日本研发出新型“纳米球”涂料 可减少飞机二氧化碳排放

日本研发出新型“纳米球”涂料可减少飞机二氧化碳排放飞机的重量越大,所需的燃料就越多,从而直接增加了航空公司的支出(然后向客户收费),以及燃烧为二氧化碳排入大气的燃料量。而新型“纳米球”涂料质量更轻,可以达到环保的效果。研究团队构建出特定大小的纳米晶体,然后创建出通俗的悬浮液,将结晶硅纳米颗粒与悬浮液混合在一起,制作出新型“纳米球”涂料。据悉,纳米球基墨水的颜色随团队改变纳米晶体的大小而变化。较大的颗粒会产生温暖的色调,如红色,而较小的颗粒则会显示出较冷的色调,如蓝色。...PC版:https://www.cnbeta.com.tw/articles/soft/1420245.htm手机版:https://m.cnbeta.com.tw/view/1420245.htm

相关推荐

封面图片

"绿色活涂料"能产生氧气并捕捉二氧化碳

"绿色活涂料"能产生氧气并捕捉二氧化碳研究人员创造出一种含有蓝藻(绿色)的生物涂层,可产生氧气并捕捉二氧化碳图/萨里大学我们已经看到蓝藻(或称蓝绿藻)因其光合作用特性而被提议作为新型绿色材料的组成部分。蓝藻通过光合作用固定二氧化碳,并将其转化为有机化合物,在恶劣的环境中也能高效地进行光合作用。此外,它们生长迅速,在大多数情况下可以进行基因改造。英国萨里大学的研究人员开发出了一种能产生氧气、吸收二氧化碳的水基涂料,其中含有一种蓝藻,他们称之为'绿色生活涂料'。该研究的通讯作者苏西-辛利-威尔逊(SuzieHingley-Wilson)说:"随着大气中温室气体(尤其是二氧化碳)的增加,以及人们对全球气温升高导致水资源短缺的担忧,我们需要创新、环保和可持续的材料。机械坚固、即用型生物涂料(或称'活涂料')可以在通常用水密集型的生物反应器工艺中减少耗水量,从而帮助应对这些挑战。"研究人员着手在多孔但机械坚硬的涂层中固定具有新陈代谢活性的蓝藻,使其固定碳并产生氧气。他们比较了三种蓝藻,发现Chroococcidiopsiscubana的表现最好。C.cubana是一种"嗜极"菌株,这意味着它能承受极端温度和pH值、高浓度盐、干旱环境和辐射。研究过程相对简单。研究人员将蓝藻固定在水中的聚合物颗粒制成的生物涂层中,然后将其完全干燥并重新水化。他们发现,与所使用的其他物种相比,Chroococcidiopsis仍能存活,而且产氧量稳步上升,最高水平达到每天每克生物量产生0.4克氧气。对溶解氧进行一个月的连续测量显示,其活性没有下降的迹象。他们估计,每天每克生物质的碳捕获量为0.31克二氧化碳。研究人员说,他们的研究结果表明,嗜极蓝藻是生物涂层和其他生物技术(包括外太空)的理想候选者。该研究的第一作者西蒙娜-克林斯(SimoneKrings)说:"光合蓝藻具有在极端环境中生存的非凡能力,如干旱和高强度紫外线辐射后。这使它们成为火星殖民的潜在候选者。"未来的研究将集中于优化这种蓝藻菌株作为生物涂层的使用。该研究发表在《微生物学频谱》(MicrobiologySpectrum)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1390949.htm手机版:https://m.cnbeta.com.tw/view/1390949.htm

封面图片

日本研发出新型“纳米球”涂料:可减少飞机二氧化碳排放#抽屉IT

封面图片

新型光催化系统可将二氧化碳转化为有价值的燃料

新型光催化系统可将二氧化碳转化为有价值的燃料光合作用是植物和某些生物的叶绿体利用阳光、水和二氧化碳产生食物或能量的机制。过去几十年来,许多研究人员都在努力创造合成光合作用过程,目的是将二氧化碳转化为碳中性燃料。联合研究的负责人之一、城大化学系副教授叶如泉教授解释说:"然而,二氧化碳很难在水中转化,因为许多光敏剂或催化剂会在水中降解。虽然人工光催化循环已被证明能以更高的内在效率运行,但其在水中还原二氧化碳的低选择性和低稳定性阻碍了它们的实际应用。"分层自组装光催化系统(左)模仿了一种名为"Rhodobactersphaeroides"的紫色细菌(右)的自然光合作用装置,在将二氧化碳转化为甲烷时实现了15%的太阳能转化为燃料的效率。资料来源:(左)叶如泉教授研究小组/香港城市大学;(右)《生物物理学报》,99:67-75,2010年在最新的研究中,来自城大、香港大学、江苏大学和中国科学院上海有机化学研究所的联合研究小组克服了这些困难,利用超分子组装方法创建了一个人工光合作用系统。它模仿了紫色细菌的光收集色素细胞(即含有色素的细胞)的结构,这种细胞能非常有效地从太阳光中传递能量。这种新型人工光合作用系统的核心是一种高度稳定的人工纳米胶束--一种能在水中自组装的聚合物,具有亲水端和惧水端。这种纳米胶束的亲水性头部可作为光敏剂吸收阳光,而疏水性尾部则可作为自组装的诱导剂。将纳米簇放入水中,由于水分子与簇尾之间的分子间氢键作用,纳米簇就会自组装。加入钴催化剂后,光催化制氢和还原二氧化碳,从而产生氢气和甲烷。香港城市大学化学系副教授叶如泉教授(前排中)及其研究团队。图片来源:香港城市大学研究小组利用先进的成像技术和超快光谱技术,揭示了创新光敏剂的原子特征。他们发现,纳米小分子亲水性头部的特殊结构,以及水分子与纳米小分子尾部之间的氢键作用,使其成为一种稳定的、与水相容的人工光敏剂,解决了人工光合作用传统的不稳定性和与水不相容的问题。光敏剂与钴催化剂之间的静电作用以及纳米簇的强光采集天线效应改善了光催化过程。在实验中,研究小组发现甲烷的生产率超过13000μmolh-1g-1,24小时的量子产率为5.6%。它还实现了15%的高效太阳能转化为燃料的效率,超过了自然光合作用。最重要的是,这种新型人工光催化系统不依赖昂贵的贵金属,具有经济可行性和可持续性。叶教授说:"该系统的分层自组装提供了一种很有前景的自下而上的策略,即基于廉价、地球上丰富的元素,如锌和钴卟啉复合物,来创建一种精确控制的高性能人工光催化系统。"氢键增强纳米胶束的形成及其在太阳能下制氢和还原二氧化碳的过程。资料来源:叶如泉教授研究小组/香港城市大学叶如泉教授说,他相信这项最新发现将有利于并启发未来利用太阳能转化和还原二氧化碳的光催化系统的合理设计,为实现碳中和的目标作出贡献。...PC版:https://www.cnbeta.com.tw/articles/soft/1375391.htm手机版:https://m.cnbeta.com.tw/view/1375391.htm

封面图片

中国将建立电力二氧化碳排放因子常态化发布机制

中国将建立电力二氧化碳排放因子常态化发布机制中国生态环境部、国家统计局发布公告称,将建立电力二氧化碳排放因子常态化发布机制,并拟于2024年尽早发布2022年电力二氧化碳排放因子。根据《人民日报》星期二(4月16日)报道,中国生态环境部、国家统计局发布《关于发布2021年电力二氧化碳排放因子的公告》。此次发布的2021年电力二氧化碳排放因子,分为三种口径,包括2021年全国、区域及省级电力平均二氧化碳排放因子,2021年全国电力平均二氧化碳排放因子(不包括市场化交易的非化石能源电量)和2021年全国化石能源电力二氧化碳排放因子。据介绍,电力二氧化碳排放因子是核算电力消费二氧化碳排放量的重要基础参数。本次发布的电力二氧化碳排放因子可供不同主体核算电力消费的二氧化碳排放量时参考使用,是落实《关于加快建立统一规范的碳排放统计核算体系实施方案》中“统筹推进排放因子测算”要求的重要举措,为碳排放核算提供基础数据支撑。公告说,下一步,生态环境部、国家统计局将建立电力二氧化碳排放因子常态化发布机制。根据基础数据更新情况,拟于2024年尽早发布2022年电力二氧化碳排放因子。2024年4月16日8:16PM

封面图片

新型反应堆系统将二氧化碳转化为可用燃料

新型反应堆系统将二氧化碳转化为可用燃料锅炉的效率通常很高。因此,仅靠提高燃烧效率很难减少二氧化碳排放。因此,研究人员正在探索其他方法,以减轻锅炉排放的二氧化碳对环境的影响。为此,一个很有前景的策略是捕获这些系统排放的二氧化碳,并将其转化为有用的产品,如甲烷。要实施这一战略,需要一种特殊类型的膜反应器,即分配器型膜反应器(DMR),它既能促进化学反应,又能分离气体。虽然DMR已在某些行业中使用,但其在将二氧化碳转化为甲烷方面的应用,尤其是在锅炉等小型系统中的应用,仍相对较少。由日本芝浦工业大学的野村干弘教授和波兰AGH科技大学的GrzegorzBrus教授领导的一组日本和波兰研究人员填补了这一研究空白。他们的研究成果最近发表在《二氧化碳利用期刊》上。来自日本和波兰的研究人员开发出一种反应堆设计,可有效捕捉二氧化碳排放并将其转化为可用的甲烷燃料。这一突破可大幅减少温室气体排放,为实现碳中和的未来铺平道路。资料来源:日本SIT的野村干弘教授研究小组双管齐下,通过数值模拟和实验研究来优化反应器设计,以便将小型锅炉中的二氧化碳高效转化为甲烷。在模拟过程中,研究小组模拟了气体在不同条件下的流动和反应。这反过来又使他们能够最大限度地减少温度变化,确保在甲烷生产保持可靠的同时优化能源消耗。研究小组还发现,与将气体导入单一位置的传统方法不同,分布式进料设计可以将气体分散到反应器中,而不是从一个地方送入。这反过来又能使二氧化碳更好地分布在整个膜中,防止任何位置过热。野村教授解释说:"与传统的填料床反应器相比,这种DMR设计帮助我们将温度增量降低了约300度。"除了分布式进料设计,研究人员还探索了影响反应器效率的其他因素,并发现一个关键变量是混合物中的二氧化碳浓度。改变混合物中的二氧化碳含量会影响反应的效果。"当二氧化碳浓度为15%左右(与锅炉中的二氧化碳浓度相似)时,反应器生产甲烷的效果要好得多。事实上,与只有纯二氧化碳的普通反应器相比,它能多产生约1.5倍的甲烷,"野村教授强调说。此外,研究小组还研究了反应器尺寸的影响,发现增大反应器尺寸有助于为反应提供氢气。不过,需要考虑一个折衷的问题,因为提高氢气可用性的好处需要谨慎的温度管理,以避免过热。因此,这项研究为解决温室气体排放的主要来源问题提供了一个前景广阔的解决方案。通过利用DMR,可以成功地将低浓度二氧化碳排放转化为可用的甲烷燃料。由此获得的益处不仅限于甲烷化,还可应用于其他反应,从而使这种方法成为高效利用二氧化碳的多功能工具,甚至适用于家庭和小型工厂。这项研究得到了波兰国家机构、克拉科夫AGH大学和日本科学促进会的资助。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432823.htm手机版:https://m.cnbeta.com.tw/view/1432823.htm

封面图片

新配方制造的混凝土吸收的二氧化碳要比排放的多

新配方制造的混凝土吸收的二氧化碳要比排放的多制造水泥的过程需要非常高的温度,这通常需要燃烧燃料,过程中当然会排放二氧化碳。这可以通过改用可再生能源来部分抵消,但混合物中的化学反应也会释放大量的二氧化碳,这就更难避免了。据估计,水泥生产占人类二氧化碳排放总量的8%之多。科学家们一直在调整配方,试图减少混凝土的碳足迹,用石灰石代替火山岩,或添加二氧化钛、建筑垃圾、小苏打或采矿过程中通常被丢弃的粘土等成分。其他团队甚至尝试使用微藻来种植所需的石灰石。在新的研究中,WSU的研究人员调查了一种涉及生物碳的新方法,生物碳是一种由有机废物制成的木炭。虽然生物炭以前曾被添加到水泥中,但这次研究小组首先使用混凝土冲洗废水对其进行处理。这提高了它的强度,并允许更高比例的添加剂被混合进去。但最重要的是,生物炭能够从它周围的空气中吸收多达其自身重量23%的二氧化碳。在实验中,研究小组制造了含有30%处理过的生物炭的水泥,并发现由此产生的混凝土是负碳的--它实际上吸收的二氧化碳比生产该材料时排放的二氧化碳还要多。根据研究人员的计算,1公斤(2.2磅)30%的生物碳混凝土比其生产过程中释放的二氧化碳多出约13克(-0.5盎司)。这听起来可能不多,但考虑到普通混凝土通常每1公斤材料要释放约0.9公斤(2磅)的二氧化碳,有着鲜明的差异。研究人员李志鹏和史贤明与新型负碳混凝土的样品图/华盛顿州立大学研究小组说,如果在他们的分析中考虑到下游的差异,总收益可能会更好。例如,将生物炭用于像这种混凝土这样的环保目的,可以将其制成的生物质从可能释放更多二氧化碳的其他命运中转移出来。此外,新的混凝土预计将在其几十年的工作寿命中继续吸收二氧化碳。重要的是,生物炭混凝土还能保持其强度。当28天后测量时,混凝土的抗压强度为27.6兆帕(4,003磅/平方英寸),与普通混凝土差不多。研究人员计划继续优化和扩大该方法,并测试所产生的混凝土的抗风化和其他类型的损害的程度。该研究发表在《材料通讯》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1355635.htm手机版:https://m.cnbeta.com.tw/view/1355635.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人