人类为什么没有尾巴?基因中的秘密可以解释原因

人类为什么没有尾巴?基因中的秘密可以解释原因这项研究成果最近发表在《自然》(Nature)杂志上,研究人员比较了无尾猿和人类与有尾猴的DNA,发现猿类和人类都有一个DNA插入基因,但猴子却没有。研究小组设计了一系列小鼠,以研究插入基因TBXT是否会影响小鼠的尾巴,结果发现小鼠的尾巴会受到各种影响,包括一些小鼠出生时没有尾巴。"我们的研究开始解释进化是如何去掉我们的尾巴的,这个问题从小就吸引着我,"该研究的通讯作者、纽约大学格罗斯曼医学院的杰夫-D-博克(JefD.Boeke)博士和伊泰-柳井(ItaiYanai)博士说。夏现在是哈佛大学研究员协会的初级研究员,也是麻省理工学院和哈佛大学布罗德研究所的首席研究员。过去的研究发现,有100多个基因与各种脊椎动物尾巴的发育有关,研究作者推测,尾巴的消失是由于其中一个或多个基因的DNA代码发生了变化(突变)。研究作者说,值得注意的是,新的研究发现,尾巴的差异不是来自TBXT突变,而是来自在类人猿和人类祖先的基因调控代码中插入了一个名为AluY的DNA片段。这项新发现源自遗传指令转化为蛋白质的过程,蛋白质是构成人体结构和信号的分子。DNA被"读取"并转化为RNA中的相关物质,最终转化为成熟的信使RNA(mRNA),从而产生蛋白质。在产生mRNA的一个关键步骤中,被称为内含子的"间隔"部分会被从代码中剪除,但在此之前,只需将被称为外显子的DNA部分拼接在一起(剪接),即可编码最终指令。此外,脊椎动物的基因组还进化出了另类剪接,即通过省略或增加外显子序列,一个基因可以编码不止一种蛋白质。除了剪接之外,人类基因组还在进化中加入了"无数"开关,从而变得更加复杂。"无数"开关是人们不甚了解的"暗物质"的一部分,它在不同类型的细胞中开启不同水平的基因。还有其他研究表明,人类基因组中的非基因"暗物质"(位于基因之间和内含子内)有一半由高度重复的DNA序列组成。此外,这些重复序列大多由反转座子组成,反转座子也被称为"跳跃基因"或"移动元素",它们可以四处移动,反复、随机地插入人类代码中。据信,大猩猩、黑猩猩和人类的尾巴脱落发生在大约2500万年前,当时它们正从旧世界的猴子进化而来。图片来源:《自然》杂志(2024)综合这些细节,目前这项"令人震惊"的研究发现,影响尾长的转座子插入物AluY随机出现在TBXT代码的一个内含子中。虽然它没有改变编码部分,但研究小组发现,内含子插入影响了替代剪接,这是以前从未见过的,从而导致了不同的尾长。夏发现,在人类和猿类的TBXT基因中,如果AluY插入保持在同一位置,就会产生两种形式的TBXTRNA。他们推测,其中一种形式直接导致了尾巴的缺失。纽约大学朗格尼医院系统遗传学研究所索尔和朱迪思-伯格斯坦主任博克说:"这一发现非常了不起,因为大多数人类内含子都携带重复、跳跃的DNA拷贝,但对基因表达没有任何影响,而这种特殊的AluY插入却起到了决定尾巴长度这样显而易见的作用。"作者说,包括大猩猩、黑猩猩和人类在内的灵长类动物的尾巴脱落据信发生在大约2500万年前,当时灵长类动物从旧世界猴子进化而来。在这次进化分裂之后,包括现今人类在内的猿类群体形成了较少的尾椎,从而产生了尾骨。虽然失去尾巴的原因尚不确定,但一些专家认为,它可能更适合在地面上生活,而不是在树上。研究人员说,失去尾巴带来的任何优势都可能是强大的,因为它可能是在付出代价的情况下发生的。基因通常会影响身体的多个功能,因此在某处带来优势的变化可能会对其他地方造成损害。具体来说,研究小组发现,在TBXT基因插入研究的小鼠中,神经管缺陷略有上升。系统遗传学研究所的柳井说:"未来的实验将检验这样一种理论,即在古老的进化权衡中,人类尾巴的缺失导致了神经管先天性缺陷,比如脊柱裂中涉及的那些缺陷,如今每一千个人类新生儿中就有一个会出现脊柱裂。"编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1422356.htm手机版:https://m.cnbeta.com.tw/view/1422356.htm

相关推荐

封面图片

使我们成为人类的 "被删除"的基因

使我们成为人类的"被删除"的基因根据耶鲁大学、麻省理工学院和哈佛大学布罗德研究所的研究人员领导的一项新研究,与其他灵长类动物的基因组相比,人类基因组所缺乏的东西可能对人类的发展至关重要,而在我们的进化史上所增加的东西也是如此。最近发表在《科学》杂志上的这项新发现,填补了人们对人类基因组历史性变化的认识的一个重要空白。虽然从不同物种的基因组中收集数据的能力的革命使科学家们能够确定人类基因组特有的添加物--例如对人类发展说话能力至关重要的一个基因--但人们对人类基因组中缺少的东西关注得较少。在新的研究中,研究人员利用对灵长类动物DNA的更深入的基因组研究表明,在我们的进化历史过程中,失去了大约10000比特的遗传信息--大多数小到只有几个碱基对的DNA--使人类与黑猩猩(我们最亲近的灵长类动物)有所不同。其中一些"被删除"的遗传信息与涉及神经元和认知功能的基因密切相关,包括一个与发育中的大脑中的细胞形成有关的基因。耶鲁大学的研究小组发现,这10000个缺失的DNA片段--它们存在于其他哺乳动物的基因组中--是所有人类共有的。作者说,这些基因缺失在所有人类中成为保守的事实证明了它们在进化中的重要性,表明它们赋予了一些生物优势。耶鲁大学医学院遗传学助理教授、该论文的资深作者StevenReilly说:"通常我们认为新的生物功能必须需要新的DNA片段,但是这项工作向我们表明,删除基因代码可能导致深刻的后果,使我们成为一个独特的物种。"这篇论文是发表在《科学》杂志上的几篇论文之一,该项目是一个国际研究合作项目,通过比较当今存在的240种哺乳动物的DNA序列,对哺乳动物基因组的多样性进行分类。在他们的研究中,耶鲁大学的研究小组发现,在大多数其他哺乳动物物种的基因组中发现的一些基因序列,从小鼠到鲸鱼在人类中消失了。他们说,但其中一些删除并没有破坏人类的生物学,而是创造了新的基因编码,消除了通常会关闭基因的元素。这种遗传信息的删除所产生的效果相当于从"isn't"这个词中删除了三个字符--"n't",从而创造了一个新词"is"。[这种删除]可以调整如何制造人类的指令的含义,有助于解释我们更大的大脑和复杂的认知。研究人员使用了一种叫做大规模并行报告者分析(MPRA)的技术,它可以同时筛选和测量物种之间成千上万的基因变化的功能。这些工具有能力让我们开始识别使我们作为一个物种独特的许多小分子构件。...PC版:https://www.cnbeta.com.tw/articles/soft/1358725.htm手机版:https://m.cnbeta.com.tw/view/1358725.htm

封面图片

研究人员以前所未有的分辨率准确定位人类基因组中的特定碱基对

研究人员以前所未有的分辨率准确定位人类基因组中的特定碱基对作为一个国际研究小组的成员,Gazal有了一个突破性的发现。他们已经成为第一个准确定位人类基因组中的特定碱基对的人,这些碱基对在数百万年的哺乳动物进化过程中一直没有改变过。这些碱基对在人类疾病中发挥着重要作用。他们的发现发表在《科学》杂志的Zoonomia特别版上。Gazal和他的团队分析了包括人类在内的240种哺乳动物的基因组,以前所未有的分辨率放大比较了DNA。他们能够识别出在进化过程中跨哺乳动物物种的"约束"碱基对--意味着它们总体上保持一致。出生时在这些基因上有突变的个体可能在其物种内不那么成功,或者在其他方面不可能将遗传变异传递下去。"我们能够确定基因突变在进化过程中不被容忍的地方,并且我们证明这些突变在涉及到疾病时是很重要的,"Gazal解释说。研究小组发现,人类基因组中3.3%的碱基是"显著受限"的,包括57.6%的决定氨基酸位置的编码碱基,这意味着这些碱基在数据集中的各个物种中的变异异常少。哺乳动物中最受约束的碱基对是人类疾病和复杂性状的因果关系的7倍以上,而当研究人员仅看灵长类动物中最受约束的碱基对时,其可能性是11倍以上。该数据集由Zoonomia联盟提供,根据该项目网站,该联盟"正在应用DNA测序技术的进步来了解基因组如何产生巨大的动物多样性财富"。Gazal对Zoonomia向研究人员提供这种类型的数据给予了肯定,并预计它将被人类遗传学家广泛使用。"Gazal说:"与人类遗传研究中产生的数据集相比,它是一种可以产生的廉价的资源。他的团队的发现是向前迈出的重要一步,正如Gazal所指出的:"我们不了解人类基因组的99%,所以了解哪一部分受到了进化的制约并可能对人类表型产生影响是最根本的。"他们的发现和方法可能成为进一步研究的关键工具。Gazal和他的团队的下一步是用只有灵长类的数据集重复这一过程。通过限制受试者,他们希望关注在人类进化过程中更近期出现的DNA功能。Gazal说:"我们期望这对确定人类疾病的信息更加有用。"...PC版:https://www.cnbeta.com.tw/articles/soft/1359937.htm手机版:https://m.cnbeta.com.tw/view/1359937.htm

封面图片

人与猿类如何在进化中甩掉尾巴?

人与猿类如何在进化中甩掉尾巴?猴子有尾巴,而人类和猿类的尾巴却在进化中消失了,是什么在其中起了关键作用?《自然》28日发表的一篇论文,报道了人类和猿类演化掉尾巴的遗传学基础。一种猿类特异性遗传成分,插入一个尾巴发育相关的基因,就会导致一种新的蛋白质异构体的产生。这在胚胎发育模型中会影响尾部伸长,意味着这种成分会促进人与猿类尾巴的缩短或退化。此外,科学家认为,失去尾巴的演化过程或导致人与猿类更容易出现神经管畸形。(科技日报)

封面图片

人与猿类如何在进化中“甩掉”尾巴

人与猿类如何在进化中“甩掉”尾巴 灵长类动物尾部表型的系统发育树(Ma表示百万年前)。图片来源:《自然》网站这在胚胎发育模型中会影响尾部伸长,意味着这种成分会促进人与猿类尾巴的缩短或退化。此外,科学家认为,失去尾巴的演化过程或导致人与猿类更容易出现神经管畸形。与其它灵长类物种不同,人科猿类——包括人类、黑猩猩、大猩猩、红毛猩猩和长臂猿都没有尾巴。尾巴的消失,是人类和其它猿类演化中最显著的身体变化之一。不过,演化掉尾巴的遗传学机制一直有待阐明。此次,包括美国纽约大学朗格尼健康中心科学家在内的研究团队,筛查了与脊椎动物尾巴发育相关的140个基因,寻找可能导致猿类失去尾巴的变化。他们认为,Alu元件插入猿类祖先的Tbxt基因(与有尾动物的尾巴发育相关)可能促进了尾巴的消失。为检测这种理论,他们构建了表达Tbxt基因不同形式的小鼠模型,包括两种外显子跳跃异构体(在猿类中这种异构体可通过插入Alu诱导)。团队发现,表达两种Tbxt形式的小鼠皆没有尾巴,或尾巴变短,具体取决于胚胎尾芽表达的相对数量。这是证明外显子跳跃Tbxt异构体导致尾巴消失的证据。此外,他们还发现表达外显子跳跃Tbxt异构体的小鼠可能会出现神经管畸形,这种疾病在每1000个人类新生儿中约有一例。研究人员指出,神经管畸形可能是尾巴在演化中消失的适应代价。神经管畸形到今天仍在影响人类,包括由于脊髓在子宫内发育不完全导致的脊柱裂。...PC版:https://www.cnbeta.com.tw/articles/soft/1421791.htm手机版:https://m.cnbeta.com.tw/view/1421791.htm

封面图片

新工具确定了将基因引入人类DNA的安全位置

新工具确定了将基因引入人类DNA的安全位置"我们已经创建了编辑基因组的地图,"共同通讯作者、圣裘德血液学系的YongCheng博士说。"通过这个工具,我们提供了一种新的方法来确定安全整合基因盒的地方。我们创建了一步一步的指示,所以任何人都可以按照步骤,轻松找到特定组织中的安全港湾位置。"基因疗法,即给病人一个功能失调的基因副本,在治疗一些遗传性疾病方面已初步成功。然而,该领域一直存在着安全问题,例如无意中激活了一个致癌基因,在一些病人身上引起了癌症。因此,科学家们一直在寻找基因组中的"安全港湾",或者说是可以引入一个基因而不会导致癌症或其他问题的位置。研究人员开发了一个管道,利用来自特定组织(如血细胞)的基因组和表观遗传学信息来搜索安全港湾位置。共同第一作者DewanShrestha(左),通讯作者YongCheng博士(中),以及共同作者RuiqiongWu(右)。资料来源:圣裘德儿童研究医院该工具使用来自1000个基因组计划的数据,对健康人之间高度可变的DNA序列进行比较。研究人员推断,如果一个DNA区域在健康人中经常被删除或插入,那么它很可能也能被基因疗法安全地修改。Cheng说:"我们的方法是一种以组织特异性方式确定基因组安全港的新方法。没有人从这个角度尝试过。我们的第一步是找到在健康个体中显示出高频率插入或删除的基因组位点。"如果单细胞中的DNA是一根绳子,它将有两米长。但是除了线性序列之外,DNA可以利用染色质(与DNA相关的蛋白质)循环成复杂的三维结构,以适应细胞内。就像绳子一样,DNA可以有影响其功能的循环。圣裘德的工具在搜索可访问的安全港湾站点时考虑到了这些环路和其他结构的存在。Cheng说:"我们的工具评估了DNA的三维结构,因为人类的DNA不是一个一维的线性结构,它实际上是三维的,因此,在DNA的线性序列中,DNA的部分可能离得很远,但由于三维结构的循环,在物理上可能是彼此相邻的。在这种情况下,3D的接近程度比线性距离更重要"。"安全的基因治疗需要两件事,"Cheng说。"第一,保持新基因的高度表达。第二,整合需要对正常的人类基因组产生最小的影响,这是人们进行基因治疗的一个主要关注点。"科学家们发现,放置在他们的工具所确定的安全港湾位置的基因随着时间的推移保持了它们的表达。研究人员还表明,如果他们把一个基因放到他们的工具所确定的安全港区域之一,它对附近基因的影响比经典的安全港所在位置来得小。这个工具被称为基因组学和表观遗传学指导的安全港湾映射器(GEG-SHmapper),可免费使用:https://github.com/dewshr/GEG-SH...PC版:https://www.cnbeta.com.tw/articles/soft/1335311.htm手机版:https://m.cnbeta.com.tw/view/1335311.htm

封面图片

为什么有些物种能在大规模灭绝中幸存?"全基因组复制"可能是秘密所在

为什么有些物种能在大规模灭绝中幸存?"全基因组复制"可能是秘密所在这一重大发现暗示了在整个地球动荡的历史中,在环境剧烈动荡的时期之前,其他物种中可能存在许多未被发现的共享WGD。这项研究由都柏林三一学院遗传学和微生物学学院的AoifeMcLysaght教授和AnthonyRedmond博士领导,刚刚发表在国际领先期刊《自然通讯》上。AoifeMcLysaght教授说:"全基因组复制和它听起来一模一样--这是一个迷人的进化事件,整个基因组被复制和粘贴,从而使一个物种突然拥有两倍于它之前的遗传物质。而大多数物种,像我们一样,都是'二倍体'--拥有成对的染色体,来自父母各一条--在全基因组复制之后,所有的东西都有四个副本。这实际上为突变--和进化--的发生提供了大量的原材料。最终,一个物种的基因组将通过一个被称为再二倍体化的过程恢复到典型的对。""我们知道全基因组复制和再二倍体化已经有很长一段时间了,但新的和令人兴奋的是,我们的研究已经表明,该过程的第二部分完成的时间非常重要。在这种情况下,它需要很长很长的时间--长到一些基因复制似乎是特定物种的,发生在两个物种在生命树上分道扬镳之后。""因此,在物种分离之前发生的古老的原始全基因组复制直到现在才被错过。我们相信同样的事情可能发生在许多其他物种系中,鉴于它产生了帮助物种在大规模灭绝中生存的基因组条件的可能性,这一点很重要。"从遗传学上看,鲟鱼和桨鱼显示了共享和非共享基因复制的证据,这些基因复制本身来自古老的WGD,当时间戳到刚刚超过2.5亿年前时,它就在二叠纪-三叠纪大灭绝之前,那次大灭绝消灭了所有生物的一半以上的家族。这似乎增加了理论的分量,即WGD事件为物种提供了更多的进化画布;更多的遗传物质意味着在一定时间内有更多的变异能力,这反过来又增加了一些赋予优势的机会,以应对困难或变化的环境条件。在2亿年前与三叠纪-侏罗纪大灭绝相重叠的再二倍体化时期,这些肯定是存在的。AnthonyRedmond博士说:"多个全基因组复制事件在我们古老的早期脊椎动物祖先中发生,这些事件塑造了我们现代人类基因组的面貌。这一发现令人振奋,因为除了照亮鲟鱼和桨鱼的基因组进化之外,它们还提供了一个比较快照,说明我们早期脊椎动物祖先的基因组和复制的基因在这些复制事件之后是如何进化的。"...PC版:https://www.cnbeta.com.tw/articles/soft/1365089.htm手机版:https://m.cnbeta.com.tw/view/1365089.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人