DNA诱饵在突破性疫苗方法中战胜病毒

DNA诱饵在突破性疫苗方法中战胜病毒这种疫苗已在小鼠身上进行了试验,它由一个DNA支架组成,支架上有许多病毒抗原的拷贝。这种疫苗被称为微粒疫苗,模仿病毒的结构。以前大多数微粒疫苗的研究工作都依赖于蛋白质支架,但这些疫苗中使用的蛋白质往往会产生不必要的免疫反应,从而分散免疫系统对目标的注意力。在小鼠研究中,研究人员发现DNA支架不会诱发免疫反应,从而使免疫系统能够将抗体反应集中在目标抗原上。麻省理工学院生物工程学教授马克-巴特(MarkBathe)说:"我们在这项工作中发现,DNA不会诱发抗体,以免分散对相关蛋白质的注意力。可以想象的是,B细胞和免疫系统正在接受目标抗原的全面训练,而这正是你想要的--让免疫系统激光聚焦于感兴趣的抗原。"研究人员说,这种能强烈刺激B细胞(产生抗体的细胞)的方法能让人们更容易开发出针对艾滋病、流感以及SARS-CoV-2等难以针对的病毒的疫苗。与受到其它类型疫苗刺激的T细胞不同,这些B细胞可以持续数十年,提供长期保护。哈佛大学医学院副教授、拉贡研究所首席研究员丹尼尔-凌伍德说:"我们有兴趣探索是否能让免疫系统产生更高水平的免疫力,以抵御流感、艾滋病毒和SARS-CoV-2等传统疫苗方法所抵御的病原体。这种将针对目标抗原的反应与平台本身脱钩的想法是一种潜在的强大免疫学技巧,现在我们可以利用它来帮助这些免疫学靶向决策朝着更有针对性的方向发展"。Bathe、Lingwood和哈佛大学医学院副教授、拉贡研究所首席研究员亚伦-施密特(AaronSchmidt)是这篇论文的资深作者,论文今天(1月30日)发表在《自然-通讯》(NatureCommunications)杂志上。论文的主要作者包括麻省理工学院前博士后艾克-克里斯蒂安-瓦姆霍夫、拉贡研究所博士后拉兰斯-隆萨、哈佛大学前研究生贾里德-费尔德曼、麻省理工学院研究生格兰特-克纳普和哈佛大学前研究生布莱克-豪瑟。微粒疫苗通常由一种蛋白质纳米粒子组成,其结构与病毒相似,可携带许多病毒抗原拷贝。这种高密度的抗原能产生比传统疫苗更强的免疫反应,因为人体认为它与真正的病毒相似。目前已开发出针对乙型肝炎和人类乳头瘤病毒等少数病原体的微粒疫苗,而针对SARS-CoV-2的微粒疫苗也已获准在韩国使用。这些疫苗尤其擅长激活B细胞,使其产生针对疫苗抗原的特异性抗体。Bathe说:"免疫学领域的许多人都对微粒疫苗非常感兴趣,因为它们能产生强大的体液免疫,也就是基于抗体的免疫,它有别于基于T细胞的免疫,而mRNA疫苗似乎能更强烈地激发T细胞免疫。"不过,这种疫苗的一个潜在缺点是,用于支架的蛋白质通常会刺激人体产生针对支架的抗体。巴特说,这会分散免疫系统的注意力,使其无法如愿启动强有力的反应。他说:"中和SARS-CoV-2病毒需要一种疫苗以产生针对病毒尖峰蛋白受体结合域部分的抗体。当在基于蛋白质的微粒上显示这种抗体时,免疫系统不仅能识别受体结合域蛋白质,还能识别与试图引起的免疫反应无关的所有其他蛋白质。"另一个潜在的缺点是,如果同一个人接种了不止一种由相同蛋白支架携带的疫苗,例如接种了SARS-CoV-2疫苗,然后又接种了流感疫苗,那么他们的免疫系统很可能会立即对蛋白支架产生反应,因为他们已经做好了对蛋白支架产生反应的准备。这可能会削弱对第二种疫苗所含抗原的免疫反应。Bathe说:"如果想应用这种基于蛋白质的微粒来免疫不同的病毒(如流感),那么免疫系统就会沉迷于它已经看到并产生免疫反应的底层蛋白质支架。这可能会降低机体对实际抗原的抗体反应质量。"作为一种替代方法,Bathe的实验室一直在开发使用DNA折纸制作的支架,这种方法可以精确控制合成DNA的结构,并允许研究人员在特定位置附着各种分子,如病毒抗原。在2020年的一项研究中,巴特和麻省理工学院生物工程及材料科学与工程教授达雷尔-欧文(DarrellIrvine)发现,携带30个艾滋病毒抗原拷贝的DNA支架可以在实验室培育的B细胞中产生强烈的抗体反应。这种结构是激活B细胞的最佳选择,因为它与纳米级病毒的结构非常相似,而纳米级病毒的表面会显示许多病毒蛋白的拷贝。Lingwood说:"这种方法建立在B细胞抗原识别的基本原理基础之上,即如果对抗原进行阵列显示,就能促进B细胞的反应,提高抗体输出的数量和质量。"在新的研究中,研究人员换用了由SARS-CoV-2原始菌株中尖峰蛋白的受体结合蛋白组成的抗原。在给小鼠注射疫苗时,他们发现小鼠对尖峰蛋白产生了高水平的抗体,但对DNA支架却没有产生任何抗体。与此相反,以一种名为铁蛋白的支架蛋白为基础、涂有SARS-CoV-2抗原的疫苗产生了许多针对铁蛋白和SARS-CoV-2的抗体。"DNA纳米粒子本身没有免疫原性,"Lingwood说。"使用基于蛋白质的平台会对平台和感兴趣的抗原产生同样高滴度的抗体反应,这会使重复使用该平台变得复杂,因为身体会对它产生高亲和力的免疫记忆"。减少这些脱靶效应还有助于科学家们实现开发一种疫苗的目标,这种疫苗可以诱导针对任何变异的SARS-CoV-2甚至所有冠状病毒的广泛中和抗体,而冠状病毒是包括SARS-CoV-2以及导致SARS和MERS的病毒在内的病毒亚属。为此,研究人员正在探索一种附有多种不同病毒抗原的DNA支架能否诱导出针对SARS-CoV-2和相关病毒的广泛中和抗体。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1415109.htm手机版:https://m.cnbeta.com.tw/view/1415109.htm

相关推荐

封面图片

模拟病毒的DNA粒子可提供无免疫副作用的疫苗

模拟病毒的DNA粒子可提供无免疫副作用的疫苗DNA粒子制成的疫苗递送平台避免了使用蛋白质粒子时出现的脱靶效应巴特实验室/麻省理工学院微粒疫苗通常是由携带许多病毒抗原拷贝的蛋白型病毒微粒支架制成。由于它们模拟天然病毒,因此与传统疫苗相比,这些疫苗能产生更强的免疫反应。它们能激活B细胞,使其产生针对所传递抗原的特异性抗体。不过,微粒疫苗的一个潜在缺点是,蛋白质支架会刺激产生针对它和它所携带的抗原(也是一种蛋白质)的抗体,从而降低免疫系统对抗原的反应强度。此外,由于机体会产生针对蛋白质平台的抗体,这就限制了它今后作为疫苗载体的使用,即使是用于不同的病毒。现在,麻省理工学院的研究人员开发出了一种基于DNA的支架,可以避免这一问题,确保免疫系统只对抗原而不是平台做出反应。该研究的通讯作者之一丹尼尔-凌伍德说:"DNA纳米粒子本身没有免疫原性。如果使用基于蛋白质的平台,你会对平台和感兴趣的抗原产生同样高级别的抗体反应,这会使重复使用该平台变得复杂,因为机体会对它产生高亲和力的免疫记忆"。为了制作支架,研究人员采用了他们以前使用过的"DNA折纸"技术,即折叠DNA,使其模仿病毒的结构。这种技术可以在特定位置附着各种分子,如病毒抗原。将SARS-CoV-2穗状病毒蛋白的受体结合部分附着在DNA支架上后,他们在小鼠身上进行了测试。他们发现,小鼠并没有像使用蛋白质支架时那样对支架产生抗体,只是对SARS-CoV-2产生了抗体。另一位通讯作者马克-巴特(MarkBathe)说:"我们在这项研究中发现,DNA不会诱发抗体,从而分散对相关蛋白质的注意力。你可以想象,你的B细胞和免疫系统正在接受目标抗原的全面训练,而这正是你想要的--让你的免疫系统激光聚焦于感兴趣的抗原。"与其他类型疫苗刺激的T细胞不同,B细胞可以持续数十年,提供长期保护。Bathe说:"免疫学领域的许多人都对微粒疫苗非常感兴趣,因为它们能产生强大的体液免疫,也就是基于抗体的免疫,它有别于基于T细胞的免疫,而mRNA疫苗似乎能更强烈地激发T细胞免疫。"研究结果表明,DNA支架是基于蛋白质的平台的有效替代品,但不会产生脱靶效应,研究人员目前正在探索是否可以利用它同时传递不同的病毒抗原,以提供对一系列病毒的保护。Lingwood说:"我们有兴趣探索是否能让免疫系统产生更高水平的免疫力,以抵御流感、艾滋病毒和SARS-CoV-2等传统疫苗方法所抵御的病原体。这项研究发表在《自然通讯》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1415563.htm手机版:https://m.cnbeta.com.tw/view/1415563.htm

封面图片

告别针头 速效口服疫苗即将问世

告别针头速效口服疫苗即将问世然而,针对给定病毒的特异性免疫球蛋白/抗体的产生必须首先通过疫苗接种来诱导。有效快速产生免疫球蛋白A抗体的疫苗可以更好地预防疾病。由于冠状病毒像流感一样感染支气管细胞,因此研究人员认为,诱导粘膜而不是血液中病毒抗原特异性免疫球蛋白A的分泌非常重要。最近,科学家们开发出了通过鼻腔根据牛津大学出版社最近发表在《生物学方法和方案》上的一篇论文,研究SARS-CoV-2的研究人员可能已经开发出口服疫苗的新方法,这种方法既更容易给药,也能更有效地对抗疾病。中和病毒的最佳方法是在病毒进入人体细胞内部之前,但仅在上皮细胞的外表面上进行中和,这些上皮细胞排列在肺部、鼻子和口腔中并产生粘液。一类称为免疫球蛋白A的特定抗体在粘液中发挥作用,可以使病毒失效。然而,针对给定病毒的特异性免疫球蛋白/抗体的产生必须首先通过疫苗接种来诱导。有效快速产生免疫球蛋白A抗体的疫苗可以更好地预防疾病。由于冠状病毒和流感一样会感染支气管细胞,研究人员认为,必须诱导粘膜分泌病毒抗原特异性免疫球蛋白A,而不是在血液中分泌。最近,科学家们开发出了通过鼻腔或口腔等其他途径接种的疫苗。与传统的皮下注射疫苗相比,这类疫苗能更有效地诱导免疫球蛋白A。虽然医生在临床中使用过鼻腔疫苗,但他们发现这些疫苗往往会对中枢神经系统或肺部产生副作用,如头痛和发烧。这项研究对一种新的SARS-CoV-2疫苗进行了研究,这种疫苗的设计目的是诱导猴子口服(舌下)产生免疫球蛋白A。这种方法奏效了,用于试验的动物产生了必要的抗病抗体,而且没有明显的副作用。这表明,通过进一步研究,诊所可能很快就能提供针对冠状病毒的口服疫苗,这种疫苗将更受欢迎,并能更成功地防治该疾病。...PC版:https://www.cnbeta.com.tw/articles/soft/1384155.htm手机版:https://m.cnbeta.com.tw/view/1384155.htm

封面图片

与病毒一起进化:更新COVID-19疫苗的反应会受到以前接种疫苗的影响

与病毒一起进化:更新COVID-19疫苗的反应会受到以前接种疫苗的影响COVID-19大流行已经结束,但该病毒仍在继续流行,每周都有数千人住院治疗,并经常产生新的变种。由于该病毒具有极强的变异和免疫逃避能力,世界卫生组织(WHO)建议每年更新COVID-19疫苗。但一些科学家担心,首批COVID-19疫苗取得的巨大成功可能会对更新版本产生不利影响,从而削弱年度疫苗接种计划的效用。类似的问题也困扰着每年的流感疫苗接种活动;一年的流感疫苗接种所产生的免疫力可能会干扰随后几年的免疫反应,从而降低疫苗的效力。圣路易斯华盛顿大学医学院研究人员的一项新研究有助于解决这个问题。与对流感病毒的免疫不同,先前对导致COVID-19的SARS-CoV-2病毒的免疫不会抑制后来的疫苗反应。研究人员报告说,它反而会促进广泛抑制性抗体的发展。重复接种疫苗的益处这项在线发表于《自然》(Nature)上的研究表明,反复接种COVID-19疫苗的人--最初接种的是针对原始变种的疫苗,之后接种的是针对变种的强化疫苗和更新疫苗--产生的抗体能够中和多种SARS-CoV-2变种,甚至是一些远缘冠状病毒。研究结果表明,定期重新接种COVID-19疫苗非但不会阻碍人体识别和应对新变种的能力,反而会使人们逐渐积累起广泛的中和抗体,从而保护他们免受新出现的SARS-CoV-2变种和其他一些冠状病毒的感染,甚至是那些尚未出现的感染人类的病毒。资深作者、赫伯特-S-加瑟医学教授、医学博士迈克尔-S-戴蒙德(MichaelS.Diamond)说:"一个人接种的第一种疫苗会诱发强烈的初级免疫反应,这种反应会影响对后续感染和疫苗接种的反应,这种效应被称为'印记'。原则上,印记可以是积极的、消极的或中性的。在这种情况下,我们看到的强烈印记是积极的,因为它与具有显著广泛活性的交叉反应中和抗体的发展相结合。"医护人员于2020年12月接种了第一剂COVID-19疫苗。圣路易斯华盛顿大学医学院研究人员的一项研究发现,重复接种更新版的COVID-19疫苗可促进抗体的发展,从而中和导致COVID-19以及相关冠状病毒的多种病毒变体。资料来源:马特-米勒/华盛顿大学印记是免疫记忆发挥作用的自然结果。第一次接种会触发记忆免疫细胞的发育。当人们接种第二次与第一次非常相似的疫苗时,第一次疫苗激发的记忆细胞就会被重新激活。这些记忆细胞主导并形成对后续疫苗的免疫反应。就流感疫苗而言,印记会产生负面影响。产生抗体的记忆细胞会排挤产生抗体的新细胞,人们针对新疫苗中的菌株产生的中和抗体相对较少。但在其他情况下,"印记"可能是积极的,因为它能促进交叉反应抗体的产生,从而中和最初疫苗和后续疫苗中的毒株。关于印记及其影响的研究为了了解印记如何影响对重复接种COVID-19疫苗的免疫反应,戴蒙德和包括第一作者、研究生梁洁玉在内的同事们研究了小鼠或接种过一系列COVID-19疫苗和增强剂的人的抗体,这些疫苗和增强剂首先针对的是原始变体,然后是奥米克变体。一些人类参与者也自然感染了导致COVID-19的病毒。第一个问题是印记效应的强度。研究人员测量了参与者体内有多少中和抗体是针对原始变体、奥米克隆变体或两者的。他们发现,只有极少数人产生了针对奥米克龙的特异性抗体,这种模式表明最初的疫苗接种产生了强烈的印记效应。但他们也发现,原始变体的抗体也很少。绝大多数中和抗体与这两种抗体都有交叉反应。下一个问题是交叉反应效应的范围有多大。根据定义,交叉反应抗体可识别两种或两种以上变体的共同特征。有些特征只有相似的变种才共享,有些特征则是所有SARS-CoV-2变种甚至所有冠状病毒共享。为了评估中和抗体的广泛性,研究人员用一组冠状病毒对抗体进行了测试,其中包括来自两个omicron支系的SARS-CoV-2病毒、一种来自穿山甲的冠状病毒、导致2002-03年SARS流行的SARS-1病毒以及中东呼吸综合征(MERS)病毒。这些抗体能中和除MERS病毒以外的所有病毒,因为MERS病毒与其他病毒来自不同的冠状病毒家族分支。进一步的实验表明,这种显著的广泛性是由于原始疫苗和变异疫苗的结合。只接种针对SARS-CoV-2原始变体疫苗的人产生了一些交叉反应抗体,这些抗体能中和穿山甲冠状病毒和SARS-1病毒,但水平较低。不过,在接种奥米克疫苗后,针对两种冠状病毒的交叉反应性中和抗体有所增加。综上所述,这些研究结果表明,定期重新接种针对变种的最新COVID-19疫苗不仅可以让人们抵御疫苗中的SARS-CoV-2变异株,还可以抵御其他SARS-CoV-2变异株和相关冠状病毒,可能包括尚未出现的变种。分子微生物学教授、病理学与免疫学教授戴蒙德说:"在COVID-19大流行之初,世界人口的免疫系统还很幼稚,这也是病毒传播如此之快、造成如此之大破坏的部分原因。我们并不确定每年接种更新的COVID-19疫苗是否能保护人们免受新出现的冠状病毒的感染,但这是有可能的。这些数据表明,如果这些交叉反应抗体不会迅速减弱--我们需要长期跟踪它们的水平才能确定--它们可能会在相关冠状病毒引起的大流行中提供一定甚至是实质性的保护。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432004.htm手机版:https://m.cnbeta.com.tw/view/1432004.htm

封面图片

研究发现新冠疫苗能保护人们免受冠状病毒造成的感染和脑损伤

研究发现新冠疫苗能保护人们免受冠状病毒造成的感染和脑损伤现在,科学家们利用易受SARS-CoV-2冠状病毒感染的小鼠模型,证明了SARS-CoV-2感染大脑不同区域并造成脑损伤的能力,以及CNB-CSIC疫苗如何充分保护大脑不受感染。这些发现发表在著名的《自然-神经科学》杂志上。这项研究是由JavierVilladiego博士和JuanJoséTOLEDo-Aral博士(IBiS、CIBERNED和塞维利亚医学院医学生理学和生物物理学系)以及JuanGarcía-Arriaza(CNB-CSIC分子和细胞生物学系、CIBERINFEC和CSIC的PTI全球健康)领导的西班牙多学科研究小组,与塞维利亚大学和西班牙国家研究委员会(CSIC)的其他小组合作进行。A)感染了SARS-CoV-2冠状病毒的大脑皮层的神经元(病毒颗粒为绿色)。B和C)在B中,被SARS-CoV-2感染的皮质神经元(棕色),在C中,用MVA-CoV2-S接种的小鼠的同一脑区没有感染。资料来源:IBiS研究人员研究了病毒感染在不同脑区的演变,注意到病毒复制主要发生在神经元中,产生神经病理学改变,如神经元损失、胶质激活和血管损伤。"我们已经对大脑区域和被病毒感染的细胞类型进行了非常详细的解剖病理学和分子研究,了解了病毒如何感染不同的区域,主要是感染神经元。"JavierVilladiego解释说。确定了SARS-CoV-2在大脑中的感染模式后,研究人员评估了CNB-CSIC开发的针对COVID-19的疫苗的效力。为了做到这一点,他们用一或两剂量的MVA-CoV2-S疫苗免疫小鼠,该疫苗基于表达SARS-CoV-2的尖峰(S)蛋白的改良疫苗(MVA),并分析了保护大脑免受感染和损害的能力。"获得的结果是惊人的,表明即使给予单剂量的MVA-CoV2-S疫苗也能完全防止SARS-CoV-2在所有研究的大脑区域的感染,并且它能防止相关的大脑损伤,即使在再次感染病毒之后。这表明了诱导大脑消毒免疫的疫苗的巨大功效和免疫力。"这些结果加强了以前关于MVA-CoV2-S疫苗在各种动物模型中的免疫原性和功效的数据。"参与这项研究的CNB-CSIC研究员MarianoEsteban说:"我们以前在一系列出版物中表明,我们在CNB-CSIC开发的MVA-CoV2-S疫苗在三种动物模型(小鼠、仓鼠和猕猴)中诱导了一种强有力的免疫反应,即与病毒S蛋白结合的抗体和针对该病毒不同变体的中和抗体,以及T淋巴细胞的激活,这是控制感染的重要标志。该结果对理解SARS-CoV-2引起的感染有重要的长期影响。"我们获得的关于SARS-CoV-2在大脑中感染的数据与在COVID-19患者中观察到的神经系统病变相吻合,"参与发表的IBiS研究员JoséLópez-Barneo强调说。"我们的工作是第一个对易感小鼠的SARS-CoV-2引起的脑损伤100%有效的疫苗研究,获得的结果强烈表明,该疫苗可以防止在几个感染SARS-CoV-2的人身上观察到的长病程COVID-19,"JuanJoséToledo-Aral强调说。"这项研究提供的数据表明,MVA-CoV2-S疫苗完全抑制了SARS-CoV-2在大脑中的复制,再加上该小组和合作者以前发表的关于疫苗对SARS-CoV-2不同变体的免疫原性和有效性的研究,支持用这种疫苗或类似的原型进行I期临床试验,以评估其安全性和免疫原性,"该研究的作者强调。...PC版:https://www.cnbeta.com.tw/articles/soft/1338777.htm手机版:https://m.cnbeta.com.tw/view/1338777.htm

封面图片

研究人员发现对所有治疗性抗体有抗性的新冠病毒亚变体

研究人员发现对所有治疗性抗体有抗性的新冠病毒亚变体感染SARS冠状病毒-2(SARS-CoV-2)或接种COVID-19疫苗后会引发免疫反应,从而产生中和抗体,帮助预防SARS-CoV-2的(再次)感染或疾病的严重过程。通过附着在病毒的穗状蛋白上,中和抗体提供保护并阻止病毒进入细胞。Omicron亚型BA.1、BA.4、BA.5以及Q.1.1在尖峰蛋白上有大量的突变。其中一些突变是逃逸突变,使病毒能够逃避抗体的中和。此外,对生物技术生产的抗体的抗性也在发展,这些抗体是作为预防措施或作为对已确诊的SARS-CoV-2感染的治疗而给高风险患者使用的。Omicron亚系BQ.1.1是第一个对目前由EMA(欧洲药品管理局)和/或FDA(美国食品和药物管理局)批准的所有抗体疗法具有抗性的变体。然而,某些SARS-CoV-2变体,特别是Omicron变体,由于尖峰蛋白的突变,避免了中和抗体,甚至在接种疫苗或康复期的个人中引起有症状的感染。这被称为免疫规避,它对高风险人群构成了危险,包括老年人和免疫系统较弱的人,或者由于疾病或药物治疗所导致。他们往往不能产生足以保护自己免受严重疾病的免疫反应,即使在全面接种疫苗后也是如此。为了保护高风险患者,在确认SARS-CoV-2感染后,以生物技术生产的抗体作为预防措施或作为早期治疗。不同SARS-CoV-2变体的尖峰蛋白的突变赋予了对个别抗体疗法的抗性。因此,定期监测治疗性抗体是否对目前流通的病毒变体继续有效是很重要的。来自德国灵长类动物中心-莱布尼茨灵长类动物研究所感染生物学组和弗里德里希-亚历山大-纽伦堡大学分子免疫学部的一个研究小组调查了已获批准的抗体疗法对目前流通的Omicron亚变体的抑制效率。研究人员发现,在全球范围内正在上升的Omicron亚变体BQ.1.1对所有可用的抗体疗法都有抵抗力。"在我们的研究中,我们将携带选定病毒变体的穗状蛋白的非传播性病毒颗粒与不同稀释度的待测抗体混合,随后测量抑制细胞培养物感染所需的抗体量。"该研究的主要作者PhernaArora解释说:"我们总共测试了12种单独的抗体,其中6种在欧洲被批准用于临床,还有4种抗体鸡尾酒抗体组合。"研究人员发现,Omicron亚变体BQ.1.1既不能被单个抗体也不能被抗体鸡尾酒中和。相比之下,目前占主导地位的Omicron亚变体BA.5仍能被一种获批的抗体和两种获批的抗体鸡尾酒中和。"考虑到高风险患者,我们非常关注Omicron亚变体BQ.1.1对所有获批抗体疗法的耐药性。特别是在BQ.1.1广泛存在的地区,医生在治疗受感染的高危患者时不应该仅仅依靠抗体疗法,还应该考虑使用其他药物,如帕克洛韦或莫努匹韦,"研究负责人MarkusHoffmann对该研究结果评论道。发现Omicron亚变体BQ.1.1已经对一种即将在美国获批的新抗体疗法产生耐药性,这突出了开发针对COVID-19的新抗体疗法的重要性。"SARS-CoV-2变体的抗体耐药性的不断发展要求开发新的抗体疗法,专门针对目前流通的和未来的病毒变体。"德国灵长类动物中心-莱布尼茨灵长类动物研究所感染生物学组组长StefanPöhlmann总结说:"理想情况下,它们应该针对尖峰蛋白中几乎没有可能发生逃逸突变的区域。"...PC版:https://www.cnbeta.com.tw/articles/soft/1335803.htm手机版:https://m.cnbeta.com.tw/view/1335803.htm

封面图片

联合研究揭示灭活与mRNA新冠疫苗免疫反应的关键差异

联合研究揭示灭活与mRNA新冠疫苗免疫反应的关键差异该研究的高级合著者AnthonyTanotoTan博士说:"灭活SARS-CoV-2疫苗在亚洲被广泛使用,但由于其诱导的抗体反应比其他类型的疫苗低,所以通常被认为是效果不佳的。这意味着它们在预防感染方面可能没有那么好,但几项研究表明,它们同样能够阻止严重的COVID-19的发展。"Tan是杜克大学新发传染病项目的高级研究员。在美国,有四种COVID-19疫苗被FDA批准或授权,分别是辉瑞-生物技术、Moderna、Novavax和强生(J&J/Janssen)。辉瑞-生物技术公司和Moderna生产的是信使RNA(mRNA)疫苗,Novavax是一种蛋白质亚单位疫苗,J&J/Janssen是一种载体疫苗。在研究中,科学家团队比较了接受SARS-CoV-2灭活疫苗和穗状mRNA疫苗的人的血样中的T细胞免疫反应。mRNA疫苗只能诱导针对SARS-CoV-2的尖峰蛋白的T细胞,而尖峰蛋白在Omicron变体中含有许多突变,但灭活疫苗不仅刺激了针对病毒尖峰蛋白的广泛T细胞反应,而且还刺激了Omicron中突变少得多的膜和核蛋白。"这种膜、核蛋白和尖峰特异性T细胞反应的组合在数量上与mRNA疫苗诱导的唯一尖峰T细胞反应相当。"该研究的第一作者、杜克大学综合生物学和医学博士方向的二年级学生JoeyLimMingEr女士说:"它还能有效地容忍SARS-CoV-2-Omicron系列的突变。"然而,与mRNA疫苗不同的是,灭活病毒疫苗似乎并没有触发以杀死病毒感染细胞的能力而闻名的细胞毒性CD8T细胞。它们主要刺激了一种叫做CD4T辅助细胞的T细胞。当这些T细胞识别病毒抗原时,它们会释放化学物质,称为细胞因子,帮助激活其他类型的免疫细胞,因此它们被称为T细胞。该研究的高级作者、杜克大学EID项目的安东尼奥·贝托莱蒂教授说。"Omicron变体可以有效地躲避抗体中和,使对疫苗接种效果的评估从预防感染转向改善疾病。与抗体相比,T细胞可能在其中发挥更重要的作用,因为它们有能力针对病毒感染的细胞。""由于SARS-CoV-2灭活疫苗可以产生针对其他病毒蛋白的T细胞反应,与目前其他疫苗的尖峰靶向策略相比,这种更加异质的反应可能是有益的。然而,需要更大规模的研究来澄清这些T细胞反应在SARS-CoV-2发病机制中的影响,以便更好地设计疫苗,控制Omicron或未来变种感染后的重症COVID-19"。为了更深入地挖掘不同T细胞反应的影响,科学家们呼吁招募更多的参与者进行进一步的研究,以比较灭活病毒疫苗诱导的多蛋白CD4T细胞反应与mRNA疫苗诱导的单穗蛋白协调CD4和CD8T细胞反应改善COVID-19疾病严重程度的能力。...PC版:https://www.cnbeta.com.tw/articles/soft/1333297.htm手机版:https://m.cnbeta.com.tw/view/1333297.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人