刺鳐独居8年居然怀孕 其实人类也干过孤雌生殖

刺鳐独居8年居然怀孕其实人类也干过孤雌生殖这让水族馆里的工作人员非常困惑:“它是怎么怀上孩子的,难道是鲨鱼惹的祸?”事情经过舆论发酵,很快,这几只鲨鱼就受到了诸多媒体的“指控”。为了平息这场闹剧,也为了弄清楚夏洛特肚子里孩子的来源,水族馆进行了科学的调查。独居8年的刺鳐怀孕一直以来,刺鳐夏洛特就被孤立在一个容量为2200加仑的水族箱里,和它共处的鱼类只有几只未成年小鲨鱼。按照水族馆工作人员的话来说,夏洛特至少有8年没有见过异性了,更不用谈和异性生活在一个水族箱里。去年9月份,工作人员突然发现夏洛特的背上有一个饼干大小的肿块。难道是肿瘤?为此,工作人员给夏洛特进行了超声波检查,结果发现,夏洛特居然怀孕了!吃惊的同时,大家都在猜测让夏洛特怀孕的“他”是谁!第一时间,科学家推翻了“鲨鱼犯错”的言论,因为夏洛特是一条刺鳐,是不可能和鲨鱼产生后代的。唯一有可能的,就是夏洛特自己让自己怀孕的,也就是我们常说的孤雌生殖。而且,夏洛特可能是人类首次发现,刺鳐孤雌生殖的个体。能实现生育自由的孤雌生殖,是如何生育后代的?孤雌生殖,在大自然中很常见,普遍存在于一些植物和较原始的动物中,例如蚂蚁、蚜虫、蜜蜂等等。脊椎动物中也有发生,但发生概率非常小。众所周知,大多数动物的发育始于受精卵,而受精卵是由卵子和精子结合产生的,而孤雌生殖特别之处在于它不需要借助精子的帮助,直接由卵子发育成胚胎。因此,也被称作单性繁殖。孤雌生殖的种类也有多种,有的是自然发生的,叫作天然单性生殖,与之相反的,则叫人工单性生殖,我们国家已经实现人工干预下让小鼠孤雌生殖。自然中比较罕见的叫“兼性单性生殖”(兼性孤雌生殖),这种方式,意味着动物原本是雌雄生殖细胞结合产生后代的,但在某些情况下,尤其是缺少雄性的时候,雌性放弃寻找雄性,通过自身努力独自完成繁殖。刺鳐夏洛特用的就是这种方式,它的孩子基因全都来自母体,是不是意味着孩子的基因会和母体完全一样呢?事实上,并非如此,孤雌生殖的基因组合,完全取决于“非受精胚胎组织”的融合方式。从科学角度来说,正常个体细胞是双倍体,而卵子和精子是单倍体,两者结合后才能形成正常的双倍体胚胎。双倍体基因减半成为单倍体,是通过减数分裂实现的(过程参考下图),经过两次减数分裂,将会形成3个极体和1个卵细胞。正常情况下,极体会被吸收掉,最终只有卵子和精子重组形成受精胚胎。但在孤雌生殖的个体中,会发生极体-极体,极体-卵细胞错误融合,意外产生了双倍体胚胎。有的孤雌生殖情况还要特殊一些,它很有可能是没有进行第二次减数分裂,第一次减数分裂后,形成了1个极体和1个含有母体全部基因的“双套卵”,双套卵也可以直接发育成了后代个体。不同的融合方式,意味着孤雌生殖会产生多种基因组合,就会和母体基因不同。最简单的例子就是,如果母体是杂合体,那它孤雌生殖的后代是有可能是纯合体。只有当完成第二次减数分裂后,极体-卵细胞融合,原本分配给卵细胞和极体的基因,又重新组合在一起,这样的基因组合和卵原细胞一样,就会形成母体的“完美克隆体”,也就说基因和母体完全一样。人类可以孤雌生殖吗?孤雌生殖,雌性不需要另一半的努力,就能实现生育自由,因此也有人笑称,这是雄性终结的开始!从过去的报道来看,脊椎动物的孤雌生殖似乎越来越普遍,蟒蛇、火鸡、加州秃鹰都发生过,2023年还曾报道过鳄鱼孤雌生殖产下14个小鳄鱼的案例,这也算是鳄鱼孤雌生殖的首例。那人类有可能发生孤雌生殖吗?科学家认为,在自然情况下,人体发生孤雌生殖的概率是“十亿分之一”!人体中,卵子自发性在卵巢中发育成胚胎完全是有可能的,这在1955年就已经发现了。遗传学家HelenSpurwa认为在没有授精的情况下,卵子可以自发形成胚胎。但这样的胚胎发育容易出现问题,它能分裂产生一些皮肤和神经细胞,但不能产生类似骨骼肌这样的细胞。由于“先天的发育障碍”,导致胚胎发育出现很多问题,最终演变成“畸形”胚胎,无法顺利生产,也无法存活,有时也被称为“畸胎瘤”。但也有意外,1955年,《新科学家》报道了一例人体“孤雌生殖”的真实案例,主角是一个男孩。在检查中,医生发现男孩的个别类型的细胞内只有母亲没有父亲基因,而其它细胞里既有母亲又有父亲基因。科学家猜测,这是因为早期卵子未受精就开始自我分裂,将卵子单倍体的基因成倍增加形成双倍体,而且还进行了一段时间的生长发育。只是在后来发育遇到了障碍,为了能顺利发育,卵子不得不和精子结合,但这种结合并不是完全融合,未受精的卵子组织只用其部分细胞和精子授精。受精部分的细胞在后期接管了整个胚胎生长发育,才最终让个体顺利出生,但是男孩还是存在有面部特征不对称、学习困难等先天疾病。严格来说,男孩并不是真正意义上的孤雌生殖人类。他的孤雌生殖并不彻底,只有部分细胞是由孤雌生殖产生的,而大部分是受精的细胞胚胎发育,因此这个男孩只能称之为人类部分孤雌生殖的案例,又或者可以用现在的嵌合体来形容。至此案例之后,类似的孤雌生殖案例报道有几十起,但是,这些案例没有经过医学验证。最后总的来说,孤雌生殖,自然状态下,在人类身上发生的概率几乎为零。不是说人类的技术不能实现(韩国科学家有通过孤雌生殖产生人类胚胎),最主要的原因是,孤雌生殖,本质上对人类的发展是不利的。因为基因太单一,只有母亲一套遗传基因,如果环境对其不利,最后的结果就是全族覆灭!但是,两性生殖,接受的是两套不同的基因,就有了更多的可能,也有利于基因突变的传播。无论这种突变是好是坏,基因多样性的特点,在面对不利环境时,总有一方是能适应环境的,因此也更有优势!...PC版:https://www.cnbeta.com.tw/articles/soft/1418653.htm手机版:https://m.cnbeta.com.tw/view/1418653.htm

相关推荐

封面图片

为什么许多试管婴儿的胚胎无法正常发育?

为什么许多试管婴儿的胚胎无法正常发育?通过对近千个胚胎进行基因测试,科学家们对人类体外受精后胚胎的命运进行了最详细的分析。在所研究的胚胎中,近一半的胚胎由于早期发育过程中的遗传错误而导致发育停滞--这一启示性的见解表明,随着生育治疗过程的改变,可能会有更多的试管婴儿顺利出生。发育停滞胚胎数据的独特组合也为人们揭示了自然受孕的最初阶段的神秘面纱。作者、约翰-霍普金斯大学生物学助理教授拉吉夫-麦考伊(RajivMcCoy)说:"我们认为这也发生在自然受孕过程中,这就是为什么平均需要几个月或更长时间才能怀孕的原因。令人非常惊讶的是,这些胚胎停育现象中的大多数并非来自卵子形成过程中的错误,而是来自受精后细胞分裂过程中发生的错误。这些错误并非来自卵子这一事实表明,也许可以通过改变体外受精的方式来减轻这些错误。"这项研究最近发表在《基因组医学》杂志上。约翰霍普金斯大学和英国伦敦妇女诊所的研究人员比较了受精后几天内未能发育的试管婴儿胚胎和存活下来的胚胎,寻找基因差异。麦考伊说:"基因检测通常只针对存活下来的试管婴儿胚胎,以决定将哪个胚胎移植到子宫中。但从生物学的角度来看,如果我们想了解是什么让这些胚胎存活下来,那么我们也必须对所有其他胚胎进行检测"。这些发现揭示了一些胚胎是如何在母体遗传物质预载到卵子中控制细胞分裂时开始正常生长的,而当胚胎的基因接管时,胚胎的生长就会出现动摇和停滞。一种常见的异常细胞分裂的延时剪辑,胚胎从单细胞的原生体直接分裂成三个(而不是两个)细胞。新研究表明,这种异常分裂与染色体异常和胚胎停育密切相关。图片来源:克里斯蒂安-奥托里尼人类细胞通常接收46条染色体,父母各23条。研究小组发现,不能存活的胚胎一开始具有46条染色体组,但随着细胞分裂,染色体数目会发生变化。麦考伊说:"一开始是否有额外的染色体缺失并不重要,因为母体机器正在控制一切。当胚胎的基因组开启时,就是事情出错的时候"。人类胚胎在早期发育过程中染色体的增减率异常高,被称为非整倍体。数十年来,科学家们通过对试管婴儿胚胎进行筛查,对非整倍体进行了研究,并清楚地认识到这些错误是人类妊娠失败的原因。由于非整倍体在许多其他物种中都很罕见,这些发现有助于解释为什么人类的妊娠损失和流产如此普遍。非整倍体是人类每一代都在进行的一种极强的自然选择的例子。这可能只是人类生殖和发育的一个特征,但它对试管婴儿有影响。因此,从长远来看,我们希望能改进基因检测,改善试管婴儿的结果。研究人员计划对被捕胚胎的特定细胞进行更多测试,以追溯染色体的起源,了解异常细胞分裂是否与母体或父体遗传有关。他们还希望更好地了解胚胎培养皿中的化学成分等因素是否能提高胚胎存活的机会。合著者、伦敦妇女诊所生殖医学顾问迈克尔-萨默斯(MichaelSummers)说:"通过进一步了解导致胚胎停育的机制,我们有可能纠正很多此类问题。问题可能是常用培养基的化学成分无法让所有胚胎生长,细胞分裂异常是由于卵子和早期胚胎受到压力,导致与染色体异常有关的异常分裂。"...PC版:https://www.cnbeta.com.tw/articles/soft/1388375.htm手机版:https://m.cnbeta.com.tw/view/1388375.htm

封面图片

生命的第一步:“点击重启” 启动新胚胎

生命的第一步:“点击重启”启动新胚胎科学家们发现,名为OBOX1-8的基因能激活胚胎自身的基因程序,从而发现了受精卵细胞如何"重置",使新胚胎得以发育。在小鼠身上观察到的这一突破有助于理解胚胎基因组激活的过程,并可能对胚胎干细胞重编程产生影响。"为了让胚胎发育,卵母细胞/卵子必须失去自己的身份,并通过制造新的东西来实现这一目标,"舒尔茨说。"我们现在知道了这种转变是如何发生的第一步"。为了实现重置或唤醒过程,胚胎需要开始将DNA中的基因转录为信使RNA,然后再翻译成蛋白质。第一批转录的基因将激活其他基因,执行程序,使胚胎发育成完整的小鼠(或人类)。直到现在,人们还不知道这些首批主调控基因的身份,这让研究人员困惑了很久。RNA聚合酶II(PolII)是将DNA转录为RNA的酶。但PolII本身是一种哑酶,舒尔茨说,这一过程需要其他基因(称为转录因子)来指导PolII,使其在正确的时间转录"正确的"基因。本世纪初,舒尔茨敏锐地发现,在卵细胞中休眠的母体信使核糖核酸(maternalmessengerRNAs)中就有这些首批转录因子。休眠的母体信使RNA是卵细胞特有的,因为新合成的信使RNA不会像体细胞那样被翻译。当卵母细胞成熟成为卵子时,这些休眠的母体信使RNA会被翻译成蛋白质,然后执行其功能。舒尔茨意识到,启动子代基因组激活的信息将来自母体的休眠信使核糖核酸,它将编码一个主转录因子。OBOX1-8被确定为候选因子舒尔茨的实验室与宾夕法尼亚大学的保拉-斯坦因(PaulaStein,舒尔茨实验室的资深成员,现就职于美国国家环境健康科学研究所)合作,确定了一个名为OBOX的庞大基因家族可能是候选基因。该家族由8个基因(OBOX1-8)组成。根据它们在早期发育过程中的表达谱,OBOX1、2、3、4、5和7可能是候选基因。他们开始与北京清华大学的谢伟合作,缩小候选范围。谢伟的团队利用实验室小鼠,敲除了所有可能的候选基因,然后系统地恢复了OBOX基因,确定了哪些基因对子代基因组的激活至关重要。如果没有这些基因,胚胎发育就会在两到四细胞阶段停止。最有趣也是最出乎意料的是,这些OBOX基因的功能具有高度冗余性:敲除一个基因可以被另一个基因取代。舒尔茨说,这种冗余可能是由于过渡如此重要而进化出来的。此外,研究人员还发现,OBOX基因的功能是促进PolII定位到正确的基因,从而开始激活子代基因组。在小鼠体内,基因组激活发生在两细胞阶段。在人类胚胎中,基因组激活发生在胚胎经过几轮分裂形成八个细胞之后。一个悬而未决的问题是,这一过程在不同物种间有多大的一致性,即类似OBOX的基因是否参与了人类的基因组激活?这项工作还对了解胚胎干细胞如何重新编程,使其能够发育成身体的任何组织具有意义。...PC版:https://www.cnbeta.com.tw/articles/soft/1373549.htm手机版:https://m.cnbeta.com.tw/view/1373549.htm

封面图片

科学家从干细胞中创造出类似人类胚胎的模型

科学家从干细胞中创造出类似人类胚胎的模型但这一关键时期在很大程度上仍未被科学家和医生研究,因为胚胎仍然太小,无法在活体患者身上观察。接受试管婴儿的病人的捐赠可用于研究,但供应有限,而且要遵守严格的伦理法规。现在,剑桥大学和加州理工学院的科学家们已经开发出了新的人类胚胎3D模型,该模型由干细胞培育而成,以一种可以在实验室中轻松研究的方式模拟了第9天和第14天之间的发育。这个窗口以前只能在动物细胞中研究。图为由干细胞培育出的人类胚胎样模型在发育的第四天。该研究的主要作者MagdalenaZernicka-Goetz教授说:"我们的人类胚胎样模型完全由人类干细胞创建,使我们能够在通常情况下由于小胚胎植入母亲的子宫而被隐藏的阶段看到发育结构。这一令人兴奋的发展使我们能够在一个模型系统中操纵基因以了解它们的发育作用。这将让我们测试特定因素的功能,这在自然胚胎中很难做到"。这些模型包含制造人类胚胎所需的大部分细胞,包括最终将形成自己的精子或卵子的生殖细胞的前体。它们还包含支持胚胎的细胞,包括那些继续形成胎盘、卵黄囊和羊膜囊的细胞。然而,出于道德原因,这些模型被制成缺少大脑和心脏跳动的细胞,因此它们不能发育到14天以上。这是为了遵守目前在实验室中培养人类胚胎的法律限制。这一里程碑是Zernicka-Goetz和她的团队十年来逐步改进小鼠胚胎模型的工作成果。其他研究人员,包括来自以色列魏茨曼科学研究所的一个团队,也将小鼠胚胎模型推到了心脏细胞跳动的程度。多个团队在这一领域的工作不断增加,可能有助于提高寻求受孕的夫妇的存活率,更好地治疗遗传疾病,以及用于移植的实验室培育的器官。这项新研究发表在《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1367837.htm手机版:https://m.cnbeta.com.tw/view/1367837.htm

封面图片

人类胚胎模型可以帮助更道德地打开早期发育的"黑匣子"

人类胚胎模型可以帮助更道德地打开早期发育的"黑匣子"受精后8到10天,卵子通过输卵管,钻入子宫壁,标志着怀孕的开始(医学上)。植入后,胚胎继续生长发育。此时,主要器官和身体系统正在形成,发育中的胚胎很容易出现先天缺陷。出于伦理和技术原因,研究胚胎以深入了解其复杂的发育过程是非常困难的。不过,以色列魏兹曼科学研究院的研究人员可能已经找到了一种方法。这项研究的通讯作者雅各布-汉纳(JacobHanna)说:"戏剧性的时刻在第一个月;怀孕的其余八个月主要是大量的生长。但第一个月在很大程度上仍是一个黑箱。我们的干细胞衍生人类胚胎模型为窥探这个黑箱提供了一种合乎道德且容易获得的方法。它密切模仿了真实人类胚胎的发育过程,尤其是其精致细腻的结构的出现。"研究人员借鉴了之前仅用干细胞制作合成小鼠胚胎模型的经验。与之前的研究一样,他们从多能干细胞开始,这种干细胞有能力分化成许多细胞类型,但不是所有。但研究人员对多能干细胞进行了重新编程,使其恢复到更早的状态,即所谓的天真状态,使其能够分化成任何类型的细胞。他们将幼稚多能干细胞分为三组。准备发育成胚胎的细胞保持原样。另外两组中的细胞只用化学物质处理--即基因未修改--开启某些基因,目的是使它们分化成维持胚胎所需的三种组织类型之一。混合后不久,细胞就聚集在一起,其中约1%的细胞自我组织成完整的胚胎状结构。汉娜说:"根据定义,胚胎是自我驱动的;我们不需要告诉它该做什么--我们只需释放其内部编码的潜能。一开始就混合正确类型的细胞至关重要,而这些细胞只能来自没有发育限制的天真干细胞。一旦做到这一点,胚胎样模型本身就会说,'开始!'"。胚胎样结构在子宫外正常发育了8天,达到了相当于人类胚胎发育第14天的发育阶段,也就是自然胚胎获得结构、开始发育身体器官的阶段。研究人员发现,他们的胚胎模型在结构上与旧教科书中的天然人类胚胎相似。他们甚至还观察到了制造人绒毛膜促性腺激素(hCG)的细胞,这种激素用于妊娠测试,而且非常活跃。将这些细胞的分泌物用于家庭妊娠测试,结果呈阳性。"许多妊娠失败都发生在最初几周,往往是在妇女知道自己怀孕之前。这也是许多出生缺陷的起因,尽管它们往往在很晚的时候才被发现。我们的模型可以用来揭示确保这一早期阶段正常发育的生化和机械信号,以及这种发育可能出错的方式。他们的研究已经为未来的研究开辟了一个新方向。研究人员发现,如果胚胎在第三天(相当于自然胚胎发育的第10天)没有被胎盘形成细胞正确包裹,其内部结构就无法正常发育。"胚胎不是一成不变的,"汉娜说。"它必须在正确的组织中拥有正确的细胞,而且必须能够不断进步--这是关于存在和成为。我们的完整胚胎模型将帮助研究人员解决决定胚胎正常生长的最基本问题。"研究人员说,他们的胚胎模型可以揭示出生缺陷和不孕症类型的原因,还能带来培育移植组织和器官的新技术。它还可以提供一种不需要活胚胎的实验方法,例如确定药物对发育的影响。这项研究发表在《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1382241.htm手机版:https://m.cnbeta.com.tw/view/1382241.htm

封面图片

日本在太空培育出老鼠胚胎 人类未来有望在太空繁殖

日本在太空培育出老鼠胚胎人类未来有望在太空繁殖日本科研人员成功在国际空间站培育出能正常发育的老鼠胚胎,为人类未来在太空繁衍后代带来希望。法新社上星期天(10月29日)报道,日本山梨大学先进生物科技中心教授若山照彦,以及日本宇宙航空研究开发机构(JapanAerospaceExplorationAgency)团队等研究人员,于2021年8月透过火箭将冷冻老鼠胚胎运至国际空间站。太空人使用特别设计的设备解冻了这些处于早期阶段的胚胎,并在空间站内培育了四天。研究员说:“这些在微重力环境下培育的胚胎正常发育到囊胚期(blastocyst),囊胚细胞发育成胎儿和胎盘。”据悉,在胚胎发育早期,受精卵先发育成囊胚,再由囊胚发育成外、中、内三个胚层。外胚层最终发育成机体的神经、皮肤等组织,中胚层发育成心脏、血液、肌肉和骨骼等组织,内胚层则发育成肺、肝、胰腺和肠等内脏器官。外、中、内三胚层的形成过程直接影响胎鼠能否顺利从母体诞生。这项研究已于上星期六(28日)刊登《iScience》科学杂志上。研究指出,这项实验已“清楚证明重力(对培育胚胎)没有显著影响”。科研人员在对送回地球实验室的囊胚样本进行分析后,也未发现去氧核糖核酸(DNA)和基因的状态有任何重大变化。山梨大学及日本国家研究机构理化学研究所(Riken)发联合声明说,这是“史上首个显示哺乳动物可能可以在太空繁殖的研究”,也是全球第一个完全在国际空间站微重力环境下培育哺乳动物早期胚胎的实验。声明还说,未来还须将在空间站培育的囊胚胚胎植入老鼠体内,以进一步检视老鼠能否生殖,确保囊胚是正常的。这些研究项目对未来的太空探索及殖民任务或具有重要意义。2023年10月30日3:56PM

封面图片

一项新研究揭示了人类为何如此难以生孩子

一项新研究揭示了人类为何如此难以生孩子巴斯大学米尔纳进化中心的一名研究人员的一项新研究表明,“自私的染色体”是大多数人类胚胎早期死亡的原因。这项研究发表在《PLoSBiology》上,其解释了为什么人类胚胎经常不能存活而鱼类胚胎却很好。这一发现也对不孕不育症的治疗产生了影响。资料图在一个女人甚至意识到她怀孕之前,超一半的受精卵经历了非常早的死亡。可悲的是,在几周后,那些存活下来成为公认的怀孕的受精卵中有许多突然自行流产了。这种流产的频率令人震惊且令人感到非常痛苦。米尔纳进化中心的主任LaurenceHurst教授研究了经过数千年的进化人类仍很难生孩子的原因。许多早期死亡的直接原因是,胚胎的染色体数量不对。受精卵应该有46条染色体,23条来自卵子中的妈妈,23条来自精子中的爸爸。“非常多的胚胎有错误的染色体数量,通常是45或47,而且几乎所有这些都在子宫内死亡。即使是像唐氏综合症这样有三个21号染色体拷贝的情况,约80%的人也很遗憾地不能活到最后,”Hurst教授说道。那么为什么一条染色体的获得或丢失会如此普遍,而它也是如此致命的?Hurst归纳了一些线索。首先,当胚胎有错误的染色体数目时,通常是由于在母亲体内制造卵子时发生的错误而不是在父亲体内制造精子时发生的错误。事实上,超70%的卵子都有错误的染色体数量。其次,这些错误发生在制造卵子的两个步骤中的第一步。之前已经注意到,这第一步很容易受到干扰过程的突变的影响,这样的突变可以自私地潜入50%以上的卵子,迫使伴侣染色体被破坏,这一过程被称为中心体驱动。这在小鼠中得到了很好的研究,在人类中也被长期怀疑,并且以前被认为跟染色体丢失或增加的问题有某种关系。Hurst注意到的是,在哺乳动物中,一个试图这样做但失败的自私突变导致一个卵子有一条过多或一条过少的染色体仍可以在进化上有更好的发展。在哺乳动物中,由于母亲不断地喂养子宫中发育的胎儿,所以从进化上来说,由有问题的卵子发育的胚胎更早地失去,而不是怀胎到足月。这意味着幸存的后代比一般人做得更好。Hurst解说道:“这个制造卵子的第一步是很奇怪的。一对染色体中的一条将进入卵子中,另一条将被破坏。但如果一条染色体‘知道’它将被破坏,那么可以说它就没有什么损失。最近引人注目的分子证据发现,当一些染色体在这第一步中检测到它们即将被破坏时,它们会改变它们的行为以防止被破坏,有可能导致染色体丢失或增加及胚胎的死亡。了不起的是,如果胚胎的死亡对该母亲的其他后代有利,因为自私的染色体往往会在得到额外食物的兄弟姐妹中,突变是更好的,因为它杀死了胚胎。””鱼类和两栖动物没有这个问题,”Hurst说道,“在超2000个鱼类胚胎中没有发现一个来自母亲的染色体错误。鸟类的比率也非常低,约为哺乳动物的1/25。”Hurst指出,这和预测的一样,因为雏鸟在孵化后有一些竞争,但在孵化前没有。相比之下,染色体丢失或增加是每个被研究的哺...PC版:https://www.cnbeta.com/articles/soft/1309709.htm手机版:https://m.cnbeta.com/view/1309709.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人