,在低温下就能直接转化。Sadow的团队之前使用一种催化剂来打破这些碳氢化合物链中的CC键,同时将铝连接到较小的链的末端。接下来,他们插入了氧或其他原子以引入功能团。为了开发一个互补的过程,该团队找到了一种避免CC键断裂步骤的方法。根据起始材料的链长和产品的理想特性,研究人员想缩短链或简单地添加氧功能团。如果能避免CC裂解,原则上可以只把链从催化剂转移到铝上,然后加入空气来安装官能团。Sadow解释说,这种催化剂是通过将一种市售的锆化合物附着在市售的二氧化硅-氧化铝上合成的。这些物质都是地球上丰富的、廉价的,这对未来潜在的商业应用是有利的。此外,催化剂和反应物在可持续性和成本方面也很有优势。铝是地球上最丰富的金属,所使用的铝反应物的合成不会产生废弃的副产品。基于氧化锆的催化剂前体在空气中是稳定的,容易获得,并在反应器中被激活。因此,与很多对空气极其敏感的早期有机金属化学不同,这种催化剂前体很容易处理。这种化学反应是朝着能够影响各种塑料的物理特性的方向迈出的一步,例如使它们更坚固和更容易着色Sadow把这个项目的成功归功于iCOUP的合作性质。埃姆斯国家实验室的佩拉斯小组利用核磁共振(NMR)光谱学研究了催化剂结构。康奈尔大学和阿贡国家实验室的Coates、LaPointe和Delferro小组研究了聚合物结构和物理特性。伊利诺伊大学的Peters小组对聚合物功能化进行了统计建模。...PC版:https://www.cnbeta.com.tw/articles/soft/1350043.htm手机版:https://m.cnbeta.com.tw/view/1350043.htm

封面图片

北理工研究人员设计的电催化剂促进了清洁氢气的生产效率

北理工研究人员设计的电催化剂促进了清洁氢气的生产效率北京理工大学的研究人员设计了一种具有非晶相和晶相以及丰富缺陷的电催化剂,可以更有效地分解水并产生清洁燃烧的氢气。图片来源:纳米研究能源,清华大学出版社研究人员的研究结果最近发表在《纳米研究能源》杂志上。中国科学院教授李翠玲表示:“由可再生能源驱动的水电解制氢,即利用电流分解水,将氢气与氧气分离,是缓解和解决能源和环境危机的一项有前景的技术。”析氧反应是水电解的阳极反应,其中直流电引起化学反应,将氧分子从水分子中分离出来。然而这种反应是“一个缓慢的过程”,它限制了水电解作为生产氢气的可持续机制。据李说,析氧反应很慢,因为它需要大量的能量来触发分子转移其成分,但如果与更高效的催化剂结合,可以用更少的能量加速。开发用于析氧反应的高效电催化剂对于开发用于清洁能源转换的电化学装置至关重要,研究人员转向氧化钌,这是一种成本较低的催化剂,与其他催化剂相比,它对反应物和中间体的粘附更少。李说:“与商业产品相比,氧化钌基纳米材料具有更好的析氧反应性能,而迫切需要更复杂的电催化剂设计策略来激发更有效的催化性能,并且在很大程度上尚未得到探索。”为了填补这一空白,研究人员合成了氧化钌多孔颗粒。然后,他们处理颗粒以产生合理调节的异相,这意味着颗粒包含集成在一起的不同结构。多孔和多相结构提供了一种缺陷-本质上是原子结构中的缺口,这使得析氧反应能够更有效地进行更多的活性位点。李说:“得益于所得样品的丰富缺陷、晶体边界和活性位点可及性,证明了优异的析氧反应性能。工程电催化剂不仅能产生更好的析氧反应,而且还可以产生更好的析氧反应。为该过程提供更少的电力。这项研究证明了相工程的重要性,并为策略组合催化剂的设计和合成提供了新途径。”...PC版:https://www.cnbeta.com.tw/articles/soft/1368041.htm手机版:https://m.cnbeta.com.tw/view/1368041.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人