纳米涂装油墨可帮助商业客机减重数百公斤

纳米涂装油墨可帮助商业客机减重数百公斤超轻结构色油墨:可打印、无彩虹色且不褪色而结构色则能从平行的纳米结构中反射出全光谱的光线,这些结构之间的距离恰到好处,从而抵消了某些波长的光线。正是这种效果赋予了蝴蝶翅膀和孔雀羽毛华丽闪亮的色彩。由于光并没有被吸收,只是从结构上反射出来,因此颜色不会褪色,但这种效果通常与观察角度有很大关系,从而产生令人眼花缭乱的彩虹色,这在自然界中非常美丽,但对于大多数工业用色来说却有点离经叛道。甲醇悬浮液中的纳米球与单层表面上的纳米球颜色不同。图/藤井实神户团队研究了一种创造结构色彩的新方法。他们的方法不是使用平行的纳米结构,而是使用微小的晶体硅球。通过一种名为"米氏共振"的现象,这些纳米级球体对某些波长的反射比对其他波长的反射要强得多,而这些波长会随着颗粒大小的变化而变化。换句话说,改变这些微粒的大小,就能改变材料的颜色。由于球体会向各个方向反射光线,因此不会产生彩虹效应。研究人员已经证明,这些油墨可以打印出来。值得注意的是,当纳米球周围有一点空间,而不是紧紧包裹在一起时,颜色最强,因此少即是多。神户材料工程师杉本博在一份新闻稿中说:"一层厚度仅为100-200纳米的稀疏分布的硅纳米粒子可以显示出鲜艳的色彩,但每平方米的重量却不到半克。这使得我们的硅纳米球成为世界上最轻的彩衣之一"。纳米球单层的扫描电子显微照片显示出几乎完美的圆形颗粒,大小均匀一致。航空业是最需要超轻涂料的领域之一。根据SimpleFlying公司的数据,客机携带的涂料重量在272-544千克(600-1200磅)之间,而飞机携带的任何物品都会直接影响燃油效率。杉本说:"如果我们使用基于纳米球的墨水,也许可以将重量减轻到10%以下。"因此,无论飞机飞到哪里,燃烧的燃料都会减少一点--与少搭载五到六名成年男性乘客时燃烧的燃料差不多。此外,普通的油漆容易褪色,需要重新喷涂的油漆高达455升(120加仑),耗资20万美元。这些新的结构性彩色油墨完全不会褪色,因此虽然前期成本较高,但可以无限期使用,从而在飞机的使用寿命内节省成本。商业航机往往可以使用几十年,一旦这些超薄结构彩色油墨可以投入生产,就会有很好的商业前景。这项研究发表在《ACS应用纳米材料》杂志上,下面的视频展示了这些油墨。...PC版:https://www.cnbeta.com.tw/articles/soft/1415315.htm手机版:https://m.cnbeta.com.tw/view/1415315.htm

相关推荐

封面图片

革命性的相变纳米油墨:建筑物和汽车中高能效气候控制的未来

革命性的相变纳米油墨:建筑物和汽车中高能效气候控制的未来新的油墨使用纳米技术来控制日常环境中的温度。资料来源:墨尔本大学MohammadTaha博士世界首创的"相变油墨"可以改变我们加热和冷却建筑物、家庭和汽车的方式--实现复杂的"被动气候"控制--已经被开发出来,具有帮助减少能源使用和全球温室气体排放的巨大潜力。由MohammadTaha博士领导的发表在英国皇家化学会《材料化学》杂志上的新研究记录了概念验证的"相变油墨",该油墨使用纳米技术来控制日常环境中的温度。它们通过根据周围环境调整能够通过它们的辐射量来实现这一目的。Taha博士说,这些油墨可以用来开发涂层,以实现被动的加热和冷却,减少我们依赖能源创造来调节温度的需要。"人类使用大量的能源来创造和维持舒适的环境--加热和冷却我们的建筑物、住宅、汽车,甚至是我们的身体,"Taha博士说。"我们不能再只关注从可再生资源中产生的能源来减少我们对环境的影响。随着气候变化的影响成为现实,我们还需要考虑减少我们的能源消耗,作为我们提出的能源解决方案的一部分。通过对我们的油墨进行工程设计,使其对周围环境作出反应,我们不仅减少了能源支出,而且还消除了对控制温度的辅助控制系统的需要,这是一种额外的能源浪费。"被动式气候控制将实现舒适的生活条件,而不会不必要地消耗能源。例如,为了在冬季提供舒适的供暖,应用于建筑外墙的油墨可以自动转变,以便在白天让更多的太阳辐射通过,并在夜间提供更多的保温措施以保持温暖。在夏天,它们可以形成一个屏障,阻挡来自太阳和周围环境的热辐射。多功能的"相变油墨"是一个概念验证,可以层压、喷涂或添加到涂料和建筑材料中。它们还可以被纳入衣服中,在极端环境中调节体温,或用于创建大规模、灵活和可穿戴的电子设备,如可弯曲的电路、照相机和探测器,以及气体和温度传感器。Taha博士说:"我们的研究消除了以前对大规模廉价应用这些油墨的限制。这意味着现有的结构和建筑材料可以被改造。随着制造业的发展,这些油墨可以在5到10年内进入市场。通过与工业界的合作,我们可以扩大规模并将它们整合到现有的和新的技术中,作为解决世界气候变化能源挑战的整体方法的一部分。这种材料的潜力是巨大的,因为它可以用于许多不同的目的--比如防止笔记本电脑电子产品的热量积聚或汽车挡风玻璃上。但这种材料的好处是,我们可以调整它的吸热特性以适应我们的需要。目前,一种不同类型的相变材料已被用于制造智能玻璃,但我们的新材料意味着我们可以设计出更智能的砖块和涂料。这种新的纳米技术可以帮助改造现有的建筑物,使其更有效率。这对环境更有利,对未来也是可持续的"。这一突破是通过发现如何修改"相变材料"的主要成分之一--氧化钒(VO2)实现的。相变材料使用触发器,如热或电,以创造足够的能量,使材料在压力下自我转化。然而,相变材料以前需要被加热到非常高的温度,才能激活其'相变'特性。Taha博士说:"我们利用我们对这些材料是如何组合在一起的理解来测试我们如何能够触发绝缘体到金属(IMT)的反应,在这种情况下,材料基本上作为一个开关,阻止热量超过一个特定的温度--接近室温(30-40oC)。下一步工作将涉及将墨尔本大学的专利研究推向生产。"...PC版:https://www.cnbeta.com.tw/articles/soft/1353257.htm手机版:https://m.cnbeta.com.tw/view/1353257.htm

封面图片

日本研发出新型“纳米球”涂料 可减少飞机二氧化碳排放

日本研发出新型“纳米球”涂料可减少飞机二氧化碳排放飞机的重量越大,所需的燃料就越多,从而直接增加了航空公司的支出(然后向客户收费),以及燃烧为二氧化碳排入大气的燃料量。而新型“纳米球”涂料质量更轻,可以达到环保的效果。研究团队构建出特定大小的纳米晶体,然后创建出通俗的悬浮液,将结晶硅纳米颗粒与悬浮液混合在一起,制作出新型“纳米球”涂料。据悉,纳米球基墨水的颜色随团队改变纳米晶体的大小而变化。较大的颗粒会产生温暖的色调,如红色,而较小的颗粒则会显示出较冷的色调,如蓝色。...PC版:https://www.cnbeta.com.tw/articles/soft/1420245.htm手机版:https://m.cnbeta.com.tw/view/1420245.htm

封面图片

可切换色彩的史上最小光源:开启色彩可调纳米设备的新时代

可切换色彩的史上最小光源:开启色彩可调纳米设备的新时代一种由两个耦合量子点组成的纳米粒子,每个量子点都能发出不同颜色的光。施加外部电压会产生一个电场,该电场能将光从一侧发射到另一侧,从而在保持整体光强度的同时切换发射颜色。图片来源:EhsanFaridi和EhsanKeshavarzi的作品-Inmywork工作室YonatanOssia,希伯来大学。图片来源:约阿夫-奥斯亚通过开发一种由两个耦合半导体纳米晶体组成的"人造分子"系统,该系统可发出两种不同颜色的光,从而实现了快速、瞬时的颜色切换。彩色光及其可调性是现代许多重要技术的基础,包括照明、显示器、快速光纤通信网络等。将彩色发光半导体提升到纳米级(纳米--十亿分之一米,比人的头发小十万倍)后,一种被称为量子约束的效应开始发挥作用:改变纳米晶体的大小可以改变发射光的颜色。因此,可以获得覆盖整个可见光谱的明亮光源。由于这种纳米晶体具有独特的色彩可调性,而且可以利用湿化学方法方便地制造和操作,因此已被广泛应用于高品质的商业显示器中,使其具有出色的色彩质量和显著的节能特性。然而,时至今日,要实现不同的颜色(如不同的RGB像素所需的颜色),需要为每种特定的颜色使用不同的纳米晶体,而且无法在不同颜色之间进行动态切换。虽然之前已经研究过单个胶体纳米晶体的颜色调节,并在光电设备原型中实现了这种"人造原子",但主动改变颜色一直是个挑战,因为这种效果本身会降低亮度,只能产生轻微的颜色偏移。希伯来大学UriBanin教授。图片来源:NatiShohat,Flash90研究小组克服了这一限制,创造了一种具有两个发射中心的新型分子,电场可以调节每个中心的相对发射,从而改变颜色,但不会失去亮度。这种人造分子可以使其组成纳米晶体中的一个发射"绿光",而另一个发射"红光"。这种新型双色发光人造分子的发射对诱导电场的外部电压很敏感:一个极性的电场会诱导"红色"中心发光,而将电场切换到另一个极性时,颜色发射会瞬间切换为"绿色",反之亦然。这种颜色切换现象是可逆和即时的,因为它不包括分子的任何结构运动。因此,只需在设备上施加适当的电压,就能获得这两种颜色中的每一种,或它们的任意组合。这种在光电设备中精确控制颜色调节同时保持强度的能力,为各个领域带来了新的可能性,包括显示器、照明和具有可调颜色的纳米级光电设备,以及作为敏感场传感工具用于生物应用和神经科学以跟踪大脑活动。此外,它还可以主动调节单光子源的发射颜色,这对未来的量子通信技术非常重要。耶路撒冷希伯来大学的UriBanin教授解释说:"我们的研究是光电子学纳米材料领域的一大飞跃。在我们的研究小组几年前提出的"纳米晶体化学"理念中,纳米晶体是具有令人兴奋的新功能的人造分子的构件,这是我们在阐述这一理念方面迈出的重要一步。我们所实现的在纳米尺度上快速、高效地转换颜色的能力具有巨大的可能性。它可以彻底改变先进的显示器,并创造出可切换颜色的单光子源"。通过利用这种具有两个发射中心的量子点分子,可以利用相同的纳米结构产生几种特定颜色的光。这一突破为开发用于探测和测量电场的灵敏技术打开了大门。它还实现了新的显示屏设计,可以单独控制每个像素产生不同的颜色,将标准的RGB显示屏设计简化为更小的像素,从而有可能提高未来商业显示屏的分辨率并节约能源。电场诱导色彩切换技术的这一进步在改变设备定制和现场传感方面具有巨大潜力,为未来激动人心的创新铺平了道路。...PC版:https://www.cnbeta.com.tw/articles/soft/1375215.htm手机版:https://m.cnbeta.com.tw/view/1375215.htm

封面图片

量子光子学的飞跃:革命性纳米腔体重新定义光约束

量子光子学的飞跃:革命性纳米腔体重新定义光约束长期以来,物理学家一直在寻找将光子强制放入越来越小的腔体中的方法。光子的自然长度尺度是波长,当光子被迫进入一个比波长小得多的空腔时,它实际上变得更加"集中"。这种集中增强了与电子的相互作用,放大了腔体内的量子过程。然而,尽管在将光限制在深亚波长体积方面取得了巨大成功,但耗散(光吸收)效应仍然是一个主要障碍。纳米腔体中的光子吸收非常快,比波长快得多,这种耗散限制了纳米腔体在一些最激动人心的量子应用中的适用性。4个不同大小的偏振腔的3D效果图。图片来源:MatteoCeccanti创新的纳米空腔设计来自西班牙巴塞罗那ICFO的FrankKoppens教授的研究小组通过创建具有无与伦比的亚波长体积和延长寿命的纳米腔体,解决了这一难题。这些纳米空腔的面积小于100x100nm²,厚度仅为3nm,却能将光限制在更长的时间内。关键在于双曲-声子-极化子的使用,这是形成空腔的二维材料中发生的独特电磁激发。纳米空腔(横截面视图)和近场尖端的草图,与空腔模式的模拟射线状场分布叠加在一起。资料来源:MatteoCeccanti与以往基于声子极化子的空腔研究不同,这项研究利用了一种新的间接约束机制。利用氦聚焦离子束显微镜的极高精度(2-3纳米),在金基底上钻出纳米级孔洞,从而制作出纳米空腔。打孔后,在其上面转移二维材料六方氮化硼(hBN)。六方氮化硼支持被称为双曲光子极化子的电磁激元,这种激元与普通光类似,只是可以被限制在极小的体积内。当极化子通过金属边缘上方时,它们会受到金属的强烈反射,从而被束缚住。因此,这种方法避免了直接塑造氢化硼,并保持了其原始质量,使空腔中的光子高度集中且寿命长。纳米空腔及其内部磁场的艺术效果图。资料来源:MatteoCeccanti出人意料的实验成功这一发现源于在另一个项目中使用近场光学显微镜扫描二维材料结构时的一次偶然观察。近场显微镜可以激发和测量光谱中红外范围的极化子,研究人员注意到这些极化子在金属边缘的反射异常强烈。这一意料之外的观察结果引发了更深入的研究,从而发现了独特的禁锢机制及其与纳米雷形成的关系。然而,在制作和测量空腔后,研究小组却发现了一个巨大的惊喜。第一作者、巴伊兰大学物理系的HananHerzigSheinfux博士说:"实验测量结果通常比理论预测的要差,但在这种情况下,我们发现实验结果超过了乐观的简化理论预测。这一意想不到的成功为量子光子学的新颖应用和进步打开了大门,突破了我们认为可能的极限"。HerzigSheinfux博士在ICFO做博士后期间与Koppens教授一起进行了这项研究。他打算利用这些空腔来观察以前认为不可能实现的量子效应,并进一步研究双曲声子极化子行为这一引人入胜的反直觉物理学。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1416529.htm手机版:https://m.cnbeta.com.tw/view/1416529.htm

封面图片

突破手性结构的极限:科学家首次控制纳米颗粒的扭曲度

突破手性结构的极限:科学家首次控制纳米颗粒的扭曲度虽然生物学中充满了像DNA这样的扭曲结构,被称为手性结构,但扭曲的程度是被锁定的--试图改变它就会破坏结构。现在,研究人员可以对扭曲的程度进行设计。这种材料可以使机器人准确地浏览复杂的人类环境。扭曲的结构将在从表面反射的光波的形状中编码信息,而不是在构成大多数人类阅读标志的二维符号排列中编码。这将利用人类几乎无法感知的光的一个方面,即所谓的偏振。扭曲的纳米结构会优先反射某些类型的圆偏振光,这种形状的光在空间中移动时会发生扭曲。彩色电子显微镜图像中带有糖果包装纸扭曲的微米级蝴蝶结。控制卷曲的纳米结构材料的扭曲程度的能力可能是化学和机器视觉中的一个有用的新工具。"这基本上就像甲壳类动物的偏振视觉,"领导这项研究的欧文-朗缪尔大学化学科学与工程杰出教授尼古拉斯-科托夫说。"尽管环境很阴暗,但它们还是能接收到大量的信息。"机器人可以读取在人眼里看起来像白点的标志;信息将被编码在反射的频率组合中,扭曲的松紧度,以及扭曲是左手还是右手。通过避免使用自然光和环境光,而依靠机器人产生的圆偏振光,无论是在明亮还是黑暗的环境中,机器人都不太可能错过或误解一个提示。能够选择性地反射扭曲光线的材料,被称为手性超材料,通常很难制造,但领结却不是。不同生长条件的阵列,从只用左手胱氨酸制成的左旋扭结,到用50-50混合制成的平底煎饼,再到只用右手胱氨酸制成的右手扭结。控制卷曲的纳米结构材料的扭曲程度的能力可能是化学和机器视觉的一个有用的新工具。资料来源:PrashantKumar,密歇根大学Kotov实验室。"以前,手性元表面的制作非常困难,需要使用价值数百万美元的设备。现在,这些具有多种诱人用途的复杂表面可以像照片一样被打印出来,"Kotov说。扭曲的纳米结构也可能有助于创造正确的条件来生产手性药物,而用正确的分子扭曲来制造手性药物是具有挑战性的。"以前在任何手性系统中没有看到的是,我们可以控制从完全扭曲的左手结构到平坦的煎饼再到完全扭曲的右手结构的扭曲度。我们把这称为手性连续体,"PrashantKumar说,他是U-M化学工程的博士后研究员,也是《自然》杂志上这项研究的第一作者。Kumar将这些领结作为一种涂料进行了测试,将它们与聚丙烯酸混合,并将它们点在玻璃、织物、塑料和其他材料上。用激光进行的实验表明,这种涂料只有在光线的扭曲度与领结形状的扭曲度相匹配时才会反射扭曲的光线。蝴蝶结是由金属镉和胱氨酸混合而成的,胱氨酸是一种蛋白质片段,有左手和右手之分,在水中加入碱液。如果胱氨酸都是左手的,就会形成左手的领结,而右手的胱氨酸则产生右手的领结--每个都有一个糖果包装的扭曲。但在左手和右手胱氨酸的不同比例下,研究小组做出了中间的扭曲,包括在50-50比例下的平底煎饼。最紧的蝴蝶结的间距,基本上是360度转弯的长度,大约是4微米长--在红外光的波长范围内。"我们不仅知道从原子尺度一直到微米尺度的领结的进展,我们也有理论和实验向我们展示指导力量。有了这种基本的理解,你就可以设计出一堆其他的粒子,"ThiVo说,他是U-M化学工程的前博士后研究员。他与该研究的共同通讯作者、马里兰大学化学工程系主任SharonGlotzer合作。与其他手性纳米结构相比,这些领结可能需要几天的时间来自我组装,而这些领结只需90秒就能形成。该研究小组在领结光谱中产生了5000种不同的形状。在模拟分析之前,他们在阿贡国家实验室用X射线研究了这些形状的原子细节。...PC版:https://www.cnbeta.com.tw/articles/soft/1357513.htm手机版:https://m.cnbeta.com.tw/view/1357513.htm

封面图片

科学家将铟原子穿入纳米纤维束以创造灵活的纳米线

科学家将铟原子穿入纳米纤维束以创造灵活的纳米线图1.(a)三维TMC晶体结构,由TMC纳米纤维组成,周围是单原子行的插层元素。(b)单个TMC纳米纤维的端面和侧面图。氯化物为金色,过渡金属为绿色,插层元素为深紫色。资料来源:东京都立大学过渡金属卤化物(TMC)的原子线是由过渡金属和第16组元素如硫、硒和碲组成的纳米结构。它们能够自我组装成具有不同维度的广泛结构,使它们成为纳米材料革命的核心,是近年来激烈研究的焦点。特别是,一类三维TMC结构引起了人们的特别兴趣,它由一束束TMC纳米纤维组成,这些纤维之间由金属原子固定在一起,在其横截面上形成一个有序的晶格(见图1)。根据对金属的选择,该结构甚至可以成为一个超导体。此外,通过使纤维束变薄,它们可以被制成可导电的柔性结构:这使得TMC纳米结构成为纳米电路中用作布线的主要候选者。然而,要把这些结构做成深入研究它们所需的长而薄的纤维,以及用于纳米技术的应用,一直都很困难。图2:(a)碲化钨纳米纤维束和最终插层结构的原子结构示意图,以及扫描透射电子显微镜图像。(b)在硅衬底上合成的三维TMC纳米纤维。资料来源:东京都立大学由助理教授YusukeNakanishi和副教授YasumitsuMiyata领导的一个团队一直在研究TMC纳米结构的合成技术。在最近的工作中,他们表明,他们可以在前所未有的大长度尺度上生产长而薄的TMC束(不含金属)。现在,他们已经使用气相反应将原子级的薄排铟穿入薄的碲化钨束。通过在500摄氏度的真空条件下将他们的长纳米纤维束暴露在铟蒸气中,金属铟原子进入构成纤维束的各个纳米纤维之间的空间,形成一个夹层(或桥接)的铟行,将纤维结合在一起。在成功地生产出大量的这些线状TMC束后,他们开始研究他们的新纳米线的特性。通过观察电阻率与温度的关系,测量数据确凿地表明,单个线束的行为像金属一样,因此能导电。这与计算机模拟结果一致,同时也证明了这些结构的有序性。有趣的是,他们发现这种结构与成批捆绑的纳米纤维略有不同,因为夹层行导致每个纳米纤维围绕其轴线轻微旋转。该团队的技术不仅限于铟和碲化钨,也不仅限于这种特定的结构。他们希望他们的工作可能会给纳米材料的开发和对其独特性能的研究带来新的篇章。...PC版:https://www.cnbeta.com.tw/articles/soft/1347753.htm手机版:https://m.cnbeta.com.tw/view/1347753.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人