等离子体显示出的不稳定性彻底改变了学界对宇宙射线的认识

等离子体显示出的不稳定性彻底改变了学界对宇宙射线的认识波茨坦莱布尼兹天体物理研究所(AIP)的科学家们发现了一种新的等离子体不稳定性,有望彻底改变我们对宇宙射线起源及其对星系动态影响的认识。上世纪初,维克多-赫斯发现了一种名为宇宙射线的新现象,并因此获得了诺贝尔奖。他进行了高空气球飞行,发现地球大气层并没有被地面的放射性电离。相反,他证实了电离的起源是地外的。随后,人们确定宇宙"射线"是由来自外太空以接近光速飞行的带电粒子组成,而不是辐射。不过,"宇宙射线"这一名称在这些发现之后才被使用。在这项新研究中,AIP的科学家、本研究的主要作者MohamadShalaby博士及其合作者进行了数值模拟,跟踪许多宇宙射线粒子的轨迹,研究这些粒子如何与周围由电子和质子组成的等离子体相互作用。模拟宇宙射线逆流撞击背景等离子体并激发等离子体不稳定性。图中显示的是对宇宙射线流做出反应的背景粒子在相空间中的分布,相空间由粒子位置(横轴)和速度(纵轴)跨度构成。颜色直观地显示了粒子的数量密度,而相空间空洞则体现了不稳定性的高度动态性,它将有序运动消散为随机运动。资料来源:Shalaby/AIP当研究人员对从模拟的一侧飞向另一侧的宇宙射线进行研究时,他们发现了一种在背景等离子体中激发电磁波的新现象。这些波对宇宙射线施加了一种力,从而改变了它们的缠绕路径。将宇宙射线理解为集体现象最重要的是,如果我们不把宇宙射线看作是单独的粒子,而是看作是支持一种集体电磁波,就能最好地理解这种新现象。当这种电磁波与背景中的基波相互作用时,这些基波会被强烈放大,并发生能量转移。AIP宇宙学与高能天体物理学部主任克里斯托夫-普夫罗默(ChristophPfrommer)教授说:"这一洞察力使我们能够将宇宙射线视为辐射,而不是单个粒子。"质子(虚线)和电子(实线)的动量分布。图中显示的是电子在运动较慢的冲击波中出现的高能量尾部。这是与新发现的等离子体不稳定性(红色)产生的电磁波相互作用的结果,而在速度较快的冲击波(黑色)中则没有这种电磁波。由于只有高能电子才会产生可观测到的射电辐射,这表明了解加速过程的物理学原理非常重要。资料来源:Shalaby/AIP"对于这种行为,一个很好的比喻是单个水分子共同形成的波浪冲向海岸。"MohamadShalaby博士解释说:"只有考虑到以前被忽视的较小尺度,并质疑在研究等离子体过程时使用有效流体力学理论,才能取得这一进展。"影响和应用这种新发现的等离子体不稳定性有很多应用,包括首次解释了热星际等离子体中的电子如何在超新星残骸中被加速到高能量。穆罕默德-沙拉比(MohamadShalaby)报告说:"这一新发现的等离子体不稳定性是我们对加速过程理解的重大飞跃,并最终解释了为什么这些超新星残骸在射电和伽马射线中闪闪发光。"此外,这一突破性发现为我们更深入地了解宇宙射线在星系中传输的基本过程打开了大门,而这正是我们了解星系在宇宙演化过程中形成过程的最大谜团。参考文献《解密中间尺度不稳定性的物理基础》,作者:MohamadShalaby、TimonThomas、ChristophPfrommer、RouvenLemmerz和VirginiaBresci,2023年12月12日,《等离子体物理学杂志》。doi:10.1017/s0022377823001289"MohamadShalaby、RouvenLemmerz、TimonThomas、ChristophPfrommer合著的《平行非相对论冲击下电子高效加速的机制》,2022年5月4日,《天体物理学》(Astrophysics)>《高能天体物理现象》(HighEnergyAstrophysicalPhenomena)。arXiv:2202.05288《新的宇宙射线驱动不稳定性》,作者:MohamadShalaby、TimonThomas和ChristophPfrommer,2021年2月24日,《天体物理学报》。DOI:10.3847/1538-4357/abd02d编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404869.htm手机版:https://m.cnbeta.com.tw/view/1404869.htm

相关推荐

封面图片

科学简单点:什么是等离子体?

科学简单点:什么是等离子体?在等离子体中,一些电子从中性原子(质子和电子数目相等,因此带中性电荷的原子)中分离出来,成为自由电子。由此产生的自由电子使等离子体不同于其他物质状态,在其他物质状态下,电子仍然紧紧地与原子核结合在一起。当等离子体中的原子与带负电荷的电子分离时,它们就不再带有中性电荷。相反,原子变成了离子--带正电的粒子。因此,等离子体是一种由带正电荷的离子和带负电荷的电子组成的电离状态。极光是由地球大气等离子体中的粒子碰撞形成的。资料来源:弗兰克-奥尔森原子中的电子能够分离并形成等离子体有几个原因。在实验室实验中,科学家可以用高压电、激光或电磁场轰击原子,从而形成等离子体。在太空中,高能光子(包括伽马射线)撞击原子也会形成等离子体。在太空中,当重力使压力剧增,从而使气体过热时,也会形成等离子体。高温使原子相互碰撞,导致电子从原子中分离,形成等离子体和恒星的雏形。气体过热产生等离子体的过程表明,气体和等离子体之间的关系类似于液体是固体的加热形式。这种类比并不总是正确的。首先,与气体不同,等离子体可以导电。此外,在气体中,所有粒子的行为方式都相似。然而,在等离子体中,电子和离子的行为和相互作用方式非常复杂,从而产生了波和不稳定性。等离子体有多种类型。宇宙中的大多数等离子体被研究人员称为高温等离子体。在这些高温等离子体中,温度可以超过华氏1万度,所有原子都可以完全电离。低温等离子体则不同。原子只是部分电离,温度低得惊人,甚至只有室温。另一种不寻常的等离子体是高能量密度等离子体,科学家在实验室中制造这种等离子体来研究它们的不寻常特性。总结:有一种闪电--球状闪电--是等离子体。从马克斯-普朗克研究所了解更多信息。极光也是由等离子体造成的。在本科学集锦中了解更多信息。封闭等离子体是设计聚变托卡马克和恒星器设备的重要步骤,这些设备最终可能为我们提供聚变动力。高能量密度等离子体科学实现了实验室条件下的聚变点火。研究等离子体有助于科学家了解物质。这也有助于他们向聚变能源的目标迈进。能源部(DOE)科学办公室通过聚变能源科学和核物理计划支持等离子体研究。能源部资助的等离子体研究还改进了从手机、电脑到汽车等各种产品中的半导体制造。等离子体方面的专业知识帮助能源部国家实验室的研究人员开发出了逐原子控制半导体制造的方法。编译来源:ScitechDaily相关文章:科学简单点:什么是超级计算?科学简单点:什么是人工智能?科学简单点:什么是量子力学?科学简单点:什么是水力发电?科学简单点:什么是核能?科学简单点:什么是气候复原力?科学简单点:什么是纳米科学?科学简单点:什么是暗物质和暗能量?科学简单点:什么是X射线光源?科学简单点:什么是自主发现?科学简单点:什么是氢能源?科学简单点:什么是“关键材料”美国政府定义了多少种?...PC版:https://www.cnbeta.com.tw/articles/soft/1432055.htm手机版:https://m.cnbeta.com.tw/view/1432055.htm

封面图片

等离子体脉冲有望成为现实生活中的"冷冻射线"

等离子体脉冲有望成为现实生活中的"冷冻射线"冷冻射线利用等离子脉冲带走热量不管是为了勒索一座城市的赎金,还是为了在咖啡店不排队,冷冻射线都是漫画书和电影中的一大亮点。它们也让工程师们头疼不已,因为它们不仅违反了热力学第二定律,还把定律的头塞进了马桶,直到现在。等离子体物理学的一项新进展在提供实用的冷冻射线方面大有可为,美国空军已向霍普金斯大学的热工程实验与模拟实验室(ExSiTELab)拨款75万美元,用于一个为期三年的项目,以充分开发这项技术的潜力。霍普金斯大学的衍生公司LaserThermal将建造一个原型。通常情况下,利用等离子体冷却东西的想法就像用冰来烧烤一样合乎逻辑。等离子体是一种电离气体,其温度可以达到太阳温度的数倍,但它们也有一些令人惊讶的能力。其中之一就是,尽管温度很高,但等离子体刚产生时可以与其他物质相互作用,产生冷却效果。脉冲等离子体的能量流与目标表面发生物理、化学和电磁相互作用,产生一种效应,使表面吸收的水分子和二氧化碳分子蒸发。这将带走能量并使表面迅速冷却几十度。脉冲等离子体可防止其抵消冷却效果。用于产生等离子体的激光设备弗吉尼亚大学霍普金斯说:"因此,当我们开启等离子体时。可以立即测量等离子体照射到的地方的温度,然后观察表面的变化,表面先冷却,然后升温。我们只是在某种程度上对为什么会发生这种情况感到困惑,因为这种情况一直在重复发生。我们没有任何信息可以利用,因为之前没有任何文献能够像我们这样精确地测量温度变化。没有人能够如此迅速地做到这一点。"美国空军和太空部队之所以对这项技术感兴趣,是因为在太空或极高海拔地区冷却电子设备存在问题。通常的冷却方法是让水或空气等流体在元件周围循环,但在没有空气,当然也没有水的地方,这种方法是不可能实现的。相反,电子元件被放置在金属冷却板上,将热量导入散热器。由于这种方法既笨重又低效,人们希望霍金斯的冷冻射线能提供一种替代方法。其基本构想是用一个带有传感器的机械臂,将电路中的热点锁定,然后用冷风将其吹走。然而,还有大量工作要做。目前,该工艺使用从美国海军借来的设备和氦作为等离子介质。下一步是制造出更紧凑、更轻的原型,同时探索其他可能更有效的气体。这项研究发表在《自然-通讯》和《ACSNano》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1382453.htm手机版:https://m.cnbeta.com.tw/view/1382453.htm

封面图片

新的实验与传统理论不符:辐射是如何通过密集的等离子体传播的?

新的实验与传统理论不符:辐射是如何通过密集的等离子体传播的?美国国家航空航天局(NASA)拍摄的从太阳中迸发的等离子体图片。等离子体--一种带有自由移动的电子和离子的原子热汤--是宇宙中最丰富的物质形式,在整个太阳系的太阳和其他行星体中发现。罗切斯特大学研究人员的一项新研究提供了关于辐射如何穿过密集等离子体的实验数据,这将有助于科学家更好地了解行星科学和聚变能源。资料来源:美国国家航空航天局高能密度物理学(HEDP)的研究,即研究原子在极端压力条件下的行为,可以为行星科学、天体物理学和聚变能源等领域提供宝贵的见解。HEDP领域的一个重要问题是等离子体如何发射或吸收辐射。目前描述密集等离子体中辐射传输的模型在很大程度上是基于理论而非实验证据的。在《自然通讯》杂志上发表的一篇新论文中,罗切斯特大学激光能量实验室(LLE)的研究人员使用LLE的OMEGA激光器研究辐射如何在密集等离子体中传播。这项研究由LLE的杰出科学家、高能密度物理理论组组长、机械工程副教授HuSuxing和LLE激光-等离子体相互作用组的高级科学家PhilipNilson领导,提供了关于原子在极端条件下的行为的首次实验数据。这些数据将被用来改进等离子体模型,使科学家能够更好地理解恒星的演变,并可能有助于实现受控核聚变作为一种替代能源。Hu说:"在OMEGA上使用激光驱动的内爆实验在几十亿倍于地球表面大气压力的压力下创造了极端物质,使我们能够探测原子和分子在这种极端条件下的行为。这些条件与所谓的白矮星包层以及惯性核聚变目标内部的条件相对应。"使用X射线光谱学研究人员使用X射线光谱学来测量辐射是如何通过等离子体传输的。X射线光谱学涉及将一束X射线形式的辐射瞄准由原子组成的等离子体--在这种情况下是铜原子--在极度的压力和热量下。研究人员使用OMEGA激光器来制造等离子体,并制造瞄准等离子体的X射线。当等离子体被X射线轰击时,原子中的电子通过发射或吸收光子从一个能级"跳"到另一个能级。一个探测器测量这些变化,揭示出在等离子体内部发生的物理过程,类似于对骨折进行X射线诊断。对传统理论的突破研究人员的实验测量表明,当辐射穿过密集的等离子体时,原子能级的变化并不遵循等离子体物理模型中经常使用的传统量子力学理论--所谓的"连续体降低"模型。相反,研究人员发现,他们在实验中观察到的测量结果可以用一种基于密度函数理论(DFT)的自洽方法进行最佳解释。DFT对复杂系统中原子和分子之间的键提供了量子力学描述。DFT方法在20世纪60年代首次被描述,是1998年诺贝尔化学奖的主题。Hu说:"这项工作揭示了重写当前教科书中关于密集等离子体中如何产生辐射和传输的描述的基本步骤。根据我们的实验,使用自洽的DFT方法更准确地描述了稠密等离子体中的辐射传输,我们的方法可以为模拟恒星和惯性核聚变目标中遇到的致密等离子体的辐射产生和传输提供一个可靠的方法。报告的实验方案基于激光驱动的内爆,可以很容易地扩展到广泛的材料,为在巨大压力下的极端原子物理学的深远调查开辟了道路。"...PC版:https://www.cnbeta.com.tw/articles/soft/1338313.htm手机版:https://m.cnbeta.com.tw/view/1338313.htm

封面图片

新设计大大延长了等离子体火炬的使用寿命

新设计大大延长了等离子体火炬的使用寿命一项突破性设计将等离子体火炬的使用寿命从数天延长到数年,克服了重大的技术挑战,并可能因其更高的效率和可持续性而给多个行业带来革命性的变化。等离子体割炬是产生热等离子体的设备,因其能有效产生高温等离子体而在各行各业中举足轻重。它可应用于低碳冶金、粉末球化、碳材料制备和先进材料喷涂等多个领域。然而,其有限的使用寿命阻碍了其大规模应用。传统的固定阴极在耗尽后必须更换,导致寿命短、维护成本高。在这项研究中,研究人员开发了一种连续进给阴极系统,可以快速补充已磨损的阴极。这种操作消除了使用寿命的限制,使等离子火焰的运行寿命几乎无限。"设计克服了五大难关,"已经监督这项实验长达160个小时的高级工程师李军说,"这包括导电、导热、密封、水冷和连续推进机制。对于传统等离子火焰来说,160小时标志着结束,但在这里,这仅仅是个开始。"这一重大进步推动了等离子体应用的产业化,开创了一个高效和可持续发展的新时代。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1425904.htm手机版:https://m.cnbeta.com.tw/view/1425904.htm

封面图片

乌克兰研究人员参与取得聚变发电成果 微波加热等离子体迎来突破性进展

乌克兰研究人员参与取得聚变发电成果微波加热等离子体迎来突破性进展HeliotronJ装置的结构。资料来源:京都大学/HeliotronJ小组质体必须保持在正确的密度、温度和时间,才能发生核聚变。包括马克斯-普朗克等离子体物理研究所在内的研究团队已经确定了等离子体生产的三个关键步骤,并利用HeliotronJ设备研究核聚变等离子体放电。他们发现,在不对准磁场的情况下施加2.45GHz微波会产生密集的等离子体,这有可能简化未来的聚变研究。主要作者YuriiVictorovichKovtun,尽管在目前的俄乌战争中被迫撤离哈尔科夫物理技术研究所,但仍继续与京都大学合作,利用微波创造稳定的等离子体。让等离子体恰到好处是利用核聚变所承诺的大量能量的障碍之一。等离子体--离子和电子的汤--必须保持适当的密度、温度和时间,使原子核融合在一起,以达到预期的能量释放。一种配方涉及使用大型的、带有强大磁铁的甜甜圈形状的装置,这些磁铁包含等离子体,同时仔细排列的微波发生器加热原子混合物。物理学聚变能量波的概念聚变能源是一个迷人的、有前途的研究领域,它试图利用为太阳提供动力的相同过程来生产清洁、丰富和几乎无限的能源。现在,京都大学先进能源研究所与哈尔科夫研究所和马克斯-普朗克等离子体物理研究所合作,利用低频率的微波功率,创造出具有聚变适宜密度的等离子体。研究小组已经确定了等离子体生产的三个重要步骤:闪电般的气体分解、初步等离子体生产和稳态等离子体。这项研究正在使用HeliotronJ进行,这是位于京都大学南部宇治校区的先进能源研究所的实验性聚变等离子体设备的最新迭代。小组负责人长崎和信解释说:"最初,我们没有想到在HeliotronJ中会出现这些现象,但惊讶地发现等离子体的形成没有回旋共振。"在几十年的经验基础上,长崎的团队正在探索HeliotronJ中的聚变等离子体放电现象。该小组将2.45GHz的微波功率的强烈爆发注入进料气体。家庭中的微波炉在这个相同的频率下工作,但HeliotronJ的功率大约是10倍,而且集中在几个气体原子上。"出乎意料的是,我们发现在没有对准HeliotronJ的磁场的情况下爆破微波会产生一种放电,将电子从其原子上撕下来,并产生一种特别密集的等离子体,"长崎惊叹道。"我们非常感谢我们的同事能够继续支持这项研究,关于这种利用微波放电产生等离子体的方法的发现可能会简化未来的聚变研究。"...PC版:https://www.cnbeta.com.tw/articles/soft/1352969.htm手机版:https://m.cnbeta.com.tw/view/1352969.htm

封面图片

欧洲核子研究中心再现来自黑洞的物质:反物质等离子体火球

欧洲核子研究中心再现来自黑洞的物质:反物质等离子体火球超大质量黑洞发射等离子体喷流的艺术家印象图,欧洲核子研究中心的科学家们现在已经在实验室中重现了这一场景。美国宇航局/JPL-加州理工学院这些所谓的相对论喷流被认为包含了由电子及其反物质等价物正电子组成的等离子体。但是,这种物质究竟是如何形成的,又有什么作用,很难通过天文观测和计算机模拟来测量。于是,欧洲核子研究中心的科学家们开始在实验室里制造他们自己的版本。利用高辐射材料(HiRadMat)设施,研究小组从超级质子同步加速器中捕获了3000亿个质子,并将它们喷射到石墨和钽制成的靶子上。这引发了一连串的粒子相互作用,产生了足够多的电子-正电子对来维持稳定的等离子状态。产生等离子体的一系列相互作用示意图罗切斯特大学激光能量学实验室插图/HeatherPalmer首先,质子撞击石墨中的碳原子核,产生的能量足以撞散其中的基本粒子。其中的中性粒子很快衰变为高能伽马射线。这些伽马射线随后与钽的电场相互作用,进而产生成对的电子和正电子。在这次试运行中,产生的电子-正电子对达到了惊人的10万亿个,足以让它开始表现得像一个真正的天体物理等离子体。"这些实验的基本理念是在实验室中重现天体物理现象的微观物理学,例如黑洞和中子星的喷流,"该研究的合著者吉安卢卡-格雷戈里(GianlucaGregori)说。"我们对这些现象的了解几乎完全来自天文观测和计算机模拟,但望远镜无法真正探测微观物理,模拟也涉及近似。像这样的实验室实验是连接这两种方法的桥梁。"这项研究发表在《自然通讯》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1434761.htm手机版:https://m.cnbeta.com.tw/view/1434761.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人