哈佛大学科学家利用声音来测试设备及控制量子比特

哈佛大学科学家利用声音来测试设备及控制量子比特利用声波控制原子空位可以增强通信技术,并为量子计算提供新的控制机制。声共振无处不在。事实上,很有可能你现在手里就拿着一个。如今,大多数智能手机都将体声谐振器用作射频滤波器,以滤除可能降低信号质量的噪音。这些滤波器也用于大多数Wi-Fi和GPS系统。声学谐振器比电子谐振器更稳定,但也会随着时间的推移而退化。目前还没有一种简便的方法来主动监测和分析这些广泛使用的设备的材料质量退化情况。现在,哈佛大学约翰-保尔森工程与应用科学学院(SEAS)的研究人员与普渡大学OxideMEMS实验室的研究人员合作开发了一种系统,利用碳化硅中的原子空位来测量声共振的稳定性和质量。更重要的是,这些空位还可用于声控量子信息处理,为操纵嵌入这种常用材料中的量子态提供了一种新方法。"碳化硅既是量子报告器的宿主,也是声共振探针的宿主,它是一种现成的商用半导体,可以在室温下使用,"该论文的资深作者、应用物理系和电子工程系塔尔-科因教授、文理学院李彦宏和马蔚华教授伊夫林-胡(EvelynHu)说。"作为一种声共振探针,碳化硅中的这种技术可用于监测加速计、陀螺仪和时钟在其寿命期间的性能,而在量子方案中,则有可能用于混合量子存储器和量子网络"。这项研究发表在《自然-电子学》上。碳化硅是微机电系统(MEMS)的常用材料,其中包括体声谐振器。普渡大学埃尔莫尔家族电气与计算机工程学院教授、论文合著者苏尼尔-巴维(SunilBhave)说:"众所周知,晶圆级可制造碳化硅谐振器尤其具有同类最佳的品质因数性能。但是,晶体生长缺陷(如位错和晶界)以及谐振器制造缺陷(如粗糙度、系应力和微尺度凹坑)会在MEMS谐振器内部造成应力集中区域。"如今,要想在不破坏声学谐振器的情况下看到谐振器内部的情况,唯一的办法就是使用超强且非常昂贵的X射线,例如阿贡国家实验室的宽光谱X射线束。夹在碳化硅声共振器(蓝色)顶部两个电极(黄色)之间的压电层(绿色)。电极和压电层产生的声波会对晶格产生机械应变,从而使缺陷(红色)的自旋发生翻转。利用聚焦在谐振器背面的激光读出自旋。资料来源:HuGroup/HarvardSEAS"这类昂贵且难以接近的机器无法在铸造厂或实际制造或部署这些设备的地方进行测量或表征,"SEAS研究生、论文共同第一作者乔纳森-迪茨(JonathanDietz)说。"我们的动机是尝试开发一种方法,让我们能够监测体声谐振器内部的声能,这样你就可以将这些结果反馈到设计和制造过程中。"碳化硅通常存在天然缺陷,在这种缺陷中,一个原子从晶格中被移除,从而产生一种空间局部电子状态,其自旋可以通过材料应变与声波相互作用,例如声共振器产生的应变。当声波穿过材料时,会对晶格产生机械应变,从而使缺陷的自旋发生翻转。自旋状态的变化可以通过用激光照射材料来观察,看有多少缺陷在受到扰动后"打开"或"关闭"。"光有多暗或多亮,表明缺陷所在局部环境中的声能有多强,"SEAS的研究生、论文合著者亚伦-戴(AaronDay)说。"由于这些缺陷只有单个原子大小,它们提供的信息非常局部,因此,你实际上可以用这种非破坏性的方式绘制出器件内部的声波图。"该地图可以指出系统可能在哪里以及如何退化或无法以最佳状态运行。碳化硅中的这些缺陷也可以成为量子系统中的量子比特。如今,许多量子技术都建立在自旋相干性的基础上:自旋在特定状态下保持的时间。这种相干性通常由磁场控制。但Hu和她的团队利用他们的技术证明,他们可以通过声波对材料进行机械变形来控制自旋,从而获得与其他使用交变磁场的方法类似的控制质量。Hu说:"利用材料的天然机械特性--应变--扩大了我们的材料控制范围。当我们使材料变形时,我们发现我们还可以控制自旋的相干性,而且我们只需通过材料发射声波就能获得这些信息。这为我们提供了一个重要的材料固有特性的新工具,我们可以利用它来控制蕴藏在材料中的量子态。"...PC版:https://www.cnbeta.com.tw/articles/soft/1392729.htm手机版:https://m.cnbeta.com.tw/view/1392729.htm

相关推荐

封面图片

科学家用计算机模拟量子技术中自旋缺陷的形成过程

科学家用计算机模拟量子技术中自旋缺陷的形成过程研究人员确定了在碳化硅中产生特定自旋缺陷的计算策略,为量子技术进步铺平了道路。他们的研究结果主要集中在二价自旋缺陷的形成上,这表明还需要做更多的工作来推广这种方法。这项研究对量子信息和传感应用至关重要,并得到了实验人员的密切合作和能源部的资助。图片来源:EmmanuelGygi提供。图中部分内容改编自ChristophDellago和PeterG.Bolhuis,Adv.Poly.科学》,施普林格出版社(2008年)。量子机制与当前挑战半导体和绝缘体中的电子自旋缺陷是量子信息、传感和通信应用的丰富平台。缺陷主要源自固体中的杂质和/或错位原子,与这些原子缺陷相关的电子带有自旋。这种量子力学特性可用于提供可控的量子比特,即量子技术中的基本操作单元。然而,人们对这些自旋缺陷的合成(通常是通过植入和退火工艺在实验中实现的)还不甚了解,更重要的是,还无法对其进行完全优化。碳化硅是一种极具吸引力的自旋量子比特宿主材料,因其具有工业可用性,但迄今为止,不同的实验在制造所需的自旋缺陷方面得出了不同的建议和结果。计算之旅和发现分子工程与化学教授加利是这篇新论文的通讯作者,他说:"目前还没有一种明确的策略,可以按照我们想要的精确规格设计自旋缺陷的形成,这种能力对于推动量子技术的发展非常有利。因此,我们开始了漫长的计算之旅,并提出了以下问题:我们能否通过进行全面的原子模拟来了解这些缺陷是如何形成的?"加利的团队,包括小组的博士后研究员张存志和加州大学戴维斯分校计算机科学教授弗朗索瓦·吉吉结合多种计算技术和算法,预测了碳化硅中被称为"空位"的特定自旋缺陷的形成。空位是通过移除碳化硅固体中相邻的一个硅原子和一个碳原子而产生的。从以前的实验中了解到,这类缺陷是很有希望的传感应用平台。量子传感可以实现磁场和电场的探测,还能揭示复杂的化学反应是如何发生的,这些都是当今技术无法实现的。加利说:"要在固态中释放量子传感能力,我们首先需要能够在正确的位置创造出正确的自旋缺陷或量子比特。 "为了找到预测特定自旋缺陷形成的方法,加利和她的团队结合了几种技术,帮助他们观察缺陷形成时原子和电荷的运动与温度的函数关系。团队量子模拟中使用的第一原理分子动力学代码Qbox的主要开发者Gygi说:"通常情况下,当自旋缺陷产生时,其他缺陷也会出现,这些缺陷可能会对自旋缺陷的目标传感能力产生负面干扰。这样一来,能够充分理解缺陷形成的复杂机理非常重要。 "技术与预测研究小组将Qbox代码与中西部计算材料综合中心(MICCoM)开发的其他先进采样技术相结合,该中心是一个计算材料科学中心,总部设在阿贡国家实验室,由能源部资助,Galli和Gygi都是该中心的高级研究员。加利说:"我们的综合技术和多重模拟向我们揭示了在碳化硅中高效、可控地形成二价自旋缺陷的特定条件。在我们的计算中,我们让基本物理方程告诉我们缺陷形成时晶体结构内部发生了什么"。未来方向与合作研究小组预计,实验人员将有兴趣使用他们的计算工具来设计碳化硅和其他半导体中的各种自旋缺陷,但他们也提醒说,要推广他们的工具来预测更广泛的缺陷形成过程和缺陷阵列还需要做更多的工作。加利说:"但我们提供的原理证明非常重要--我们证明了可以通过计算确定产生所需自旋缺陷所需的一些条件。"接下来,她的团队将继续努力扩大他们的计算研究,并加快他们的算法。他们还希望扩大研究范围,纳入一系列更现实的条件。"在这里,我们只研究块状样品,但在实验样品中,存在表面、应变和宏观缺陷。我们希望在未来的模拟中加入这些因素,特别是了解表面如何影响自旋缺陷的形成。"虽然她的团队是在计算研究的基础上取得的进展,但加利说,他们的所有预测都植根于与实验人员的长期合作。"如果没有我们所处的生态系统,没有与实验人员的不断交流和合作,这一切都不会发生。"...PC版:https://www.cnbeta.com.tw/articles/soft/1394863.htm手机版:https://m.cnbeta.com.tw/view/1394863.htm

封面图片

剑桥科学家在新型二维材料中实现了长期追求的量子态稳定性

剑桥科学家在新型二维材料中实现了长期追求的量子态稳定性卡文迪什实验室的研究人员在六方氮化硼(hBN)中发现了原子缺陷在环境条件下的自旋相干性,这是量子材料领域的一项罕见成就。这项发表在《自然-材料》(NatureMaterials)上的研究强调,这些自旋可以用光来控制,对未来的量子技术(包括传感和安全通信)具有广阔的前景。研究结果还强调了进一步探索提高缺陷可靠性和延长自旋存储时间的必要性,凸显了氢化硼在推进量子技术应用方面的潜力。资料来源:埃莉诺-尼科尔斯,卡文迪什实验室自旋相干性是指电子自旋能够长期保持量子信息。这一发现意义重大,因为能够在环境条件下承载量子特性的材料相当罕见。发表在《自然-材料》(NatureMaterials)上的研究结果进一步证实,室温下可获得的自旋相干性比研究人员最初想象的要长。论文共同作者、卡文迪什实验室Rubicon博士后研究员CarmemM.Gilardoni说:"研究结果表明,一旦我们在这些电子的自旋上写入某种量子态,这种信息就能存储约百万分之一秒,从而使这一系统成为一个非常有前景的量子应用平台。""这看起来似乎很短,但有趣的是,这个系统并不需要特殊的条件--它甚至可以在室温下存储自旋量子态,而且不需要大型磁铁"。六方氮化硼(hBN)是一种由一原子厚的层堆叠而成的超薄材料,有点像纸张。这些层通过分子间的作用力固定在一起。但有时,这些层内会出现"原子缺陷",类似于晶体内部夹杂着分子。这些缺陷可以通过明确的光学转变吸收和发射可见光范围内的光,还可以作为电子的局部陷阱。由于hBN中存在这些"原子缺陷",科学家们现在可以研究这些被困电子的行为方式。他们可以研究电子与磁场相互作用的自旋特性。真正令人兴奋的是,研究人员可以在室温下利用这些缺陷中的光来控制和操纵电子自旋。这一发现为未来的技术应用,尤其是传感技术的应用铺平了道路。不过,由于这是首次有人报告该系统的自旋相干性,因此在其成熟到足以用于技术应用之前,还有很多问题需要研究。科学家们仍在研究如何使这些缺陷变得更好、更可靠。他们目前正在探究我们能在多大程度上延长自旋存储时间,以及我们能否优化对量子技术应用非常重要的系统和材料参数,如缺陷的长期稳定性和该缺陷发出的光的质量。"与这一系统的合作向我们彰显了材料基础研究的力量。至于hBN系统,作为一个领域,我们可以在其他新材料平台中利用激发态动力学,用于未来的量子技术。"论文第一作者HannahStern博士说,她在卡文迪什实验室进行了这项研究,现在是英国皇家学会大学研究员兼曼彻斯特大学讲师。未来,研究人员将进一步开发该系统,探索从量子传感器到安全通信等多个不同方向。"每一个新的有前途的系统都将拓宽可用材料的工具包,而朝着这个方向迈出的每一步都将推动量子技术的可扩展实施。这些成果证实了层状材料有望实现这些目标,"领导该项目的卡文迪什实验室主任梅特-阿塔图雷(MeteAtatüre)教授总结道。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432414.htm手机版:https://m.cnbeta.com.tw/view/1432414.htm

封面图片

量子计算的新宠:科学家成功利用激光控制由钡制成的单个量子比特

量子计算的新宠:科学家成功利用激光控制由钡制成的单个量子比特这种新方法是滑铁卢大学量子计算研究所(IQC)开发的,它使用一个小型玻璃波导来分离激光束,并将它们聚焦在相距四微米的地方,大约是一根头发宽度的四百分之一。在并行控制目标量子比特上的每束聚焦激光的精度和程度是以往研究无法比拟的。IQC和滑铁卢大学物理与天文学系教授K.RajibulIslam博士说:"我们的设计将串扰量--落在相邻离子上的光量--限制在0.01%的极小相对强度,这在量子界是数一数二的。与以往对单个离子进行敏捷控制的方法不同,基于光纤的调制器不会相互影响。""这意味着我们可以与任何离子对话而不影响其相邻离子,同时还能最大限度地控制每个离子。据我们所知,在学术界和工业界,这是具有如此高精度的最灵活的离子量子比特控制系统。"绿色激光是操纵钡离子能态的正确能量。资料来源:滑铁卢大学钡离子:量子计算的新宠钡离子是科学家们的目标,因为它们在困离子量子计算领域越来越受欢迎。钡离子具有方便的能态,可用作量子位的零级和一级,并能用可见绿光进行操纵,而其他原子类型则不同,同样的操纵需要更高能量的紫外光。这样,研究人员就可以使用紫外线波长所不具备的商用光学技术。研究人员制作了一个波导芯片,它能将一束激光分成16个不同的光通道。然后,每个通道都被导入基于光纤的独立调制器,这些调制器可独立对每束激光的强度、频率和相位进行灵活控制。然后,利用一系列类似望远镜的光学透镜将激光束聚焦到很小的间距。研究人员通过使用精确的摄像传感器对每束激光进行测量,从而确认了它们的聚焦和控制。这项工作是滑铁卢大学利用原子系统构建钡离子量子处理器的努力的一部分,Islam的共同首席研究员、IQC和滑铁卢大学物理和天文系教师CrystalSenko博士说。"我们使用离子是因为它们是完全相同的、自然制造的量子比特,所以我们不需要制造它们。我们的任务是找到控制它们的方法"。创新的波导方法展示了一种简单而精确的控制方法,为操纵离子来编码和处理量子数据以及在量子模拟和计算中的应用带来了希望。...PC版:https://www.cnbeta.com.tw/articles/soft/1383059.htm手机版:https://m.cnbeta.com.tw/view/1383059.htm

封面图片

科学家运用太赫兹技术开启量子传感之门

科学家运用太赫兹技术开启量子传感之门图为莱斯大学新兴量子和超快材料实验室研究生徐睿制作的三个超快太赫兹场聚光器样品。底层(白色正方形可见)由钛酸锶制成,其表面图案为聚光器结构--可集中太赫兹频率红外光的微观同心圆阵列。这些阵列在显微镜下清晰可见(插图),但用肉眼观察时,就像细粒度的点状图案。图片来源:GustavoRaskosky拍摄/RuiXu/莱斯大学添加插图识别光谱中的差距莱斯大学三年级博士生、最近发表在《先进材料》(AdvancedMaterials)杂志上的一篇文章的第一作者徐睿说:"中红外光和远红外光存在明显的差距,大约在5-15太赫兹的频率和20-60微米的波长范围内,与较高的光学频率和较低的无线电频率相比,目前还没有很好的商业产品。"这项研究是在威廉-马什-莱斯讲座教授、材料科学与纳米工程助理教授朱涵宇(HanyuZhu)的新兴量子与超快材料实验室进行的。量子准电透镜(截面图),可聚焦频率为5-15太赫兹的光脉冲。传入的太赫兹光脉冲(红色,左上角)通过钛酸锶(蓝色)基底上的环形聚合物光栅和圆盘谐振器(灰色)转换成表面声子-极化子(黄色三角形)。黄色三角形的宽度表示声子-极化子在到达用于聚焦和增强出射光的圆盘谐振器(右上角红色)之前,通过每个光栅间隔传播时电场的增加。左下方的钛酸锶分子原子结构模型描述了声子-极化子振荡模式中钛(蓝色)、氧(红色)和锶(绿色)原子的运动。图片来源:Zhu实验室/莱斯大学提供太赫兹间隙的重要性和挑战Zhu说:"这一频率区域的光学技术--有时被称为'新太赫兹间隙',因为它远比0.3-30太赫兹'间隙'中的其他频率区域更难以接近--对于研究和开发用于接近室温的量子电子学的量子材料,以及感知生物分子中的功能基团以进行医学诊断,可能非常有用。"研究人员面临的挑战一直是找到合适的材料来承载和处理"新太赫兹间隙"中的光。这种光会与大多数材料的原子结构产生强烈的相互作用,并很快被它们吸收。莱斯大学材料科学与纳米工程系学生RuiXu是一项研究的第一作者,该研究表明钛酸锶有可能在3-19太赫兹频率下实现高效光子设备。图片来源:GustavoRaskosky拍摄/莱斯大学钛酸锶和量子顺电性Zhu的研究小组利用钛酸锶(一种锶和钛的氧化物)将强相互作用转化为优势。Xu说:"它的原子与太赫兹光的耦合如此强烈,以至于形成了被称为声子-极化子的新粒子,这些粒子被限制在材料表面,不会在材料内部消失。"其他材料支持更高频率的声子-极化子,而且通常支持的范围很窄,而钛酸锶则不同,它支持整个5-15太赫兹间隙的声子-极化子,这是因为钛酸锶具有一种称为量子顺电性的特性。钛酸锶的原子表现出巨大的量子波动和随机振动,因此能有效捕捉光线,而不会被捕捉到的光线自我捕获,即使在零开尔文温度下也是如此。"我们通过设计和制造超快场聚光器,证明了钛酸锶声子-极化子器件在7-13太赫兹频率范围内的概念,"Xu说。"这种器件能将光脉冲挤压到小于光波长的体积内,并保持较短的持续时间。因此,我们实现了每米近千兆伏的强瞬态电场。HanyuZhu是莱斯大学威廉-马什-莱斯讲座教授兼材料科学与纳米工程助理教授。图片来源:JeffFitlow摄影/莱斯大学未来影响与应用电场是如此之强,以至于它可以用来改变材料的结构,从而产生新的电子特性,或者从微量的特定分子中产生新的非线性光学响应,这种响应可以用普通的光学显微镜检测到。Zhu说,他的研究小组开发的设计和制造方法适用于许多市售材料,可以实现3-19太赫兹范围内的光子设备。...PC版:https://www.cnbeta.com.tw/articles/soft/1378127.htm手机版:https://m.cnbeta.com.tw/view/1378127.htm

封面图片

超导突破:科学家发现量子物质的新状态

超导突破:科学家发现量子物质的新状态这种"自旋三重电子对晶体"是一种以前未知的拓扑量子物质状态。这一发现最近发表在《自然》杂志上。顾强强是在文理学院詹姆斯-吉尔伯特-怀特杰出荣誉教授、物理学家J.C.SéamusDavis实验室工作的博士后研究员,他与科克大学学院的乔-卡罗尔和牛津大学的王树秋共同领导了这项研究。当配对电势呈现奇奇偶性时,超导体就是拓扑超导体,这会导致每个电子对采用自旋三重态,两个电子自旋的方向相同。顾强强介绍说,拓扑超导体是物理学家们热衷研究的对象,因为从理论上讲,它们可以构成超稳定量子计算机的材料平台。然而,即使对拓扑超导进行了长达十年的深入研究,除了同样在康奈尔大学发现的超流体3He之外,还没有任何块体材料被明确认定为自旋三奇偶超导体。最近,一种奇特的新材料--二碲化铀(UTe2)成为这种分类的极有希望的候选者。然而,它的超导阶参数仍然难以捉摸。2021年,理论物理学家开始提出,UTe2实际上处于拓扑对密度波(PDW)状态。此前从未探测到过这种形式的量子物质。简单地说,拓扑对密度波就像超导体中的成对电子的静态舞蹈,但这些成对电子在空间中形成周期性的晶体图案。"我们康奈尔大学的团队在2016年利用我们为此发明的超导尖端扫描约瑟夫森隧穿显微镜发现了有史以来观测到的第一个PDW,"顾说。"从那时起,我们开创了在毫开尔文温度和微伏能量分辨率下的SJTM研究。在UTe2项目中,我们直接观察到了超导配对势在原子尺度上的空间调制,并发现它们的调制完全符合PDW状态下电子对密度在空间周期性调制的预测。我们探测到的是一种新的量子物质态--由自旋-三重库珀对组成的拓扑对密度波"。库珀对密度波是电子量子物质的一种形式,其中电子对凝固成超导PDW态,而不是形成传统的"超导"流体,在这种流体中,所有电子对都处于相同的自由运动状态。顾强强说:"在自旋三重超导体中首次发现PDW令人兴奋。铀基重费米子超导化合物是一类新颖奇特的材料,为实现拓扑超导提供了一个前景广阔的平台。......我们的科学发现还指出了这种有趣的量子态在s波、d波和p波超导体中无处不在的性质,并为在广泛的材料中识别这种状态提供了新的途径。"...PC版:https://www.cnbeta.com.tw/articles/soft/1380305.htm手机版:https://m.cnbeta.com.tw/view/1380305.htm

封面图片

科学家利用光基处理器实现量子计算的巨大飞跃

科学家利用光基处理器实现量子计算的巨大飞跃这些新兴领域中在原子水平上运行的技术已经为药物发现和其他小规模应用带来了巨大的好处。未来,大规模量子计算机有望解决当今计算机无法解决的复杂问题。首席研究员、澳大利亚皇家墨尔本理工大学的阿尔贝托-佩鲁佐(AlbertoPeruzzo)教授说,该团队的处理器是一种光子学设备,利用光粒子携带信息,通过最大限度地减少"光损失",有助于成功实现量子计算。提高量子效率佩鲁佐是皇家墨尔本理工大学量子计算与通信技术卓越中心(ARCCentreofExcellenceforQuantumComputationandCommunicationTechnology,CQC2T)节点的负责人,他介绍说:"如果失去光线,就必须重新开始计算,其他潜在的进步包括提高了"不可破解"通信系统的数据传输能力,以及加强了环境监测和医疗保健领域的传感应用。"研究小组的可重新编程光基处理器。资料来源:皇家墨尔本理工大学WillWright研发成果研究小组在一系列实验中对光子处理器进行了重新编程,通过施加不同的电压实现了相当于2500个设备的性能。他们的研究结果和分析发表在《自然-通讯》(NatureCommunications)上。这项创新可以为量子光子处理器带来更紧凑、更可扩展的平台。论文第一作者、皇家墨尔本理工大学博士生杨洋说,这种设备"完全可控",能在降低功耗的情况下快速重新编程,而且无需制作许多定制设备:"我们通过实验在单个设备上展示了不同的物理动态。这就像有了一个开关,可以控制粒子的行为方式,这对理解量子世界和创造新的量子技术都很有用"。合作创新意大利特伦托大学的MirkoLobino教授利用一种名为铌酸锂的晶体制造了这种创新的光子装置,而美国印第安纳大学普渡大学印第安纳波利斯分校的YogeshJoglekar教授则带来了他在凝聚态物理学方面的专业知识。铌酸锂具有独特的光学和电光特性,是光学和光子学各种应用的理想材料。Lobino说:"我所在的小组参与了该设备的制造工作,这尤其具有挑战性,因为我们必须在波导顶部微型化大量电极,以实现这种程度的可重构性。"Joglekar说:"可编程光子处理器为探索这些设备中的一系列现象提供了一条新的途径,而这些现象将有可能开启技术和科学领域令人难以置信的进步。"推进量子控制与此同时,佩鲁佐的团队还开发出了一种世界首创的混合系统,它将机器学习与建模相结合,对光子处理器进行编程,帮助控制量子设备。量子计算机的控制对于确保数据处理的准确性和效率至关重要。该设备输出精度面临的最大挑战之一是噪声,它描述了量子环境中影响量子比特性能的干扰。微微子是量子计算的基本单位。佩鲁佐说:"有一系列行业正在开发全面的量子计算,但它们仍在与噪声造成的误差和低效作斗争。控制量子比特的尝试通常依赖于对什么是噪声以及造成噪声的原因的假设。我们开发了一种协议,利用机器学习来研究噪声,同时利用建模来预测系统对噪声的反应,而不是做出假设。利用量子光子处理器,这种混合方法可以帮助量子计算机更精确、更高效地运行,从而影响我们未来控制量子设备的方式。我们相信,我们的新混合方法有可能成为量子计算领域的主流控制方法。"主要作者、来自皇家墨尔本理工大学的AkramYoussry博士说,与传统的建模和控制方法相比,新开发的方法的结果显示出显著的改进,可以应用于光子处理器以外的其他量子设备。他说:"这种方法帮助我们发现并理解了我们设备的一些方面,这些方面超出了这种技术的已知物理模型。这将帮助我们在未来设计出更好的设备。"这项工作发表在《NpjQuantumInformation》上。未来展望与量子计算的潜力围绕其团队的光子设备设计和量子控制方法,可以创建量子计算方面的初创公司,他们将继续研究其应用及其"全部潜力"。量子光子学是最有前途的量子产业之一,因为光子学产业和制造基础设施已经非常完善。与其他方法相比,量子机器学习算法在某些任务中具有潜在优势,尤其是在处理大型数据集时。"想象一下,在这个世界上,计算机的工作速度比现在快几百万倍,我们可以安全地发送信息而不必担心信息被截获,我们可以在几秒钟内解决目前需要几年才能解决的问题。这不仅仅是幻想--这是由量子技术驱动的潜在未来,而像我们这样的研究正在铺平道路。"编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1422385.htm手机版:https://m.cnbeta.com.tw/view/1422385.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人