会发光的水母蛋白质为更好提取指纹的方法指明了方向

会发光的水母蛋白质为更好提取指纹的方法指明了方向通过喷雾提取的指纹,排列整齐,看起来(有点像)水母现在,英国巴斯大学和上海师范大学的科学家们提出了一种替代方案,即新型无毒水溶性喷雾剂。实际上,它有两个版本,包含两种不同的染料,即LFP-黄色和LFP-红色。用户可根据打印表面的颜色选择其中一种,这样打印出来的效果就能在背景中清晰呈现。使用LFP-黄色染料(上图)和LFP-红色染料提取的指纹样本-LFP代表"潜伏指纹"这两种染料都来自水母产生的一种名为绿色荧光蛋白(GFP)的物质。这种蛋白质已被广泛应用于科学研究中,用于可视化生物过程,而不会影响这些过程。同样,它也不会影响指纹中可能存在的DNA。喷洒到表面后,带正电荷的染料分子就会与指纹汗液或油脂中带负电荷的脂肪酸或氨基酸分子结合。然后,染料分子就会沿着指纹上所有明显的轮纹和脊纹"锁定到位"。在蓝光照射下,这些分子会在不超过10秒钟的时间内发出黄色或红色荧光。然后,就可以用智能手机摄像头记录下它们的图像,以供日后参考。喷剂本身是由非常细小的液滴组成的,因此不会因溅到指纹上而对指纹造成物理损伤。它还能有效清除砖块等粗糙表面上的指纹,而使用传统技术很难做到这一点。更重要的是,这些指纹可以在犯罪嫌疑人留下指纹后一周内被清除。主要研究人员、上海师范大学黄楚森教授说:"我们希望这项技术能够真正改善犯罪现场的证据检测。我们现在正与一些公司合作,让我们的染料上市销售。进一步的工作仍在进行中。"最近发表在《美国化学学会杂志》上的一篇论文介绍了这项研究。...PC版:https://www.cnbeta.com.tw/articles/soft/1421315.htm手机版:https://m.cnbeta.com.tw/view/1421315.htm

相关推荐

封面图片

研究人员发现了一种控制梳状水母独特运动的蛋白质

研究人员发现了一种控制梳状水母独特运动的蛋白质栉水母,从海洋表面到海洋深处都可以找到。这些海洋捕食者的特征是沿着它们的侧面有八条明亮的、彩虹色的波纹带。这些带子是由一排排梳子一样排列的薄片组成的,上面有数以万计的被称为纤毛的微小头发状结构。梳状水母通过这些梳状板的跳动而在水中推进。纤毛的同步波浪式运动使周围的光线散射开来,从而形成一道色彩斑斓的彩虹。作者KazuoInaba教授说:"纤毛被捆绑在一起的结构被称为隔层膜(CL)。这些薄片被认为对纤毛的定向和同步运动很重要。在以前的一项研究中,我们发现了一种叫做CTENO64的蛋白质,它是纤毛定向所需要的,但它只在CL的一个部分被发现。我们仍然没有完全理解梳状板的整体结构。"梳状板被分为两个不同的区间:近端和远端。有了CTENO64被发现在近端区间的知识,为了更好地了解CL的分子组成,研究人员检查了整个梳状板上发现的整个蛋白质。他们确定了那些既丰富又只在梳状板细胞中显示基因表达的蛋白质。搜索工作阐明了21种蛋白质,包括一种新检测到的名为CTENO189的蛋白质,它存在于CL的一个与CTENO64不同的区域。"当我们敲除这个新发现的蛋白的基因时,CL在梳状板的远端区域根本没有出现,"Inaba教授解释说。"对结构的仔细观察表明,虽然梳状板形成正常,但纤毛处于混乱状态,正常的波状运动模式消失了。"这些研究共同表明,CL的两个不同区域在控制梳状果冻的运动方面发挥着不同的作用。近端CL提供了一个强大的建筑基础,而远端CL确保纤毛之间实现弹性连接。在CL中发现的这些蛋白质共同维持着涟漪状的运动,推动着梳状水母在其海洋环境中运动。...PC版:https://www.cnbeta.com.tw/articles/soft/1334459.htm手机版:https://m.cnbeta.com.tw/view/1334459.htm

封面图片

破解细胞密码:蛋白质折叠与疾病疗法的新见解

破解细胞密码:蛋白质折叠与疾病疗法的新见解马萨诸塞大学阿默斯特分校(UMassAmherst)的一项突破性研究破解了附着在蛋白质上的糖是如何引导蛋白质正确折叠的,为治疗由蛋白质错误折叠引起的疾病提供了可能。研究小组的方法揭示了一种特定酶在折叠过程中发挥的关键作用。这种蛋白质(红色)被糖(蓝色和绿色)糖苷化。资料来源:马萨诸塞大学阿默斯特分校揭开丝氨酸的神秘面纱这项发表在《分子细胞》(MolecularCell)杂志上的研究探讨了与多种疾病有关的丝氨酸蛋白家族成员。这项研究首次探讨了附着在丝蛋白上的碳水化合物的位置和组成如何确保它们正确折叠。从肺气肿、囊性纤维化到阿尔茨海默病等严重疾病,都可能因细胞对蛋白质折叠的监督出错而导致。找出负责高保真折叠和质量控制的糖蛋白代码,可能是针对多种疾病的药物疗法的一种很有前景的方法。科学家们曾一度认为,DNA是支配生命的唯一代码,一切都受DNA的四个构建模块--A、C、G和T--如何组合和重组的支配。但近几十年来,人们逐渐认识到还有其他代码在起作用,尤其是在人体细胞的蛋白质工厂--内质网(ER)--这个膜封闭的腔室中,蛋白质折叠的起始点就是内质网。约有7000种不同的蛋白质在ER中成熟,占人体所有蛋白质的三分之一。这些分泌蛋白统称为"分泌体"--负责人体从酶到免疫和消化系统的一切功能,必须正确形成才能使人体正常运作。蛋白伴侣在蛋白质折叠中的作用被称为"伴侣"的特殊分子有助于将蛋白质折叠成最终形状。它们还能帮助识别折叠不完全正确的蛋白质,为其重新折叠提供额外的帮助,或者,如果它们折叠错误得无可救药,则在它们造成损害之前将其锁定并加以破坏。然而,作为细胞质量控制部门的一部分,伴侣系统本身有时也会失效,一旦失效,就会给我们的健康带来灾难性的后果。发现ER中基于碳水化合物的伴侣系统要归功于麻省大学阿默斯特分校生物化学和分子生物学教授、本文资深作者之一丹尼尔-希伯特(DanielHebert)在20世纪90年代作为博士后开展的开创性工作。"我们现在拥有的工具,包括阿默斯特大学应用生命科学研究所的糖蛋白组学和质谱分析技术,让我们能够回答25年来一直悬而未决的问题,"Hebert说。"这篇新论文的第一作者凯文-盖伊(KevinGuay)所做的事情是我刚开始工作时梦寐以求的。"在这些悬而未决的问题中,最迫切的问题是:伴侣如何知道7000种不同的类似折纸的蛋白质何时正确折叠?理解蛋白质质量控制的创新我们现在知道,答案涉及一种名为UGGT的"ER守门员"酶,以及大量与蛋白质氨基酸序列中特定位点相连的碳水化合物标签,即N-糖。盖伊正在完成马萨诸塞大学阿默斯特分校分子细胞生物学项目的博士学业,他重点研究了两种特殊的哺乳动物蛋白质,即α-1抗胰蛋白酶和抗凝血酶。他和他的合著者利用CRISPR编辑细胞,修改了ER伴侣网络,以确定N-聚糖的存在和位置如何影响蛋白质折叠。他们观察了疾病变体被ER守门员UGGT识别的过程,为了更仔细地观察,他们利用质谱技术开发了一系列创新的糖蛋白组学技术,以了解蛋白质表面的聚糖发生了什么变化。他们发现,UGGT酶会在特定位置用糖"标记"折叠错误的蛋白质。这是一种代码,然后伴侣可以通过读取这种代码来确定折叠过程中哪里出错以及如何修复。影响和未来方向盖伊说:"这是我们第一次能够看到UGGT在人体细胞制造的蛋白质上添加糖以进行质量控制的位置。我们现在有了一个平台,可以扩展我们对糖标签如何将蛋白质送入进一步质量控制步骤的理解,我们的工作表明,UGGT是靶向药物治疗研究的一个很有前景的途径。""这项研究最令人兴奋的地方在于",马萨诸塞大学阿默斯特分校生物化学与分子生物学杰出教授、论文共同作者之一莱拉-吉拉什(LilaGierasch)说,"我们发现聚糖在ER中充当了蛋白质折叠的代码。UGGT所扮演角色的发现为未来了解并最终治疗由错误折叠蛋白质导致的数百种疾病打开了一扇大门"。参考文献《ER伴侣使用蛋白质折叠和质量控制糖代码》,作者:KevinP.Guay、HaipingKe、NathanP.Canniff、GracieT.George、StephenJ.Eyles、MalaiyalamMariappan、JosephN.Contessa、AnneGershenson、LilaM.Gierasch和DanielN.Hebert,2023年12月4日,《分子细胞》。DOI:10.1016/j.molcel.2023.11.006编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403363.htm手机版:https://m.cnbeta.com.tw/view/1403363.htm

封面图片

PicoRuler:基于蛋白质的分子标尺革新细胞成像技术

PicoRuler:基于蛋白质的分子标尺革新细胞成像技术PicoRuler:基于蛋白质的分子标尺可以在现实条件下测试最新超分辨率显微镜方法在亚10纳米范围内对生物分子的光学分辨率。图片来源:GertiBeliu,DALL-E3/维尔茨堡大学由德国巴伐利亚州维尔茨堡朱利叶斯-马克西米利安大学(JMU)鲁道夫-维尔乔中心(RudolfVirchowCentre-CenterforIntegrativeandTranslationalBioimaging)的GertiBeliu博士和MarkusSauer教授领导的科学家团队现在提供了一个转折点。他们在《先进材料》杂志上发表了新型生物兼容分子尺PicoRulers(基于蛋白质的成像校准光学尺)。研究小组利用基因代码扩展和点击化学,成功构建了这些定制的分子尺。它们可在荧光显微镜中用作精确的生物分子参考结构。PicoRulers基于由三部分组成的蛋白质PCNA(增殖细胞核抗原),它在DNA复制和修复中发挥着核心作用。通过在精确定位的位置上引入非天然氨基酸,这种蛋白质已被改性,使荧光染料或其他分子能够以最小的连接误差特异性地点击到它上面。这样,研究人员就能在精确定义的细胞生物分子上以前所未有的精度测试最新超分辨率显微镜方法的分辨率。MarkusSauer热情洋溢地表示:"能够在亚10纳米水平上解析真实的生物结构,标志着生物成像技术进入了一个新时代。与以前使用的人造大分子相比,我们的PicoRuler不仅具有生物兼容性的特点。它们还能在现实条件下实现无与伦比的测试分辨率精度。""这项技术的应用范围远远超出了传统显微镜的界限。"GertiBeliu解释说:"我们的PicoRulers不仅是更精确测量的工具,还为更深入、更详细地研究细胞内发生的复杂过程打开了大门。"从长远来看,PicoRulers的进一步发展可能会改变具有分子分辨率的生物和医学成像。PicoRuler首次实现了在生物样本上验证和提高新的超分辨率显微镜方法的分辨率潜力。这使它们成为未来阐明细胞中生物分子的分子组织和相互作用的宝贵工具。...PC版:https://www.cnbeta.com.tw/articles/soft/1401693.htm手机版:https://m.cnbeta.com.tw/view/1401693.htm

封面图片

科学家发现制作良好植物性蛋白质的“终极方法”

科学家发现制作良好植物性蛋白质的“终极方法”人们普遍认为,减少肉类和奶酪的消费,转而食用植物食品是有益的。然而,当我们在超市的冷藏区面对传统的动物性食品和环保的替代蛋白质之间做出选择时,我们并不总是做出具有环保意识的选择。尽管现在很多植物性食品都有很好的风味,但往往缺乏"正确"的口感。此外,一些植物蛋白替代品在加工过程中会消耗资源,因此并不具有可持续性。但是,如果有可能制造出可持续的、富含蛋白质且口感适宜的食品呢?哥本哈根大学的最新研究为这一设想提供了动力。关键是什么?蓝绿藻。这种蓝绿藻并不是夏天在海中成为毒汤的那种臭名昭著的蓝绿藻,而是无毒的蓝绿藻。在玻璃管中培养微藻的封闭式光生物反应器。图片来源:IGV生物技术公司,CCBY-SA3.0DEED"蓝绿藻是一种活的生物体,我们已经能够让它们产生一种它们无法自然产生的蛋白质。尤其令人兴奋的是,这种蛋白质是以纤维状形成的,有点像肉类纤维。"食品科学系的PoulErikJensen教授说:"我们有可能将这些纤维用于植物性肉类、奶酪或其他一些我们追求特殊口感的新型食品中。"在一项新的研究中,詹森和哥本哈根大学等机构的研究人员表明,通过将外来基因插入蓝藻,蓝藻可以作为新蛋白质的宿主生物。在蓝藻体内,这种蛋白质以细线或纳米纤维的形式组织起来。最少的加工-最大的可持续性全世界的科学家都把蓝藻和其他微藻作为潜在的替代食品。部分原因是蓝藻和其他微藻与植物一样,通过光合作用生长,部分原因是它们本身含有大量蛋白质和有益健康的多不饱和脂肪酸。"能够操纵一个活的生物体生产出一种新型蛋白质,并将其自身组织成线,这种程度是很少见的,而且非常有前途。此外,由于蓝藻依靠水、大气中的二氧化碳和太阳光生存,因此它是一种很容易持续生长的生物。这项成果赋予蓝藻作为可持续原料的更大潜力,"专门从事植物性食品和植物生物化学研究的普尔-埃里克-延森(PoulErikJensen)热情洋溢地说道。世界各地的许多研究人员都在努力为植物性食品(如豌豆和大豆)开发富含蛋白质的质地增强剂。然而,这需要大量的加工过程,因为需要将种子磨碎并从中提取蛋白质,以获得足够高的蛋白质浓度。"如果我们能在食品中利用整个蓝藻,而不仅仅是蛋白质纤维,就能最大限度地减少所需的加工量。"詹森说:"在食品研究中,我们力求避免过多的加工,因为这不仅会影响食材的营养价值,还会消耗大量能源。"“明天的牛”教授强调说,从蓝藻开始生产蛋白质链还需要相当长的时间。首先,研究人员需要弄清楚如何优化蓝藻蛋白质纤维的生产。但詹森对此持乐观态度:"我们需要对这些生物进行改良,以生产更多的蛋白质纤维,同时'劫持'蓝藻为我们工作。这有点像我们劫持奶牛为我们生产大量牛奶。只不过在这里,我们避免了任何有关动物福利的伦理考虑。我们不会在明天就达到目标,因为我们必须学会解决生物体内的一些新陈代谢难题。但我们已经在这个过程中了,我相信我们一定能成功,如果是这样,这就是制造蛋白质的终极方法。"一些国家已经开始工业化种植螺旋藻等蓝藻,主要用于健康食品。生产通常在露天下的“赛道池塘”中进行,或在光生物反应器室中进行,生物在玻璃管中生长。詹森认为,丹麦是建立"微藻工厂"生产加工蓝藻的理想之地。丹麦拥有具备适当技能的生物技术公司和高效的农业部门。"丹麦农业原则上可以生产蓝藻和其他微藻,就像今天生产乳制品一样。可以每天收获或挤出一部分细胞作为新鲜的生物质。通过浓缩蓝藻细胞,你可以得到一种看起来像香蒜酱,但含有蛋白质链的东西。只需极少的加工,它就可以直接加入食品中。"编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1422274.htm手机版:https://m.cnbeta.com.tw/view/1422274.htm

封面图片

"黑暗中发光"的蛋白质:病毒性疾病检测的未来?

"黑暗中发光"的蛋白质:病毒性疾病检测的未来?尽管病毒性疾病的诊断测试已经取得了重大进展,但许多高度敏感的测试仍然依赖于复杂的样品制备和结果解释方法,使它们不适合在医疗点设置或资源有限的地区使用。然而,研究人员现在在ACS中央科学杂志上揭示了一种新的、敏感的技术,它可以在短短20分钟内使用"夜光"蛋白的一步流程来分析病毒核酸。PC版:https://www.cnbeta.com.tw/articles/soft/1350641.htm手机版:https://m.cnbeta.com.tw/view/1350641.htm

封面图片

牛奶中的蛋白质能显著加快伤口愈合

牛奶中的蛋白质能显著加快伤口愈合酪蛋白是一种存在于哺乳动物乳汁中的蛋白质,在牛奶中含量最高,高达80%。近十年来,人们对酪蛋白的抗菌、抗氧化和抗炎特性及其作为高蛋白膳食补充剂的作用越来越感兴趣。在这项研究中,加州大学洛杉矶分校的研究人员将纯酪蛋白与聚己内酯(PCL)(一种生物可降解聚酯,常用作绷带材料)混合。他们使用一种名为加压回旋的技术将这种混合物纺成类似绷带的纤维,并用这种纤维制成了注入酪蛋白的绷带。如果采用电纺丝等其他更昂贵的制造方法,就不可能做到这一点。皮肤上有相同小穿孔的大鼠被分成三组。第一组的伤口使用注入酪蛋白的绷带,第二组使用普通PCL绷带,第三组不使用绷带。分别在3天、7天、10天和14天后,通过对伤口进行拍照和测量,以及在显微镜下进行检查,检查伤口的愈合进度。研究小组发现,14天后,使用注入酪蛋白绷带的伤口愈合到原来大小的5.2%,而使用普通绷带组的伤口愈合到原来大小的31.1%,未使用绷带组的伤口愈合到原来大小的45.6%。分析还证实,酪蛋白绷带是无毒的,用酪蛋白绷带处理过的伤口周围的免疫相关分子水平要低得多。该研究的第一作者朱拜尔-艾哈迈德博士(UCL机械工程)说:"天然材料具有一些奇妙的特性,其中许多特性尚不为人知。我们知道酪蛋白被认为有愈合伤口的功效,我们的研究结果表明,酪蛋白在伤口敷料等医疗应用方面有很大的潜力。要确保酪蛋白敷料对人体安全有效,还需要做更多的工作,但这些初步研究结果很有希望。"鉴于酪蛋白是脱脂奶的废品,如果它被批准用于人体治疗,将是一种相对廉价的材料,可以规模化生产。然而,天然物质的化学成分和效力可能各不相同,如果要在临床上使用酪蛋白,就必须解决这个问题,因为一致性是安全有效治疗的关键。该研究的资深作者莫汉-埃迪里辛格(MohanEdirisinghe)教授说:"迄今为止的所有研究都表明,酪蛋白具有伤口愈合的潜力,但目前我们还不清楚其中的详细原因。酪蛋白具有抗菌和消炎特性,这肯定是其中的一个原因。下一步将是了解发生的生物相互作用,然后才能考虑在人体中进行临床试验。"...PC版:https://www.cnbeta.com.tw/articles/soft/1374053.htm手机版:https://m.cnbeta.com.tw/view/1374053.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人