科学家利用光基处理器实现量子计算的巨大飞跃

科学家利用光基处理器实现量子计算的巨大飞跃这些新兴领域中在原子水平上运行的技术已经为药物发现和其他小规模应用带来了巨大的好处。未来,大规模量子计算机有望解决当今计算机无法解决的复杂问题。首席研究员、澳大利亚皇家墨尔本理工大学的阿尔贝托-佩鲁佐(AlbertoPeruzzo)教授说,该团队的处理器是一种光子学设备,利用光粒子携带信息,通过最大限度地减少"光损失",有助于成功实现量子计算。提高量子效率佩鲁佐是皇家墨尔本理工大学量子计算与通信技术卓越中心(ARCCentreofExcellenceforQuantumComputationandCommunicationTechnology,CQC2T)节点的负责人,他介绍说:"如果失去光线,就必须重新开始计算,其他潜在的进步包括提高了"不可破解"通信系统的数据传输能力,以及加强了环境监测和医疗保健领域的传感应用。"研究小组的可重新编程光基处理器。资料来源:皇家墨尔本理工大学WillWright研发成果研究小组在一系列实验中对光子处理器进行了重新编程,通过施加不同的电压实现了相当于2500个设备的性能。他们的研究结果和分析发表在《自然-通讯》(NatureCommunications)上。这项创新可以为量子光子处理器带来更紧凑、更可扩展的平台。论文第一作者、皇家墨尔本理工大学博士生杨洋说,这种设备"完全可控",能在降低功耗的情况下快速重新编程,而且无需制作许多定制设备:"我们通过实验在单个设备上展示了不同的物理动态。这就像有了一个开关,可以控制粒子的行为方式,这对理解量子世界和创造新的量子技术都很有用"。合作创新意大利特伦托大学的MirkoLobino教授利用一种名为铌酸锂的晶体制造了这种创新的光子装置,而美国印第安纳大学普渡大学印第安纳波利斯分校的YogeshJoglekar教授则带来了他在凝聚态物理学方面的专业知识。铌酸锂具有独特的光学和电光特性,是光学和光子学各种应用的理想材料。Lobino说:"我所在的小组参与了该设备的制造工作,这尤其具有挑战性,因为我们必须在波导顶部微型化大量电极,以实现这种程度的可重构性。"Joglekar说:"可编程光子处理器为探索这些设备中的一系列现象提供了一条新的途径,而这些现象将有可能开启技术和科学领域令人难以置信的进步。"推进量子控制与此同时,佩鲁佐的团队还开发出了一种世界首创的混合系统,它将机器学习与建模相结合,对光子处理器进行编程,帮助控制量子设备。量子计算机的控制对于确保数据处理的准确性和效率至关重要。该设备输出精度面临的最大挑战之一是噪声,它描述了量子环境中影响量子比特性能的干扰。微微子是量子计算的基本单位。佩鲁佐说:"有一系列行业正在开发全面的量子计算,但它们仍在与噪声造成的误差和低效作斗争。控制量子比特的尝试通常依赖于对什么是噪声以及造成噪声的原因的假设。我们开发了一种协议,利用机器学习来研究噪声,同时利用建模来预测系统对噪声的反应,而不是做出假设。利用量子光子处理器,这种混合方法可以帮助量子计算机更精确、更高效地运行,从而影响我们未来控制量子设备的方式。我们相信,我们的新混合方法有可能成为量子计算领域的主流控制方法。"主要作者、来自皇家墨尔本理工大学的AkramYoussry博士说,与传统的建模和控制方法相比,新开发的方法的结果显示出显著的改进,可以应用于光子处理器以外的其他量子设备。他说:"这种方法帮助我们发现并理解了我们设备的一些方面,这些方面超出了这种技术的已知物理模型。这将帮助我们在未来设计出更好的设备。"这项工作发表在《NpjQuantumInformation》上。未来展望与量子计算的潜力围绕其团队的光子设备设计和量子控制方法,可以创建量子计算方面的初创公司,他们将继续研究其应用及其"全部潜力"。量子光子学是最有前途的量子产业之一,因为光子学产业和制造基础设施已经非常完善。与其他方法相比,量子机器学习算法在某些任务中具有潜在优势,尤其是在处理大型数据集时。"想象一下,在这个世界上,计算机的工作速度比现在快几百万倍,我们可以安全地发送信息而不必担心信息被截获,我们可以在几秒钟内解决目前需要几年才能解决的问题。这不仅仅是幻想--这是由量子技术驱动的潜在未来,而像我们这样的研究正在铺平道路。"编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1422385.htm手机版:https://m.cnbeta.com.tw/view/1422385.htm

相关推荐

封面图片

量子计算的新宠:科学家成功利用激光控制由钡制成的单个量子比特

量子计算的新宠:科学家成功利用激光控制由钡制成的单个量子比特这种新方法是滑铁卢大学量子计算研究所(IQC)开发的,它使用一个小型玻璃波导来分离激光束,并将它们聚焦在相距四微米的地方,大约是一根头发宽度的四百分之一。在并行控制目标量子比特上的每束聚焦激光的精度和程度是以往研究无法比拟的。IQC和滑铁卢大学物理与天文学系教授K.RajibulIslam博士说:"我们的设计将串扰量--落在相邻离子上的光量--限制在0.01%的极小相对强度,这在量子界是数一数二的。与以往对单个离子进行敏捷控制的方法不同,基于光纤的调制器不会相互影响。""这意味着我们可以与任何离子对话而不影响其相邻离子,同时还能最大限度地控制每个离子。据我们所知,在学术界和工业界,这是具有如此高精度的最灵活的离子量子比特控制系统。"绿色激光是操纵钡离子能态的正确能量。资料来源:滑铁卢大学钡离子:量子计算的新宠钡离子是科学家们的目标,因为它们在困离子量子计算领域越来越受欢迎。钡离子具有方便的能态,可用作量子位的零级和一级,并能用可见绿光进行操纵,而其他原子类型则不同,同样的操纵需要更高能量的紫外光。这样,研究人员就可以使用紫外线波长所不具备的商用光学技术。研究人员制作了一个波导芯片,它能将一束激光分成16个不同的光通道。然后,每个通道都被导入基于光纤的独立调制器,这些调制器可独立对每束激光的强度、频率和相位进行灵活控制。然后,利用一系列类似望远镜的光学透镜将激光束聚焦到很小的间距。研究人员通过使用精确的摄像传感器对每束激光进行测量,从而确认了它们的聚焦和控制。这项工作是滑铁卢大学利用原子系统构建钡离子量子处理器的努力的一部分,Islam的共同首席研究员、IQC和滑铁卢大学物理和天文系教师CrystalSenko博士说。"我们使用离子是因为它们是完全相同的、自然制造的量子比特,所以我们不需要制造它们。我们的任务是找到控制它们的方法"。创新的波导方法展示了一种简单而精确的控制方法,为操纵离子来编码和处理量子数据以及在量子模拟和计算中的应用带来了希望。...PC版:https://www.cnbeta.com.tw/articles/soft/1383059.htm手机版:https://m.cnbeta.com.tw/view/1383059.htm

封面图片

谷歌科学家发布:量子计算机取得重大突破

谷歌科学家发布:量子计算机取得重大突破谷歌科学家最近在ArXiv平台上发布了一篇预印本论文,声称在量子计算机领域取得了重大突破。他们表示,通过对Sycamore处理器的升级,谷歌成功提升了量子位的数量,从之前的53个增加到了70个。这次实验中,谷歌科学家们执行了一项名为随机电路采样的任务,这个任务在量子计算中用于评估计算机的性能和效率。通过运行随机电路并分析结果输出,科学家们测试了量子计算机在解决复杂问题方面的能力。谷歌的研究结果显示,升级后的70个量子位的Sycamore处理器在执行随机电路采样任务上比业内最先进的超级计算机快了几十亿倍。例如,需要业内最先进超级计算机Frontier计算47.2年才能完成的任务,53个量子位的Sycamore处理器只需要6.18秒就能完成,而新版的70个量子位的Sycamore处理器速度更快。来源,,来自:雷锋频道:@kejiqu群组:@kejiquchat投稿:@kejiqubot

封面图片

量子计算技术重磅升级:IBM展示最新的模块化量子处理器

量子计算技术重磅升级:IBM展示最新的模块化量子处理器随着研究人员将及其制造得足够大,量子计算机已在性能方面足以超越传统计算机,而不可靠(数据错误)则成为主要的问题。新闻稿称,IBM展示了一种新方法:将芯片连接到机器内部,再将机器连接到一起,以形成模块化系统,使规模的扩展不受物理条件限制。IBM称,将这种方法叠加新的纠错码,有望在2033年之前制造出引人注目的量子机器。新的量子处理器芯片和量子计算系统硬件方面,IBM推出了“QuantumSystemTwo”(量子系统二号),它将搭载三个最高性能的量子处理器“Heron”(鹭)。鹭&量子系统二号据介绍,鹭具有133个固定频率量子比特,超过了127个量子比特的“Eagle”(鹰)处理器。IBM称,与鹰相比,鹭的设备性能提高了3至5倍,并且几乎消除了串扰。而“量子系统二号”将配备三个鹭处理器,它宽22英尺(约6.7米),高12英尺(约3.6米)。IBM称,“作为模块化架构的量子计算平台,我们将利用它来实现以量子为中心的超级计算的并行电路执行。”IBM希望这款芯片和机器能在10年后成为更大系统的基石。新闻稿指出,“我们已经进入了量子计算的新时代”,因为过去几十年的主题是这项新技术的出现和建立,现在则是奠定基础,让量子计算成为现实。研究和商业化并行IBM高级副总裁兼研究总监DarioGil告诉媒体,现在到2029年期间,技术的进展将相当稳定,届时纠错技术将可以充分发挥作用。“我们需要一段时间才能从科学价值转向商业价值,但我认为研究和商业化之间的区别正在变得越来越紧密。”“随着我们继续推进量子系统如何通过模块化架构扩展和提供价值,我们将进一步提高公用事业规模量子技术堆栈的质量,并将其交到我们的用户和合作伙伴手中,他们将突破量子技术的更复杂的问题界限。”“我们正处于量子计算机被用作探索科学新领域的工具的时代。”在谈到最新的鹭芯片时,Gil表示,“必须把很多事情结合起来做才实用,否则只是纸上谈兵。”...PC版:https://www.cnbeta.com.tw/articles/soft/1401997.htm手机版:https://m.cnbeta.com.tw/view/1401997.htm

封面图片

量子飞跃:IBM的纠错策略助其超越经典超级计算机

量子飞跃:IBM的纠错策略助其超越经典超级计算机冷却IBMEagle的低温恒温器的内部视图,包含127个量子比特,可以作为科学工具来探索经典方法可能无法解决的新规模问题。资料来源:IBMResearch不过,最近的一项研究表明,即使没有强大的纠错能力,也有办法减少误差,使量子计算机在当今世界发挥重要作用。纽约IBM量子公司的研究人员与加州大学伯克利分校和劳伦斯伯克利国家实验室的合作者在《自然》杂志上报告说,他们将一台127量子比特的量子计算机与一台最先进的超级计算机进行了比较。至少在一项特定的计算中,量子计算机的性能超过了超级计算机。研究人员之所以选择这项计算,并不是因为它对经典计算机特别具有挑战性,而是因为它类似于物理学家经常进行的计算。重要的是,计算的复杂程度可以提高,以测试目前噪声大、易出错的量子计算机能否为特定类型的普通计算提供精确结果。量子计算机在计算变得越来越复杂的过程中产生了可验证的正确解,而超级计算机算法却产生了错误答案,这一事实给人们带来了希望,即采用减少错误的量子计算算法,而不是更困难的纠错算法,可以解决尖端物理问题,如了解超导体和新型电子材料的量子特性。加州大学伯克利分校研究生、该研究合著者萨简特-阿南德(SajantAnand)说:"我们正在进入这样一个阶段:量子计算机可能能够完成目前经典计算机算法无法完成的事情。"IBM量子公司量子理论与能力高级经理萨拉-谢尔顿(SarahSheldon)补充说:"我们可以开始将量子计算机视为研究问题的工具,否则我们就无法研究这些问题。"反过来说,量子计算机对经典计算机的胜利可能会激发新的想法,以增强目前经典计算机上使用的量子算法,加州大学伯克利分校物理学副教授、托马斯和艾莉森-施耐德物理学讲座教授迈克尔-扎莱特尔(MichaelZaletel)说:"在研究过程中,我非常确信经典方法会比量子方法做得更好。因此,当IBM的零噪声外推版本比经典方法做得更好时,我百感交集。但是,思考量子系统是如何工作的,实际上可能会帮助我们找出处理问题的正确经典方法。虽然量子计算机做到了标准经典算法所做不到的事情,但我们认为这对改进经典算法是一个启发,以便将来经典计算机能像量子计算机一样运行良好。"增强噪声以抑制噪声IBM量子计算机看似优势的关键之一是量子错误缓解,这是一种处理量子计算噪音的新技术。自相矛盾的是,IBM的研究人员可控地增加量子电路中的噪声,从而得到噪声更大、更不准确的答案,然后向后推断计算机在没有噪声的情况下会得到的答案。这依赖于对影响量子电路的噪声的充分了解,以及对噪声如何影响输出的预测。之所以会出现噪声问题,是因为IBM的量子比特是敏感的超导电路,代表二进制计算中的0和1。当量子比特纠缠在一起进行计算时,热量和振动等不可避免的干扰会改变纠缠,从而带来误差。纠缠程度越高,噪声的影响就越大。此外,作用于一组量子比特的计算会在其他未参与计算的量子比特中引入随机误差。额外的计算会加剧这些错误。科学家们希望利用额外的量子比特来监测这些错误,以便对其进行纠正,这就是所谓的容错纠错。但是,实现可扩展的容错是一项巨大的工程挑战,对于数量越来越多的量子比特来说,容错是否可行还有待验证,Zaletel说。取而代之的是,IBM工程师提出了一种被称为零噪声外推法(ZNE)的误差缓解策略,即利用概率方法可控地增加量子设备上的噪声。根据一名前实习生的建议,IBM研究人员找到了阿南德、博士后研究员吴艳涛和Zaletel,请他们帮助评估使用这种误差缓解策略所获得结果的准确性。Zaletel开发了超级计算机算法来解决涉及量子系统的困难计算,例如新材料中的电子相互作用。这些算法采用张量网络模拟,可直接用于模拟量子计算机中相互作用的量子比特。Cori于2017年推出,是CrayXC40系列中的一个型号,拥有约30petaflops的惊人峰值性能,稳居当时全球超级计算机的第五位。它配备了2388个英特尔至强"Haswell"处理器节点、9,688个英特尔至强Phi"Knight'sLanding"节点和1.8PB的CrayDataWarpBurstBuffer固态设备,它的名字是为了纪念著名的生物化学家GertyCori。值得一提的是,GertyCori是第一位获得诺贝尔科学奖的美国女性,也是诺贝尔生理学或医学奖的首位女性获得者。Cori超级计算机于2023年5月31日退役。资料来源:伯克利实验室量子与经典:实验在几周的时间里,IBMQuantum的YoungseokKim和AndrewEddins在先进的IBMQuantumEagle处理器上运行了越来越复杂的量子计算,然后Anand在伯克利实验室的Cori超级计算机和Lawrencium集群以及普渡大学的Anvil超级计算机上使用最先进的经典方法尝试了同样的计算。当量子鹰于2021年推出时,它拥有所有量子计算机中数量最多的高质量量子比特,似乎超出了经典计算机的模拟能力。事实上,在经典计算机上精确模拟所有127个纠缠的量子比特需要天文数字的内存。量子态需要用127个独立数字的2的幂来表示。也就是1后面跟38个零;一般计算机可以存储约1000亿个数字,少了27个数量级。为了简化问题,阿南德、吴和扎莱特尔使用了近似技术,使他们能够在经典计算机上以合理的时间和成本解决这个问题。这些方法有点像jpeg图像压缩,即在可用内存的限制下,去掉不那么重要的信息,只保留获得准确答案所需的信息。Anvil超级计算机是一台功能强大的超级计算机,可提供先进的计算能力,支持各种计算和数据密集型研究。资料来源:普渡大学阿南德证实了量子计算机在不太复杂的计算中结果的准确性,但随着计算深度的增加,量子计算机的结果与经典计算机的结果出现了偏差。对于某些特定参数,阿南德能够简化问题并计算出精确解,从而验证量子计算结果优于经典计算机计算结果。在所考虑的最大深度上,虽然没有精确的解,但量子和经典结果却不一致。研究人员提醒说,虽然他们无法证明量子计算机对最难计算的最终答案是正确的,但"老鹰"在前几次运行中取得的成功让他们确信这些答案是正确的。"量子计算机的成功并非偶然。它实际上适用于整个电路家族,"扎莱特尔说。友好竞争与未来展望虽然扎莱特尔对预测这种减少错误的技术是否适用于更多的量子比特或更深入的计算持谨慎态度,但他说,这些结果还是鼓舞人心的。他说:"这激发了一种友好竞争的感觉,我认为我们应该能够在经典计算机上模拟他们正在做的事情。但我们需要用一种更聪明、更好的方式来思考这个问题--量子设备正处于一个表明我们需要不同方法的阶段。"一种方法是模拟IBM开发的ZNE技术。阿南德说:"现在,我们要问的是,我们能否将同样的误差缓解概念应用到经典张量网络模拟中,看看能否获得更好的经典结果。这项工作让我们有能力使用量子计算机作为经典计算机的验证工具,这颠覆了通常的做法。"...PC版:https://www.cnbeta.com.tw/articles/soft/1377527.htm手机版:https://m.cnbeta.com.tw/view/1377527.htm

封面图片

哈佛大学科学家利用声音来测试设备及控制量子比特

哈佛大学科学家利用声音来测试设备及控制量子比特利用声波控制原子空位可以增强通信技术,并为量子计算提供新的控制机制。声共振无处不在。事实上,很有可能你现在手里就拿着一个。如今,大多数智能手机都将体声谐振器用作射频滤波器,以滤除可能降低信号质量的噪音。这些滤波器也用于大多数Wi-Fi和GPS系统。声学谐振器比电子谐振器更稳定,但也会随着时间的推移而退化。目前还没有一种简便的方法来主动监测和分析这些广泛使用的设备的材料质量退化情况。现在,哈佛大学约翰-保尔森工程与应用科学学院(SEAS)的研究人员与普渡大学OxideMEMS实验室的研究人员合作开发了一种系统,利用碳化硅中的原子空位来测量声共振的稳定性和质量。更重要的是,这些空位还可用于声控量子信息处理,为操纵嵌入这种常用材料中的量子态提供了一种新方法。"碳化硅既是量子报告器的宿主,也是声共振探针的宿主,它是一种现成的商用半导体,可以在室温下使用,"该论文的资深作者、应用物理系和电子工程系塔尔-科因教授、文理学院李彦宏和马蔚华教授伊夫林-胡(EvelynHu)说。"作为一种声共振探针,碳化硅中的这种技术可用于监测加速计、陀螺仪和时钟在其寿命期间的性能,而在量子方案中,则有可能用于混合量子存储器和量子网络"。这项研究发表在《自然-电子学》上。碳化硅是微机电系统(MEMS)的常用材料,其中包括体声谐振器。普渡大学埃尔莫尔家族电气与计算机工程学院教授、论文合著者苏尼尔-巴维(SunilBhave)说:"众所周知,晶圆级可制造碳化硅谐振器尤其具有同类最佳的品质因数性能。但是,晶体生长缺陷(如位错和晶界)以及谐振器制造缺陷(如粗糙度、系应力和微尺度凹坑)会在MEMS谐振器内部造成应力集中区域。"如今,要想在不破坏声学谐振器的情况下看到谐振器内部的情况,唯一的办法就是使用超强且非常昂贵的X射线,例如阿贡国家实验室的宽光谱X射线束。夹在碳化硅声共振器(蓝色)顶部两个电极(黄色)之间的压电层(绿色)。电极和压电层产生的声波会对晶格产生机械应变,从而使缺陷(红色)的自旋发生翻转。利用聚焦在谐振器背面的激光读出自旋。资料来源:HuGroup/HarvardSEAS"这类昂贵且难以接近的机器无法在铸造厂或实际制造或部署这些设备的地方进行测量或表征,"SEAS研究生、论文共同第一作者乔纳森-迪茨(JonathanDietz)说。"我们的动机是尝试开发一种方法,让我们能够监测体声谐振器内部的声能,这样你就可以将这些结果反馈到设计和制造过程中。"碳化硅通常存在天然缺陷,在这种缺陷中,一个原子从晶格中被移除,从而产生一种空间局部电子状态,其自旋可以通过材料应变与声波相互作用,例如声共振器产生的应变。当声波穿过材料时,会对晶格产生机械应变,从而使缺陷的自旋发生翻转。自旋状态的变化可以通过用激光照射材料来观察,看有多少缺陷在受到扰动后"打开"或"关闭"。"光有多暗或多亮,表明缺陷所在局部环境中的声能有多强,"SEAS的研究生、论文合著者亚伦-戴(AaronDay)说。"由于这些缺陷只有单个原子大小,它们提供的信息非常局部,因此,你实际上可以用这种非破坏性的方式绘制出器件内部的声波图。"该地图可以指出系统可能在哪里以及如何退化或无法以最佳状态运行。碳化硅中的这些缺陷也可以成为量子系统中的量子比特。如今,许多量子技术都建立在自旋相干性的基础上:自旋在特定状态下保持的时间。这种相干性通常由磁场控制。但Hu和她的团队利用他们的技术证明,他们可以通过声波对材料进行机械变形来控制自旋,从而获得与其他使用交变磁场的方法类似的控制质量。Hu说:"利用材料的天然机械特性--应变--扩大了我们的材料控制范围。当我们使材料变形时,我们发现我们还可以控制自旋的相干性,而且我们只需通过材料发射声波就能获得这些信息。这为我们提供了一个重要的材料固有特性的新工具,我们可以利用它来控制蕴藏在材料中的量子态。"...PC版:https://www.cnbeta.com.tw/articles/soft/1392729.htm手机版:https://m.cnbeta.com.tw/view/1392729.htm

封面图片

揭开量子世界的神秘面纱:科学家实时捕捉光子的量子纠缠

揭开量子世界的神秘面纱:科学家实时捕捉光子的量子纠缠一项基于先进照相技术的新技术展示了一种快速高效地重建纠缠粒子完整量子态的方法。渥太华大学的研究人员与罗马萨皮恩扎大学的达尼洛-齐亚(DaniloZia)和法比奥-斯基亚里诺(FabioSciarrino)合作,最近展示了一种新技术,能够实时可视化两个纠缠光子(构成光的基本粒子)的波函数。用一双鞋作比喻,纠缠的概念可以比作随机选择一只鞋。当你辨认出一只鞋子的那一刻,另一只鞋子的性质(是左鞋还是右鞋)就会立刻被分辨出来,而不管它在宇宙中的位置如何。然而,耐人寻味的是,在观察的确切时刻之前,与识别过程相关的固有不确定性。波函数是量子力学的核心原理,它提供了对粒子量子态的全面理解。例如,在鞋子的例子中,鞋子的"波函数"可以携带左右、大小、颜色等信息。更准确地说,波函数能让量子科学家预测对量子实体进行各种测量的可能结果,如位置、速度等。照片(从左到右):AlessioD'Errico博士、EbrahimKarimi博士和NazaninDehghan。图片来源:渥太华大学这种预测能力非常宝贵,尤其是在飞速发展的量子技术领域,了解量子计算机产生或输入的量子态,将使我们能够测试计算机本身。此外,量子计算中使用的量子态极其复杂,涉及许多可能表现出强非局部相关性(纠缠)的实体。了解这样一个量子系统的波函数是一项极具挑战性的任务--这也被称为量子态层析成像或量子层析成像。采用标准方法(基于所谓的投影运算)进行全面层析需要大量测量,而测量次数会随着系统复杂度(维度)的增加而迅速增加。该研究小组以前用这种方法进行的实验表明,表征或测量两个纠缠光子的高维量子态可能需要几个小时甚至几天的时间。此外,结果的质量对噪声非常敏感,并取决于实验装置的复杂程度。量子层析成像的投影测量方法可以理解为观察从独立方向投射到不同墙壁上的高维物体的影子。研究人员所能看到的只是这些阴影,而从这些阴影中,他们可以推断出整个物体的形状(状态)。例如,在CT扫描(计算机断层扫描)中,可以从一组二维图像中重建三维物体的信息。不过,在经典光学中,还有另一种重建三维物体的方法。这种方法被称为数字全息术,其基础是通过将物体散射的光与参考光进行干涉而获得的单幅图像,即干涉图。由加拿大结构量子波研究主席、渥太华量子技术联合研究所(NexQT)联合主任、理学院副教授EbrahimKarimi领导的研究小组将这一概念扩展到了双光子的情况。重构双光子态需要将其与假定的众所周知的量子态叠加,然后分析两个光子同时到达的位置的空间分布。对同时到达的两个光子进行成像被称为巧合成像。这些光子可能来自参考源,也可能来自未知源。量子力学指出,光子的来源无法确定。这就产生了一种干涉模式,可用于重建未知波函数。先进的照相机能以纳秒(1,000,000,000秒)的分辨率记录每个像素上的事件,使这项实验成为可能。论文共同作者之一、渥太华大学博士后AlessioD'Errico博士强调了这一创新方法的巨大优势:"这种方法比以前的技术快了数倍,只需要几分钟或几秒钟,而不是几天。重要的是,检测时间不受系统复杂性的影响--这是解决投影层析成像中长期存在的可扩展性难题的一种方法。"这项研究的影响不仅限于学术界。它有可能加速量子技术的进步,如改进量子态表征、量子通信和开发新的量子成像技术。...PC版:https://www.cnbeta.com.tw/articles/soft/1387125.htm手机版:https://m.cnbeta.com.tw/view/1387125.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人