冰川萎缩引发“绿色转型”:微生物正在蓬勃发展

冰川萎缩引发“绿色转型”:微生物正在蓬勃发展来自洛桑联邦理工学院(EPFL)和查尔斯大学(CharlesUniversity)的科学家们根据"消失的冰川"(VanishingGlaciers)项目的全球样本发现,随着冰川的缩小,山区溪流中的微生物生命也在蓬勃发展。这种"绿色过渡"导致初级生产增加,改变了当地的碳和营养循环。图片来源:EPFL/VincentdeStark冰川注入的溪流在夏季是浑浊汹涌的洪流。大量的冰川融水搅动着岩石和沉积物,几乎没有光线可以照射到河床,而其他季节的低温和积雪则几乎没有机会让丰富的微生物群生长。但是,随着冰川在全球变暖的影响下逐渐缩小,冰川的水量也在不断减少。这意味着溪流变得更加温暖、平静和清澈,使藻类和其他微生物有机会大量繁殖,并为当地的碳和营养循环做出更大贡献。洛桑联邦理工学院河流生态系统实验室(RIVER)的全职教授汤姆-巴廷(TomBattin)说:"我们正在目睹这些生态系统中微生物组发生深刻变化的过程--由于初级生产的增加,这简直就是一场'绿色转型'。"在论文中,科学家们研究了溪水中的氮和磷等营养物质,以及生活在河床沉积物中的微生物为利用这些营养物质而产生的酶。然后,他们观察了由大小不一的冰川提供水源的巨大梯度溪流中这两种营养物质的变化。"冰川哺育的溪流生态系统通常拥有有限的碳和营养物质,尤其是磷,"前RIVER博士后、本文第一作者泰勒-科勒(TylerKohler)解释说。"随着冰川的萎缩,藻类和其他微生物对磷的需求增加,高山溪流中磷的限制可能会越来越多"。因此,磷作为生命的重要组成部分,在下游生态系统(包括较大的河流和湖泊)中将变得更加稀缺,对其食物网的影响尚不可知。2023年8月,"消失的冰川"项目的科学家在《皇家学会开放科学》上发表了一篇论文,支持上述发现。在这项研究中,作者分析了乌干达鲁文佐里山脉一条由冰川提供水源的小溪的微生物群。在这里,营养物质和酶的组成也大不相同,藻类非常丰富。巴廷说:"鲁文佐里冰川发生的变化让我们看到了瑞士冰川注入的溪流在30年或50年后的样子。这种变化的一个结果是,随着冰川注入的溪流接纳更多的微生物生命,它们将在二氧化碳通量等生物地球化学循环中发挥更大的作用。"RIVER团队计划在此基础上继续开展研究。他们正在对冰川溪流中的微生物生物多样性进行普查,并利用各种基因组信息,探索多样化的微生物是如何在地球上最极端的淡水生态系统中生存的。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1422878.htm手机版:https://m.cnbeta.com.tw/view/1422878.htm

相关推荐

封面图片

新研究向抗病微生物组疗法迈出重要一步

新研究向抗病微生物组疗法迈出重要一步现在,哈德逊医学研究所(HudsonInstituteofMedicalResearch)与美国系统生物学研究所(InstituteforSystemsBiology)和澳大利亚莫纳什大学(MonashUniversity)的科学家合作开展的新研究发现了一种方法,可以确定肠道中哪些物种最重要,以及它们之间的相互作用如何影响微生物组和更广泛生物学的健康,并为治疗炎症性肠病、感染、自身免疫性疾病和癌症等一系列健康问题的新进展铺平了道路。哈德逊研究所副教授塞缪尔-福斯特(SamuelForster)说:"健康的肠道中大约有1000种不同的细菌--这是一个微观的多元文化社区,拥有超过一万亿的个体成员。我们微生物群落中的细菌以群落的形式存在,它们相互依赖,相互产生和分享关键的营养物质"。研究人员表示,通过研究复杂微生物群的计算模型,他们不仅可以了解微生物的构成和相互作用,还可以了解它们如何影响周围的身体。福斯特说:"我们开发了一种新的计算方法来了解这些依赖关系及其在塑造我们的微生物群方面的作用。这种新方法解开了我们对肠道微生物群的理解,为选择性重塑微生物群落的新治疗方案奠定了基础。"克罗恩病就是一个例子,研究小组证实它与微生物群中的硫化氢有关。研究人员发现,与之前的研究相反,该病是由于使用硫化氢的细菌减少而引发的,而不是产生硫化氢的物种增加。福斯特和他的团队与总部位于阿德莱德的生物技术公司BiomeBank有着长期的合作关系,该公司正在研究通过恢复肠道微生物生态来治疗和预防疾病的新方法。通过哈德逊医学研究所与BiomeBank的合作,这些对群落结构的深入了解将为合理选择微生物组合进行有针对性的干预提供机会。使用计算方法研究微生物群落可能是了解如何针对群落中的复杂关系采取意义深远的健康干预措施的关键一步。"这是开发复杂微生物疗法的重要一步,"领衔作者瓦内萨-马塞利诺(VanessaMarcelino)说。"这种方法使我们能够识别和排列细菌之间的关键相互作用,并利用这些知识预测改变群体的有针对性的方法"。该团队目前正与生物技术公司BiomeBank合作,以便将他们的发现付诸实践,找到利用肠道微生物群生态学治疗和预防疾病的新方法。福斯特说:"通过哈德逊医学研究所与BiomeBank的合作,我们对群落结构的这些见解将为合理选择微生物组合进行有针对性的干预提供机会。"该研究发表在《自然通讯》(NatureCommunications)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1391753.htm手机版:https://m.cnbeta.com.tw/view/1391753.htm

封面图片

细菌战甲:青蛙疫苗如何改变微生物组以对抗致命真菌

细菌战甲:青蛙疫苗如何改变微生物组以对抗致命真菌该研究于6月12日发表在皇家学会哲学会刊B的特刊上,表明微生物组反应可能是疫苗功效中一个重要的、被忽视的部分。“构成动物微生物组的微生物通常可以帮助抵御病原体,例如通过产生有益物质或通过与病原体竞争空间或营养物质,”宾夕法尼亚州立大学生物学副教授兼研究负责人GuiBecker说。“但是当你接种疫苗时,你的微生物组会发生什么变化,比如COVID疫苗、流感疫苗或黄热病疫苗等减毒活疫苗?在这项研究中,我们以青蛙作为模型系统开始探索这个问题。”青蛙和其他两栖动物受到壶菌的威胁,这导致几大洲的一些物种灭绝,数百种其他物种的种群数量严重下降。在易感物种中,这种真菌会导致有时致命的皮肤病。“壶菌是近代历史上野生动物保护最严重的病原体之一,如果不是最严重的话,迫切需要开发控制其传播的工具,”贝克尔说,他也是OneHealth微生物组中心和宾夕法尼亚州立大学传染病动力学中心的成员。“我们发现,在某些情况下,疫苗可以诱导微生物组发生保护性转变,这表明仔细操纵微生物组可以作为更广泛战略的一部分,帮助两栖动物,或许还有其他脊椎动物,应对新出现的病原体。”研究人员应用了一种疫苗,在这种情况下,一种由壶菌产生的代谢产物的非致死剂量用于蝌蚪。五周后,他们观察了微生物组的组成是如何变化的,确定了单个细菌种类及其相对比例。研究人员还在实验室中培养了每种细菌,并测试了特定于细菌的产品是否促进、抑制或对壶菌生长没有影响,将结果添加到该信息的大型数据库中并与之进行比较。“增加接触壶菌产品的浓度和持续时间会显着改变微生物组的组成,从而产生更高比例的细菌产生抗壶菌物质,”大学贝克尔实验室的硕士生SamanthaSiomko说。阿拉巴马州的研究人员和论文的第一作者。“这种保护性转变表明,如果一只动物再次接触到相同的真菌,它的微生物组将能够更好地对抗病原体。”以前在微生物组中诱导保护性变化的尝试依赖于添加一种或多种已知可产生有效抗真菌代谢物(即益生菌)的细菌。然而,根据研究人员的说法,细菌必须与微生物组中的其他物种竞争,并且并不总是能够成功地将自己确立为微生物组的永久成员。贝克尔说:“这些青蛙的皮肤上有数百种细菌,它们是从环境中吸收的,而且成分会定期变化,包括随季节变化。试图操纵微生物社区,例如通过添加细菌益生菌,是具有挑战性的,因为社区的动态是如此复杂和不可预测。我们的结果很有希望,因为我们基本上已经朝着更有效地对抗真菌病原体的方向操纵了整个细菌群落,而无需添加需要竞争资源才能生存的生物。”值得注意的是,微生物组内的物种总数多样性没有受到影响,只有物种的组成和相对比例受到影响。研究人员认为这是积极的,因为青蛙微生物组多样性的下降通常会导致疾病或死亡,而且人们普遍认为,维持多样化的微生物组可以让细菌和微生物物种群落更动态地应对威胁更高的功能冗余。研究人员表示,微生物组组成的这种适应性转变,他们称之为“微生物组记忆”,可能在疫苗功效中发挥重要作用。除了了解这种转变背后的机制外,研究小组还希望在未来研究成年青蛙和其他脊椎动物的微生物组记忆概念。“我们的合作团队实施了一种预防技术,该技术依赖于来自壶菌的代谢产物,”贝克尔说。“基于mRNA或活细胞的疫苗——就像那些通常用于预防细菌或病毒感染的疫苗——可能会对微生物组产生不同的影响,我们很高兴探索这种可能性。”...PC版:https://www.cnbeta.com.tw/articles/soft/1364805.htm手机版:https://m.cnbeta.com.tw/view/1364805.htm

封面图片

揭开微生物暗物质的秘密:神秘的棒状杆菌世界

揭开微生物暗物质的秘密:神秘的棒状杆菌世界扫描电子显微照片显示,紫色的小棒状杆菌细胞生长在大得多的细胞表面。西雅图华大医学中心约瑟夫-穆格斯(JosephMougous)实验室领导的新研究揭示了它们的生命周期、基因,以及它们不同寻常的生活方式背后的一些分子机制。这些附生细菌是Southlakiaepibionticum。图片来源:YaxiWang、WaiPangChan和ScottBraswell/华盛顿大学研究人员能在实验室培养的少数几种棒状杆菌寄生在另一种更大的宿主微生物的细胞表面。一般来说,棒状杆菌缺乏制造许多生命必需分子所需的基因,如构成蛋白质的氨基酸、形成膜的脂肪酸和DNA中的核苷酸。研究人员由此推测,许多无脊椎动物依靠其他细菌生长。在最近发表于《细胞》(Cell)的一项研究中,研究人员首次揭示了不同寻常的棒状杆菌生活方式背后的分子机制。这一突破得益于对这些细菌进行基因操纵的方法的发现,这一进展为可能的新研究方向开辟了一片天地。西雅图系统生物学研究所的尼廷-S-巴利加(NitinS.Baliga)说:"虽然元基因组学可以告诉我们哪些微生物生活在我们的身体上和身体内,但仅凭DNA序列并不能让我们深入了解它们的有益或有害活动,特别是对于那些以前从未被表征过的生物。"表生细菌研究员拉里-A-加拉格尔(LarryA.Gallagher)在华盛顿大学医学院微生物实验室的显微镜前。图片来源:S.BrookPeterson/华盛顿大学他补充说:"从基因上扰乱棒状杆菌的能力为应用强大的系统分析透镜来快速描述强制性附生生物的独特生物学特性提供了可能性。"这项研究背后的团队由华盛顿大学医学院微生物学系约瑟夫-穆格斯(JosephMougous)实验室和霍华德-休斯医学研究所(HowardHughesMedicalInstitute)领导。它们是许多不为人知的细菌之一,其DNA序列出现在对从环境来源的物种丰富的微生物群落中发现的基因组进行的大规模遗传分析中。这种遗传物质被称为"微生物暗物质",因为人们对其编码的功能知之甚少。《细胞》杂志的论文指出,微生物暗物质可能含有潜在生物技术应用的生化途径信息。它还为支持微生物生态系统的分子活动以及该系统中聚集的各种微生物物种的细胞生物学提供了线索。在这项最新研究中分析的棒状杆菌属于糖杆菌(Saccharibacteria)。它们生活在各种陆地和水域环境中,但以栖息在人类口腔中最为著名。至少从中石器时代开始,它们就是人类口腔微生物群的一部分,并与人类口腔健康有关。在人的口腔中,糖杆菌需要放线菌的陪伴,放线菌是它们的宿主。为了更好地了解酵母菌与宿主的关系机制,研究人员利用基因操作来确定酵母菌生长所必需的所有基因。西雅图华盛顿大学医学院微生物实验室厌氧工作站,附生细菌研究员王雅茜。图片来源:S.BrookPeterson/华盛顿大学微生物学教授穆格斯(Mougous)说:"能够初步了解这些细菌所携带的不寻常基因的功能,我们感到非常兴奋。通过今后对这些基因的重点研究,我们希望能揭开糖细菌如何利用宿主细菌生长的神秘面纱"。研究中发现的可能的宿主相互作用因素包括可能帮助糖杆菌附着在宿主细胞上的细胞表面结构,以及可能用于运输营养物质的专门分泌系统。作者工作的另一项应用是生成了表达荧光蛋白的酵母菌细胞。利用这些细胞,研究人员对糖杆菌与宿主细菌一起生长的情况进行了延时显微荧光成像。穆格斯实验室的资深科学家布鲁克-彼得森(S.BrookPeterson)指出:"对糖杆菌-宿主细胞培养物的延时成像揭示了这些不寻常细菌生命周期的惊人复杂性。"研究人员报告说,一些酵母菌作为母细胞,粘附在宿主细胞上,反复出芽,产生小的后代。这些小家伙继续寻找新的宿主细胞。一些后代反过来成为了母细胞,而另一些则似乎与宿主进行着无益的互动。研究人员认为,更多的遗传操作研究将为更广泛地了解他们所描述的"这些生物体所蕴含的丰富的微生物暗物质储备"的作用打开一扇大门,并有可能发现尚未想象到的生物机制。...PC版:https://www.cnbeta.com.tw/articles/soft/1382839.htm手机版:https://m.cnbeta.com.tw/view/1382839.htm

封面图片

重新发明“炼金术” 只靠微生物就能发财了?

重新发明“炼金术”只靠微生物就能发财了?酸奶就是微生物发酵的功劳但其实在现代工业中,微生物能做的远不只满足人类的口腹之欲——在现代科技的帮助下,我们可以用微生物编织出我们身上的衣服(微生物纤维素)、熔铸出我们常用的工具(微生物塑料)、榨取出充当能源的各种油脂(微生物燃料),甚至可以帮助我们从不起眼的矿石中提黄金。微生物和黄金在常人的认知中,似乎是风马牛不相及的,那细菌是如何“炼金”的呢?炼金的本质是什么?要解答这个问题,我们需要先搞明白“炼金”的本质是什么。和铁、铜、铝等主要以化合物形式储藏在矿石中的金属不同,由于金的化学性质很不活泼,其不容易与环境中常见的氧气、二氧化碳、水乃至弱酸/弱碱反应,因此我们在岩矿中勘探到的黄金几乎都是纯净的金元素。但这些金散落于整个金矿层的其他岩石成分中,很少能够像挖化石一样直接开采出比较大的金块。因此,炼金实际上就是通过一些方法把这些分散的金从矿石中“抓”出来,再使其重新“结晶”成金块或金粒的过程。在实际操作中,往往需要大量金矿石才能提取出少量黄金,唐代诗人白居易的诗句“披砂复凿石,矻矻无冬春”描述的就是当时开采金银的不易。采出的金矿石,需要将其磨成细粉后在水中淘洗,利用金密度大,不容易随水流失的特点达到筛选富集黄金的目的。近现代炼金工业中会加入一些化学试剂来协助开采过程,化学试剂中就包括剧毒的氰化钠,因此传统的炼金工业是污染比较大的工业门类。微生物也能成为“炼金术师”黄金的开采和冶炼流程极为复杂,因此能直接发掘得到的自然金——狗头金,尤为珍贵,地质学家认为,这些狗头金应当是金矿石中的黄金微粒被溶解为金离子后二次结晶形成的,但具体的机制很长一段时间以来都没有被破解。自然金在极少数情况下会以狗头金形式出现图片来源:Wikipedia2006年,《科学》杂志上刊登了澳大利亚阿德莱德大学教授弗兰克·里斯(FrankReith)领导的一项研究,该研究通过分子生物学技术在澳大利亚自然金表面检测到了生物成分,并在其中鉴定出30种细菌的DNA,其中一种被称为金属罗尔斯通菌(Ralstoniametallidurans)的细菌在所有DNA阳性金粒上均有发现,且在自然金周围的土壤中并不存在。紧接着,研究人员在这种细菌的培养物中加入含有金离子的溶液,随后观察到了明显的金沉淀现象,由此证明这些细菌参与了自然金的形成。在之后的许多年里,来自世界其他地区的研究也支持了这一观点,并且在当地的自然金中发现了更多种类的“炼金微生物”。为什么微生物可以?令科学家们费解的是,金不是营养物质,不能为细菌提供能源,不参与细菌正常的生命活动,甚至对细菌来说,金离子还是有毒的,那“炼金微生物”们为什么会聚集到自然金表面生活,还要参与沉积黄金呢?事实上,自然界的各种生物与其说是生活在“最适合”的环境中,不如说是生活在“最有优势”的环境中,“炼金微生物”们之所以选择在金块上生活,并参与“建设”金块,就是因为只有它们能够耐受金的毒性,而其他微生物不会来和它们争夺生存空间和周围的营养物质。2018年,哈雷-维滕贝格马丁路德大学的微生物学家迪特里希·H·尼斯(DietrichH.Nies)在《金属组学》杂志上发表的文章揭示了“炼金微生物”的代表——耐金属贪铜菌(Cupriavidusmetallidurans)通过一种被称为“CopA”的酶将细胞外的金离子转化为难吸收的金颗粒,从而抵御金离子对自身细胞的侵害,在这个过程中产生了“炼金”的效果。单独把“CopA”分离出来投放到金溶液中时,金粒子也会产生。这项研究厘清了微生物参与天然金块形成过程的机制,受到了生物化学领域和金属冶金领域的特别关注。黄金表面的耐金属贪铜菌图片来源:Wikipedia结语“炼金微生物”们或许本来并不希望变得那么“金光闪闪”,但为了生存,它们选择定居在富含黄金的环境下,努力进化出了对抗黄金侵害的“盾牌”,这也使得在“微生物炼金”的秘密被揭开时,它们与对它们来说应当是“废物”的黄金一样受到瞩目。从另一个方面讲,“微生物炼金”的发现宣示着天然金块的冶炼似乎本就是微生物的作用,如果我们能将“微生物炼金”开发为一项能够大规模应用的实用技术,一定有助于解决当前炼金工业存在的问题,推动人类社会更加绿色可持续发展。参考资料[1]ReithF,RogersSL,McPhailDC,etal.Biomineralizationofgold:biofilmsonbacterioformgold[J].science,2006,313(5784):233-236.[2]BütofL,WiesemannN,HerzbergM,etal.Synergisticgold–copperdetoxificationatthecoreofgoldbiomineralisationinCupriavidusmetallidurans[J].Metallomics,2018,10(2):278-286.策划制作出品丨科普中国作者丨王锦鸿中国科学院微生物研究所监制丨中国科普博览责编丨林林、金禹奋(实习生)...PC版:https://www.cnbeta.com.tw/articles/soft/1382521.htm手机版:https://m.cnbeta.com.tw/view/1382521.htm

封面图片

中科院微生物研究所创建出仿生海洋电池

中科院微生物研究所创建出仿生海洋电池9月24日,国际学术期刊NatureCommunications报道了微生物所研究人员创建的小型化仿生海洋电池,在生物光伏领域取得新进展。该研究受到海洋微生物生态系统是一个天然太阳能生物转化系统的启发。PC版:https://www.cnbeta.com/articles/soft/1324735.htm手机版:https://m.cnbeta.com/view/1324735.htm

封面图片

哈佛大学的科学家对感染深海微生物的病毒有了新的认识

哈佛大学的科学家对感染深海微生物的病毒有了新的认识在地球上,病毒是最丰富和多样的生命形式,栖息在每个环境中。例如,在海洋中,病毒甚至比微生物更多,其数量是微生物的十倍。病毒通过感染生物体进行复制,范围从人类和动物到昆虫甚至微生物。尽管感染微生物的环境病毒的存在并不是一个新的发现,但它们的流行程度以前是未知的。研究人员刚刚开始理解病毒的丰富多样性以及它们对生态系统的影响和它们在生态系统中的功能。PC版:https://www.cnbeta.com.tw/articles/soft/1354289.htm手机版:https://m.cnbeta.com.tw/view/1354289.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人