血流成像手表可以随时随地查看体内血液情况

血流成像手表可以随时随地查看体内血液情况 高分辨率光声成像技术已缩小到能装进手表里光声成像的工作原理是这样的。首先,物体吸收光,这里是激光脉冲。被吸收的光能转化为热能,产生温升。然后,热弹性膨胀产生可探测的声波。超声波成像和光声成像的区别在于,前者能识别解剖结构,而后者则能获得分辨率更高的功能和结构图像。由于光声成像可以穿透2-3厘米(0.8-1.2英寸)深的组织,它已被用于扫描血管、估算血液含氧量(血氧饱和度)以及诊断皮肤病和癌症。中国南方科技大学(SUSTech)的研究人员开发出了一种光声成像装置,其体积小到可以装在手表里。"虽然光声成像对血液动力学的变化极为敏感,但成像接口的小型化和优化困难重重,限制了可穿戴光声设备的发展,"概述研究人员新系统的研究报告通讯作者奚磊说。"据我们所知,这是首个适合医疗保健应用的光声可穿戴设备"。光声手表能捕捉皮肤血管的高分辨率图像血液动力学是血液流动的动力学。记录心率、血压和血氧饱和度等血液动力学参数可以衡量心脏的工作状况。研究人员的设备包括一块带有成像界面的手表、一台手持电脑和一个装有激光器和电源的背包(背包重量为7千克/15磅)。它的设计允许佩戴者自由移动。该设备的激光焦点可调整,这意味着它能够对皮肤等多层结构成像,其8.7微米的分辨率足以在直径约3毫米的最大视野内对皮肤中的大多数微小血管成像。志愿者佩戴光声装置在不同条件下进行测试,如行走时或袖带暂时阻断手臂血流时。测试表明,该系统可用、小巧、稳定,可以自由移动。背包内装有设备的激光供应器和电源,重15磅。"像我们开发的这种微型可穿戴成像系统有可能被社区卫生中心用于疾病的初步诊断,或在医院环境中用于血液循环相关参数的长期监测,为各种疾病的治疗提供有价值的见解,"奚磊说。"随着进一步开发,这种系统还可用于早期检测牛皮癣和黑色素瘤等皮肤病,或分析烧伤情况。"研究人员正在努力研制一种激光源更小、脉冲重复率更高的系统,这将使系统更加紧凑、轻便,同时提高安全性和分辨率。最终,这将包括抛弃背包。鉴于现代激光二极管技术和电子信息技术的飞速发展,研制出更先进、更智能、不需要背包的光声手表应该是完全可行的。他们还希望改进设备,使其能够承受更剧烈的体力活动,如跑步和跳跃。此外,他们还希望加入更多血液动力学参数,包括对血管数量和体积的定性评估,这将有助于该系统用于癌症和心血管疾病的早期诊断。这项研究发表在《光学通讯》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1423383.htm手机版:https://m.cnbeta.com.tw/view/1423383.htm

相关推荐

封面图片

超高速光声成像技术为了解大脑功能提供了新的视角

超高速光声成像技术为了解大脑功能提供了新的视角虽然正电子发射断层扫描(PET)和功能磁共振成像(fMRI)提供了较为有用的图像,但它们存在空间分辨率低,难以区分相邻的身体结构,以及时间分辨率低,也就是产生测量和构建图像的时间。同样地,光学显微镜能产生高分辨率的图像,但由于成像速度慢和穿透深度差而受到阻碍。微泡增强的超声波能深入渗透,分辨率高,但缺乏功能灵敏度。现在有了另一种成像方法,光声显微镜(PAM)使用激光脉冲发射到一个器官。脉冲引起的超声波被捕获以形成图像。重要的是,PAM可以使用不同波长的激光来瞄准体内的特定结构,甚至是分子水平。这意味着PAM可以测量重要的血液动力学参数,如血氧饱和度、血流量和氧气的代谢率。PAM的缺点是它的扫描速度很慢。但是这个问题已经被杜克大学脑科学研究所(DIBS)的研究人员解决了,他们开发了超快功能光声显微镜(UFF-PAM),其速度是现有PAM系统的2倍。UFF-PAM能够以宽广的视野和高空间分辨率对大脑微血管和功能进行成像,这是其他成像技术所缺乏的。在一个概念验证实验中,杜克大学的研究人员使用UFF-PAM成功地捕捉了小鼠大脑中诱发缺氧、硝普钠诱发低血压和中风的血液动力学反应。UFF-PAM能够实时捕捉快速、全脑的变化。中风实验也产生了一个意想不到的结果,UFF-PAM检测到一个从中风区域发出的扩散性去极化(SD)波穿过大脑,随着它的扩散导致血管变窄(血管收缩)。SD波引起了研究人员和科学家的极大兴趣,因为他们的功能知之甚少。生物医学工程助理教授、DIBS教员姚俊杰博士说:"SD波可能是一个损伤严重程度的指示,使它们成为一个潜在的诊断工具。波的性质也可以为脑损伤的类型和程度提供线索,这可以为治疗提供参考和优化。"杜克大学的团队现在正在研究使用UFF-PAM来研究其他疾病。虽然UFF-PAM目前只在动物身上使用,但Yao透露计划开发一种手持式UFF-PAM用于人类。该研究出现在《光》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1344433.htm手机版:https://m.cnbeta.com.tw/view/1344433.htm

封面图片

加州理工学院开发新型光声矢量断层扫描PAVT技术 无需动刀可看深层血流

加州理工学院开发新型光声矢量断层扫描PAVT技术无需动刀可看深层血流加州理工学院医学工程和电气工程布伦教授王立宏的实验室开展的新研究,现在可以用非侵入性的方式对人体深层血管甚至是流经血管的血液进行成像。加州理工学院的新型光声矢量断层扫描(PAVT)技术能够对深层血管进行突破性的无创成像,并对血流动态进行详细分析。创新成像技术:PAVT在发表于《自然-生物医学工程》(NatureBiomedicalEngineering)杂志上的一篇文章中,Wang和他的同事描述了这种技术,他们称之为光声矢量断层扫描(Photoacousticvectortomography,简称PAVT)。这项技术在很多方面都与王立宏的其他光声成像技术相似,后者利用的是能被红细胞中的载氧分子血红蛋白很好吸收的激光。血红蛋白分子吸收激光的能量后会产生超声波振动。这些振动在整个组织中传播,直到到达皮肤表面,被连接到计算机上的传感器检测到。然后,计算机会生成组织特征的图像,在本例中就是血管。这并不是王的实验室第一次展示利用光声学技术对血管进行成像的能力,但这种新方法能比以前更深入地对人体内的血流进行成像,并首次不仅显示了血管的存在及其氧合状态,还显示了血液是如何在血管中流动的。血流成像技术的突破"以前,我们只能显示血管的大小、血液的浓度和血氧饱和度,"安德鲁和佩吉-程医学工程领导力讲座教授王说。"现在,我们可以测量矢量流,它同时显示流速和方向。我们这个领域研究光声技术已经有20多年了,但没有人预料到会有这样的结果。我们自己也很惊讶,因为我们的领域认为这是不可能的。""当我第一次看到我们的血流图像时,我绝对大吃一惊,"第一作者、医学工程博士后学者副研究员张洋说。"这项工作最令人兴奋的地方在于,我们将工程学和生理学协同起来,克服了以前认为该领域无法克服的障碍"。研究小组之所以能够看到血流方向和流速,是因为PAVT具有非常精细的分辨率,能够辨别出人体深处红细胞分布所产生的信号。集成在系统中的算法会跟踪这些分布的运动,并推断出血流的速度和方向。这有点像Google通过观察手机在该区域的移动速度来判断高速公路上的交通流量有多大。研究人员假设,红细胞的异质分布有助于他们拍摄人体血流的图像和视频,而红细胞的异质分布部分源于全身血管的结构方式。在巴西亚马逊河和内格罗河的交汇处,可以看到两条河流的水平行流淌,并在汇合后的一段时间内保持不混合。血管中也有类似现象。图片来源:PortaldaCopa/WikimediaCommons王立宏将静脉中的情况比作两条水质不同的河流(一条清澈,一条浑浊)汇合成一条更大的溪流。在这样的汇合处,即使流经相同的河道,两股河水在很长一段距离内仍未混合的情况并不少见。当两根输送不同血液成分(含氧和不含氧)血液的静脉汇合在一起时,也会出现类似的现象。尽管这两条血管的血液汇合成一股,但在一段时间内仍会保持未混合状态。PAVT系统可以分辨出这些未混合的斑块,并跟踪它们的运动。由于红细胞吸收来自PAVT系统的激光的方式因其是否含氧而异,因此PAVT还能确定特定血管中的血液携带了多少氧气。王补充说:"这使我们能够量化耗氧量,而耗氧量是衡量新陈代谢的重要指标。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1421986.htm手机版:https://m.cnbeta.com.tw/view/1421986.htm

封面图片

加州理工学院激光声成像技术迎来重大飞跃 实现三维成像并减少所需传感器

加州理工学院激光声成像技术迎来重大飞跃实现三维成像并减少所需传感器加州理工学院最近的研究对一种名为PATER的光声成像技术进行了重大改进,该技术现已发展为PACTER。新版本简化了技术,减少了对多个传感器的需求,实现了三维成像,并且无需在每次使用前进行校准。这些进步使该技术在医学成像应用中更加实用和高效。资料来源:加州理工学院加州理工学院医学工程和电子工程布伦教授王力宏实验室的最新研究就属于后者。在发表于《自然-生物医学工程》(NatureBiomedicalEngineering)杂志上的一篇论文中,王力宏和博士后学者张一德展示了他们如何简化和改进他们于2020年首次公布的一种成像技术。这项技术是一种名为PATER(通过极性中继的光声地形图)的光声成像技术,是王建民研究小组的专长。光声成像技术的改进在光声成像中,激光脉冲进入组织,被组织的分子吸收,引起分子振动。每个振动的分子都是超声波的来源,可用于以类似超声波成像的方式对内部结构进行成像。然而,光声成像在技术上具有挑战性,因为它能在短时间内产生所有成像信息。为了捕捉这些信息,王的光声成像技术的早期版本需要将数百个传感器(换能器)组成的阵列紧贴被成像组织的表面,这使得该技术既复杂又昂贵。王和张通过使用一种称为"麦积继电器"的装置减少了所需传感器的数量,这种装置可以减慢信息(以振动的形式)流入传感器的速度。正如之前有关PATER的报道所解释的那样:在计算中,有两种主要的数据传输方法:串行和并行。在串行传输中,数据以单一数据流通过一个通信通道发送。在并行传输中,多个数据通过多个通信通道同时发送。这两种通信方式大致类似于商店中使用收银机的方式。串行通信就像一台收银机。每个人都排在同一条队伍中,看到同一个收银员。并行通信就好比有几个收银机,每个收银机有一条线。Wang设计的拥有512个传感器的系统与拥有许多收银机的商店类似。所有传感器同时工作,每个传感器接收激光脉冲产生的超声波振动的部分数据。由于系统发出的超声波振动是在短时间内产生的,因此如果要在这么短的时间内收集所有数据,单个传感器将不堪重负。这就是麦哲伦继电器的用武之地。正如王力宏所描述的那样,遍历中继器是一种可以让声音在周围回荡的腔体。当超声波振动通过遍历中继器时,它们会在时间上被拉长。回到收银机的比喻,这就好比让另一名员工协助单个收银员,告诉顾客在店里走几圈,直到收银员准备好接待他们,这样收银员就不会手忙脚乱了。PACTER:下一步发展这项技术的最新版本被称为PACTER(PhotoacousticComputedTomographyThroughanErgodicRelay),它更进一步,允许系统使用单个传感器进行操作,通过使用软件,可以收集到与6,400个传感器一样多的数据。兼任安德鲁和佩吉-钱格(AndrewandPeggyCherng)医学工程领导力主席和医学工程执行官的王说,PACTER在另外两个方面改进了PATER。改进之一是PACTER可以生成三维图像,而PATER只能生成二维图像。这得益于改进软件的开发。"过渡到三维成像大大提高了数据要求。我们面临的挑战是如何通过单个传感器传输大量增加的数据,"张说。"我们通过改变方法找到了解决方案。我们首先将一个传感器扩展为数千个虚拟传感器,而不是直接采用计算密集型方法从单传感器数据中重建三维图像。这一想法简化了三维图像重建的过程,使其与我们光声成像的传统方法更加接近"。其次,与PATER不同,PACTER无需在每次使用时进行校准。"使用PATER时,我们必须在每次使用时对其进行校准,而这是不现实的。我们摆脱了这种每次使用时的一次性校准,"王说。之所以需要校准,是因为当系统向组织发射激光脉冲时,脉冲的"回波"会反弹到换能器上,使其无法感知直接的超声波信息。PACTER通过在系统中加入延迟线来解决这个问题。延迟线迫使回波在返回换能器的途中经过更长的物理路径,这样它就能在接收到直接超声波信息后到达换能器。描述这项工作的论文"利用单元素探测器进行单次容积光声断层扫描的血流动力学超快纵向成像"发表在11月30日出版的《自然-生物医学工程》(NatureBiomedicalEngineering)杂志上。该论文的共同作者包括:胡鹏(23年博士),前医学工程研究生;李磊(19年博士),前医学工程博士后;曹睿,医学工程博士后;AnjulKhadria,前医学工程博士后;KonstantinMaslov,前加州理工学院职员科学家;童欣,医学工程研究生;以及南加州大学的曾玉顺、蒋来明和周其发。研究经费由美国国立卫生研究院提供。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404763.htm手机版:https://m.cnbeta.com.tw/view/1404763.htm

封面图片

#科普 X 射线成像、PET 扫描、CT 扫描和 MRI 是用于捕获身体内部图像的不同成像技术。

#科普X射线成像、PET扫描、CT扫描和MRI是用于捕获身体内部图像的不同成像技术。X射线:主要用于检测骨折、某些肿瘤和其他异常肿块、肺炎、某些类型的损伤、钙化、异物或牙齿问题。MRA:磁共振血管造影。使用强大的磁场、射频波和计算机来评估血管并帮助识别异常情况。MRI:磁共振成像。使用磁场和无线电波来拍摄体内图像。对收集X射线检查中未显示的软组织(例如器官和肌肉)的照片特别有帮助。PET扫描:正电子发射断层扫描。可用于评估器官和/或组织是否存在疾病或异常状况。PET还可用于评估器官的功能,例如心脏或大脑。PET最常见的用途是检测癌症和评估癌症治疗。CT扫描:计算机断层扫描。用于识别身体各个区域的疾病或损伤。例如,CT已成为检测腹部可能存在肿瘤或病变的有效筛查工具。当怀疑患有各种类型的心脏病或异常时,可以要求进行心脏CT扫描。

封面图片

全身成像技术可捕捉免疫系统对病毒感染的反应

全身成像技术可捕捉免疫系统对病毒感染的反应在病毒感染期间,非定制(幼稚)的CD8+T细胞会被激活并产生细胞毒性,寻找并杀死受感染的细胞。一些CD8+细胞发展成为病原体特异性记忆T细胞,它们会"记住"病毒,在病毒再次出现时为免疫系统提供长期保护。了解免疫系统如何对病毒感染做出反应并形成对入侵者的特异性记忆,对于开发疫苗和治疗方法非常重要。虽然可以在血液中发现CD8+T细胞,但它们大多存在于脾脏、骨髓和淋巴结等非血液组织中,因此获取它们需要进行组织活检。现在,加州大学戴维斯分校健康中心的研究人员开发出了一种非侵入性方法,利用全身正电子发射断层扫描(PET)测量CD8+T细胞及其对病毒感染的反应。该研究的第一作者NegarOmidvari说:"人们对研究CD8+T细胞在免疫反应和记忆中的关键作用越来越感兴趣。然而,由于活检的侵入性,评估非血液组织中的免疫学变化具有挑战性。在某些情况下,甚至无法在活体参与者的某些解剖区域(如大脑、脊髓、心肺组织和血管组织)进行活检。因此,我们面临的挑战是找到一种非侵入性的定量方法,用于测量CD8+T细胞在体内的分布和贩运情况,而且这种方法也能安全地用于健康人"。动态全身正电子发射计算机断层成像技术包括向患者体内注射极少量的放射性同位素示踪剂,然后在一段时间内进行连续成像,从而生成显示示踪剂在体内动力学(随时间的分布)的影片。然后,利用数学模型提取生物相关信息。全身PET扫描仪可同时对所有器官进行动态成像和动力学建模。它们比传统PET扫描仪更灵敏,图像质量更高,放射性示踪剂注射剂量更低。这是动态PET和动力学建模首次用于测量人体CD8+T细胞分布。Omidvari说:"动态全身正电子发射计算机断层扫描是目前唯一一种辐射剂量可接受的技术,可对活体所有组织内的免疫细胞分布和贩运(移动)进行无创定量测量。"研究人员招募了三名健康成年人和五名感染COVID-19且症状轻微至中度、无需住院治疗的康复者。研究人员向参与者注射了少量含有免疫正电子发射计算机断层扫描放射性示踪剂(89Zr-Df-Crefmirlimab)的放射性液体,该示踪剂靶向人类CD8细胞。COVID感染康复患者和健康对照受试者在三个成像时间点进行的基线全身PET扫描Omidvari等人/加州大学戴维斯分校健康中心每位受试者都接受了90分钟的动态扫描、6小时后的60分钟扫描以及注射放射性示踪剂48小时后的60分钟扫描。动力学建模使研究人员能够分离血液循环对组织的影响,并测量组织对放射性示踪剂的吸收,而不受成像时间和每位参与者血液差异的影响。图像显示,所有参与者的淋巴器官都摄取了大量的CD8+T细胞。摄取量最高的是脾脏,其次是骨髓、肝脏、扁桃体和淋巴结。值得注意的是,研究人员观察到,与对照组相比,COVID康复患者骨髓中的CD8+T细胞浓度有所增加。COVID感染后六个月的随访扫描显示,在所有骨髓区域,康复患者的记忆T细胞浓度都略高于基线扫描时的浓度。Omidvari说:"骨髓已被确定为病毒感染后记忆性CD8+T细胞增殖的主要来源和首选部位。"这种记忆T细胞向骨髓等特定组织的迁移对于病毒感染后免疫记忆的形成至关重要。"通过这项研究,研究人员为以非侵入性方式研究人体免疫反应和所有器官的记忆提供了一个新平台。"这项研究的根本意义在于,它展示了全身正电子发射计算机断层显像技术评估整个人体T细胞分布的潜力,它具有详细建模所需的图像质量,而且辐射剂量足够低,可以广泛应用于研究人体的免疫反应,"共同作者西蒙-切里(SimonCherry)说。"在我们的研究中,我们能够描述这种免疫PET示踪剂在健康对照受试者和传染病患者(COVID-19)中的动态特性,这是一个重要的创举"。研究人员说,除了研究免疫反应和记忆外,这种方法还可用于评估癌症患者的治疗反应,并可扩展到对传染病、自身免疫性疾病和器官移植的研究。该研究发表在《科学进展》(ScienceAdvances)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1391737.htm手机版:https://m.cnbeta.com.tw/view/1391737.htm

封面图片

新成像技术揭示有机半导体中的激子动力学 带来改进能量转换材料的潜力

新成像技术揭示有机半导体中的激子动力学带来改进能量转换材料的潜力图示:光激发有机半导体"巴克明斯特富勒烯"两个分子中的电子。新形成的激子(如亮点所示)首先分布在两个分子上,然后才落在一个分子上(如图中右侧所示)。资料来源:AndreasWindischbacher新的成像技术揭示了有机半导体中的激子动力学,有助于深入了解其量子特性和改进能量转换材料的潜力。WiebkeBennecke。图片来源:FotostudioRomanBrodel/Braunschweig哥廷根大学、格拉茨大学、凯泽斯劳滕-朗道大学和格勒诺布尔-阿尔卑斯大学的研究人员现在首次非常快速、非常精确地拍摄到了这些激子的图像--事实上,精确度达到了四十亿分之一秒(0.000,000,000,000,001s)和十亿分之一米(0.000,000,001m)。这种认识对于开发更高效的有机半导体材料至关重要。相关成果最近发表在科学杂志《自然通讯》上。了解激子动力学当光线照射到材料上时,一些电子会吸收能量,从而进入激发态。在有机半导体(如有机发光二极管中使用的半导体)中,这些受激电子和剩余"空穴"之间的相互作用非常强烈,电子和空穴不再能被描述为单独的粒子。相反,带负电荷的电子和带正电荷的空穴结合成对,称为激子。长期以来,从理论和实验角度理解有机半导体中这些激子的量子力学特性一直被认为是一项重大挑战。MatthijsJansen博士。图片来源:ChristinaMöller新方法揭示了这一难题。该研究的第一作者、哥廷根大学物理学家WiebkeBennecke解释说:"利用我们的光发射电子显微镜,我们可以发现激子内部的吸引力极大地改变了它们的能量和速度分布。我们以极高的时间和空间分辨率测量了这些变化,并将它们与量子力学的理论预测进行了比较"。研究人员将这种新技术称为光发射激子层析成像技术。其背后的理论是由格拉茨大学的PeterPuschnig教授领导的团队开发的。半导体研究进展这项新技术使科学家们首次能够测量和观察激子的量子力学波函数。简单地说,波函数描述了激子的状态,并决定了其存在的概率。哥廷根大学的MatthijsJansen博士解释了这一发现的意义:"我们研究的有机半导体是由60个碳原子组成的球形排列的富勒烯。问题是激子是否总是位于单个分子上,还是可以同时分布在多个分子上。这一特性会对太阳能电池中半导体的效率产生重大影响。"斯特凡-马蒂亚斯教授。图片来源:StefanMathias光发射激子层析技术提供了答案:激子在光的作用下产生后,立即分布在两个或更多的分子上。然而,在几个飞秒内,也就是在一秒钟的极小部分内,激子就会缩回到单个分子。未来,研究人员希望利用这种新方法记录激子的行为。哥廷根大学的斯特凡-马蒂亚斯(StefanMathias)教授认为,这很有潜力:"例如,我们希望了解分子的相对运动如何影响材料中激子的动力学。这些研究将有助于我们了解有机半导体的能量转换过程。我们希望这些知识将有助于开发更高效的太阳能电池材料"。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1424837.htm手机版:https://m.cnbeta.com.tw/view/1424837.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人